首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Dental materials》2020,36(2):210-220
ObjectiveDisruption of the demineralization–remineralization balance could trigger the development of dental caries, making it challenging for enamel to “self-heal”. Thus, extrinsic assistance is needed to restore enamel lesions and stop undermining progression. The aim of this study was to investigate enamel remineralization in a simulated oral environment via poly (amino amine) (PAMAM) dendrimers quantitatively.MethodsBovine enamel specimens were shaken in demineralization solution (pH 4.5, 37 °C, 50 rpm/min) for 72 h to create initial enamel carious lesions. The subsurface-demineralized specimens were then divided into four groups: enamel treated with PAMAM-NH2, enamel treated with PAMAM−COOH, enamel treated with PAMAM−OH, and enamel treated with deionized water. The treated specimens underwent subsequent 12-day pH cycling. Enamel blocks were analyzed by transverse microradiography (TMR), surface microhardness testing and scanning electron microscopy (SEM) before and after demineralization and pH cycling.ResultsGroups treated with PAMAM dendrimers showed lower lesion depth and less mineral loss, attained more vertical-section surface microhardness recovery, and adsorbed more mineral deposits (p < 0.05). The enamel lesion remineralization values of PAMAM-NH2, PAMAM-COOH, and PAMAM-OH groups were 76.42 ± 3.32%, 60.07 ± 5.92% and 54.52 ± 7.81%, respectively.SignificanceIn conclusion, PAMAM with different terminal groups could induce enamel remineralization, among which PAMAM-NH2 showed the most prominent competence, followed by PAMAM-COOH and PAMAM-OH, in that order.  相似文献   

2.

Objectives

Manufacturers are adding fluoride (F) to calcium-containing chewing gums to further promote enamel remineralization. The aim of this study was to assess the effect of a chewing gum containing phosphoryl oligosaccharides of calcium (POs-Ca) and fluoride on remineralization of enamel subsurface lesions, in a double-blind, randomized controlled in situ trial.

Methods

Thirty-six volunteer subjects wore removable buccal appliances with three different insets of bovine enamel with subsurface demineralized lesions. For 14 days the subjects chewed one of the three chewing gums (placebo, POs-Ca, POs-Ca + F), three times a day. After each treatment period, the insets were removed from the appliance, embedded, sectioned, polished and then subjected to laboratory tests; mineral level was determined by transverse microradiography (TMR; n = 36), and hydroxyapatite (HAp) crystallites were assessed by synchrotron radiation wide-angle X-ray diffraction (WAXRD; n = 13). Data were analysed by t-test or Wilcoxon rank-sum test with Bonferroni corrections at 0.05 significance level.

Results

Chewing POs-Ca and POs-Ca + F gums resulted in 21.9 ± 10.6 and 26.3 ± 9.4 (mean ± SD) percentage mineral recovery, which was significantly higher than that of placebo gum (15.0 ± 11.4) (p < 0.05). Chewing POs-Ca + F gum resulted in 24.9 ± 5.4 (mean ± SD) percentage HAp crystallites recovery, which was significantly higher compared to POs-Ca (16.0 ± 4.1%) or placebo (11.1 ± 4.8%) gums (p < 0.05).

Conclusions

Addition of POs-Ca to the chewing gum resulted in significant remineralization of enamel subsurface lesions. Although POs-Ca + F gum was not superior in TMR recovery rate when compared with POs-Ca gum, WAXRD results highlighted the importance of fluoride ion bioavailability in the formation of HAp crystallites in enamel subsurface lesions in situ (NCT01377493).  相似文献   

3.
ObjectiveAdvantages of introducing a salivary phosphoprotein homologue under standardized in vitro conditions to simulate the mineral-stabilizing properties of saliva have been proposed. This study longitudinally investigates the effects of casein, incorporated as a potential salivary phosphoprotein homologue in artificial saliva (AS) solutions with/without fluoride (F) on in vitro dentine lesion remineralization.DesignThin sections of bovine root dentine were demineralized and allocated randomly into 6 groups (n = 18) having equivalent mineral loss (ΔZ) after transverse microradiography (TMR). The specimens were remineralized using AS solutions containing casein 0 μg/ml, F 0 ppm (C0–F0); casein 0 μg/ml, F 1 ppm (C0–F1); casein 10 μg/ml, F 0 ppm (C10–F0); casein 10 μg/ml, F 1 ppm (C10–F1); casein 100 μg/ml, F 0 ppm (C100–F0) or casein 100 μg/ml, F 1 ppm (C100–F1) for 28 days with TMR taken every 7 days.ResultsSurface mineral precipitation, evident in group C0–F1, was apparently inhibited in groups with casein incorporation. Repeated measures ANOVA with Bonferroni correction revealed higher ΔZ for non-F and non-casein groups than for their counterparts (p < 0.001). Subsequent multiple comparisons showed that mineral gain was higher (p < 0.001) with 10 μg/ml casein than with 100 μg/ml when F was present in the earlier stages of remineralization, with both groups achieving almost complete remineralization after 28 days.ConclusionCasein is a potential salivary phosphoprotein homologue that could be employed for in vitro dentine remineralization studies. Concentration related effects may be clinically significant and thus must be further examined.  相似文献   

4.
《Dental materials》2021,37(9):1325-1336
ObjectiveTo fabricate and characterize dental composites with calcium type pre-reacted glass-ionomer (PRG-Ca) fillers.MethodsPRG-Ca fillers were prepared by the reaction of calcium fluoroaluminosilicate glass with polyacrylic acid. Seven dental composites were produced from the same organic matrix (70/30 wt% Bis-GMA/TEGDMA), with partial replacement of barium borosilicate (BaBSi) fillers (60 wt%) by PRG-Ca fillers (wt%): E0 (0) – control, E1 (10), E2 (20), E3 (30), E4 (40), E5 (50) and E6 (60). Enamel remineralization was evaluated in caries-like enamel lesions induced by S. mutans biofilm using micro-CT. The following properties were characterized: degree of conversion (DC%), roughness (Ra), Knoop hardness (KHN), flexural strength (FS), flexural modulus (FM), water sorption (Wsp), water solubility (Wsl), and translucency (TP). Data were analyzed to one-way ANOVA and Tukey’s HSD test (α = 0.05).ResultsAll composites with PRG-Ca induced enamel remineralization. E0 and E1 presented similar and highest DC% than E2 = E3 = E4 = E5 = E6. Ra and KHN were not influenced by PRG-Ca fillers (p < 0.05). The higher the content of PRG-Ca, the lower FS, FM and TP (p < 0.05). Wsp increased linearly with the content of PRG-Ca fillers (p < 0.05). E6 presented the highest Wsl (p < 0.05), while the Wsl of the other composites were not different from each other (p > 0.05).SignificanceIncorporation of 10–40 wt.% of PRG-Ca fillers endowed remineralizing potential to dental composites without jeopardizing the overall behavior of their physicochemical properties. Dental composites with PRG-Ca fillers seems to be a good alternative for reinforcing the enamel against caries development.  相似文献   

5.
ObjectivesThis study analysed the effect of frequency of intake and amount of fluoride in milk on the remineralisation of artificial enamel and dentine caries lesions ex vivo/in situ.Materials and methodsPre-demineralised bovine enamel and dentine slabs were randomly allocated into 5 groups and fixed in removable appliances used by subjects for 7 days in each phase. Each treatment comprised milk containing 2.5 ppm fluoride daily (T1), or every other day (T2), 5.0 ppm F daily (T3), or every other day (T4) or no treatment (T5).ResultsEnamel alterations were quantified by surface hardness recovery (%SHR) and transversal microradiography (TMR), and in dentine by TMR only. Data were analysed by ANOVA and Tukey’s test (p < 0.05). For enamel, the highest %SHR was found for T1 and T3 compared to control, without significant differences between them. All groups showed positive values of ΔΔZ − T1 (247.3 ± 198.5); T2 (110.9 ± 303.2); T3 (226.0 ± 299.2); T5 (5.0 ± 288.0), except T4 (−274.5 ± 407.3). For dentine, the only group that presented remineralisation was T2 (350.0 ± 657.5).ConclusionsFluoridated milk daily seems to have higher remineralising effect on enamel than its use every other day. Dentine, does not seem to benefit from daily use of fluoridated milk.  相似文献   

6.
《Dental materials》2014,30(12):e377-e383
ObjectivesThe objective of this study was to evaluate the effect of immersion time of restorative glass ionomer cements (GICs) and immersion duration in calcium chloride (CaCl2) solution on the surface hardness.MethodsTwo high-viscosity GICs, Fuji IX GP and GlasIonomer FX-II, were selected. Forty-eight specimens were randomly divided into two groups. Sixty minutes after being mixed, half of them were immersed in a 42.7 wt% CaCl2 solution for 10, 30, or 60 min (Group 1); the remaining specimens were immersed after an additional 1-week of storage (Group 2). The surface hardness of the specimens was measured and analyzed with two-way ANOVA and the Tukey HSD test (α = 0.05). The surface compositions were examined using energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy.ResultsThe surface hardness of Group 1 significantly increased as the immersion duration in CaCl2 increased; that of Group 2 significantly increased only after 60-minute CaCl2 immersion. After CaCl2 immersion, the amounts of Ca increased as the immersion duration increased. The surface hardness after CaCl2 immersion significantly correlated with the amount of Ca in Group 1, but not in Group 2. The binding energy of the Ca2p peak was similar to that of calcium polyalkenoate. These findings indicated that the Ca ions from the CaCl2 solution created chemical bonds with the carboxylic acid groups in the cement matrix.SignificanceImmersion of GICs in CaCl2 solution at the early stage of setting was considered to enhance the formation of the polyacid salt matrix; as a result, the surface hardness increased.  相似文献   

7.
《Dental materials》2022,38(9):1518-1531
ObjectiveThe cariogenic biofilm on enamel, restoration, and bonding interface is closely related to dental caries and composite restoration failure. Enamel remineralization at adhesive interface is conducive to protecting bonding interface and inhibiting secondary caries. This study intended to assess the remineralization efficiency of adhesive with dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP) on initial caries lesion of biofilm-coated enamel.MethodsArtificial initial carious lesion was created via 72-hour immersion in demineralization solution and cariogenic biofilm was formed after 24-hour culture of Streptococcus mutans (S. mutans). Specimens were then divided into 4 groups: enamel control, enamel treated with NACP, DMAHDM and NACP+DMAHDM respectively. Samples next underwent 7-day cycling, 4 h in BHIS (brain heart infusion broth containing 1 % sucrose) and 20 h in AS (artificial saliva) per day. The pH of BHIS was tested daily. So did the concentration of calcium and phosphate in BHIS and AS. Live/dead staining, colony-forming unit (CFU) count, and lactic acid production of biofilms were measured 7 days later. The enamel remineralization efficiency was evaluated by microhardness testing and transverse microradiography (TMR) quantitatively.ResultsEnamel of NACP+DMAHDM group demonstrated excellent remineralization effectiveness. And the NACP+DMAHDM adhesive released a great number of Ca2+ and PO43- ions, increased pH to 5.81 via acid neutralization, decreased production of lactic acid, and reduced CFU count of S. mutans (P < 0.05).SignificanceThe NACP+DMAHDM adhesive would be applicable to preventing secondary caries, strengthening enamel-adhesive interface, and extending the lifespan of composite restoration.  相似文献   

8.
《Dental materials》2019,35(9):1300-1307
ObjectiveTo investigate the effect of an experimental biomimetic mineralization kit (BIMIN) on the chemical composition and crystallinity of caries-free enamel and dentin samples in vitro.MethodsEnamel and dentin samples from 20 human teeth (10 for enamel; 10 for dentin) were divided into a control group without treatment and test samples with BIMIN treatment. Quantitative analysis of tissue penetration of fluoride, phosphate, and calcium was performed using energy-dispersive X-ray spectroscopy (EDX). Mineralization depth was measured by Raman spectroscopy probing the symmetric valence vibration near 960 cm−1 as a marker for crystallinity. EDX data was statistically analyzed using a paired t-test and Raman data was analyzed using the Student’s t-test.ResultsEDX analysis demonstrated a penetration depth of fluoride of 4.10 ± 3.32 μm in enamel and 4.31 ± 2.67 μm in dentin. Calcium infiltrated into enamel 2.65 ± 0.64 μm and into dentin 5.58 ± 1.63 μm, while the penetration depths for phosphate were 4.83 ± 2.81 μm for enamel and 6.75 ± 3.25 μm for dentin. Further, up to 25 μm of a newly mineralized enamel-like layer was observed on the surface of the samples. Raman concentration curves demonstrated an increased degree of mineralization up to 5–10 μm into the dentin and enamel samples.SignificanceBiomimetic mineralization of enamel and dentin samples resulted in an increase of mineralization and a penetration of fluoride into enamel and dentin.  相似文献   

9.
ObjectivesSecondary caries and restoration fracture are the two main challenges facing tooth cavity restorations. The objective of this study was to develop a composite using tetracalcium phosphate (TTCP) fillers and whiskers to be stress-bearing, and to be “smart” to increase the calcium (Ca) and phosphate (PO4) ion release at cariogenic pH.MethodsTTCP was ball-milled to obtain four different particle sizes: 16.2, 2.4, 1.3, and 0.97 μm. Whiskers fused with nano-sized silica were combined with TTCP as fillers in a resin. Filler level mass fractions varied from 0 to 75%. Ca and PO4 ion releases were measured vs. time at pH of 7.4, 6, and 4. Composite mechanical properties were measured via three-point flexure before and after immersion in solutions at the three pH.ResultsTTCP composite without whiskers had flexural strength similar to a resin-modified glass ionomer (Vitremer) and previous Ca–PO4 composites. With whiskers, the TTCP composite had a flexural strength (mean ± S.D.; n = 5) of (116 ± 9) MPa, similar to (112 ± 14) MPa of a stress-bearing, non-releasing hybrid composite (TPH) (p > 0.1). The Ca release was (1.22 ± 0.16) mmol/L at pH of 4, higher than (0.54 ± 0.09) at pH of 6, and (0.22 ± 0.06) at pH of 7.4 (p < 0.05). PO4 release was also dramatically increased at acidic pH. After immersion, the TTCP–whisker composite matched the strength of TPH at all three pH (p > 0.1); both TTCP–whisker composite and TPH had strengths about threefold that of a releasing control.SignificanceThe new TTCP–whisker composite was “smart” and increased the Ca and PO4 release dramatically when the pH was reduced from neutral to a cariogenic pH of 4, when these ions are most needed to inhibit caries. Its strength was two- to threefold higher than previously known Ca–PO4 composites and resin-modified glass ionomer. This composite may have the potential to provide the necessary combination of load-bearing and caries-inhibiting capabilities.  相似文献   

10.
ObjectiveTo evaluate the effect of ferrous sulphate on enamel demineralization and remineralization, using pH-cycling models.DesignFifty blocks were selected by their initial surface hardness and subjected to a pH-cycling demineralization process. Artificially demineralized lesions were produced in 60 blocks; out of these blocks, the surface hardness of 50 blocks and the cross-sectional hardness of 10 blocks were determined. The 50 blocks were then subjected to a remineralization pH-cycling process. Treatments were carried out using ferrous sulphate solutions of different concentrations (0.333, 0.840, 18.0, and 70.0 μg Fe/mL) and a control group (deionized water). The final surface hardness (SH2) was determined, and the integrated subsurface hardness (ΔKHN) was calculated. The enamel blocks were analysed for fluoride, calcium, phosphorus, and iron. The obtained data were distributed heterogeneously and were analysed using the Kruskal–Wallis test (p < 0.05).ResultsIn demineralization pH cycling, the group treated with the 18.0 μg Fe/mL solution had higher secondary surface hardness and lower integrated subsurface hardness (ΔKHN) than the other groups. In remineralization pH cycling, the control group showed the lowest value of ΔKHN. A decline in Ca and P concentration was observed when the Fe concentration increased (p < 0.05). There was no significant difference in the F concentration (p > 0.05) and an increase in Fe concentration (p < 0.05) in the enamel was observed when the Fe concentration increased in both the demineralization and remineralization experiments.ConclusionThe results suggest that iron reduces demineralization but does not allow remineralization to occur.  相似文献   

11.
ObjectivesThis study evaluated the effect of fluoride and non-fluoride sealants on hardness decrease (HD) and marginal adaptation (MA) on enamel substrates after cariogenic challenge.MethodsOcclusal enamel blocks, from human third molars, were randomly divided into six groups (n = 12), according to occlusal fissures condition (S – sound; C – caries-like lesion; CF – caries-like lesion + topical fluoride) and sealants (F – FluroShield; H – Helioseal Clear Chroma). Lesion depths were 79.3 ± 33.9 and 61.3 ± 23.9 for C and CF groups, respectively. Sealants were placed on occlusal surface and stored at 100% humidity (37 °C; 24 h/d). HD was measured by cross-sectional microhardness analysis at the sealant margin distances: ?1 (under sealant), 0 (sealant margin), 1, 2 (outer sealant). Sealant MA was observed by polarized light microscopy and scored according to: 0 – failure (no sealant MA or total sealant loss); 1 – success (sealant MA present). MA and HD were analysed by ANOVA-R and mixed model analysis, respectively.ResultsFor HD (ΔS), F values (6900.5 ± 3686.6) were significantly lower than H values (8534.6 ± 5375.3) regardless of enamel substrates and sealant margin distances. Significant differences were observed among sealant margin distances: ?1 (5934.0 ± 3282.6) < 0 (8701.5 ± 6175.7) = 1 (8473.2 ± 4299.4) = 2 (7761.5 ± 4035.1), regardless of sealant and substrate. MA was similar for all groups (p  0.05).ConclusionMA was not affected by sealant type or substrate condition, whereas enamel HD was favourably impacted by fluoride in the sealant. In addition, sealants were more effective as a physical barrier than as its chemical potency in reducing enamel HD.Clinical significanceSealing with a fluoride material is a recommended procedure to prevent caries of occlusal permanent molars in high-caries-risk patients, even though those exhibiting white spot lesions, since the enamel hardness decrease when fluoride sealant was used in vitro.  相似文献   

12.
ObjectiveThis study aimed to analyze in vitro cytotoxicity to cultured 3T3 fibroblasts and in vivo inflammatory reaction in rats by calcium hypochlorite (Ca(OCl)2) solutions compared with sodium hypochlorite (NaOCl) solutions.DesignCultured 3T3 fibroblasts were exposed to different concentrations of (Ca(OCl)2) and NaOCl solutions, and a scratch assay was performed. The viability rate was analyzed with trypan blue assay. Both solutions of 1% and 2.5% concentrations were injected into the subcutaneous tissue of 18 male Wistar rats aged 18 weeks. The inflammatory tissue reaction was evaluated at 2 h, 24 h, and 14 days after the injections. The samples were qualitatively analyzed using a light microscope. Statistical analysis was performed with ANOVA and Tukey post hoc tests for in vitro assays and Kruskal–Wallis and Dunn post hoc tests for in vivo assays (α = 0.05).ResultsIn the scratch assay, Ca(OCl)2 showed no significant difference compared with the control group (culture medium) at 24 h (p < 0.05). Solutions of 0.0075% and 0.005% NaOCl and Ca(OCl)2 concentrations presented similar results compared with those in the positive control group (hydrogen peroxide) (p > 0.05) in the trypan blue assay. In the in vivo assay, 1% Ca(OCl)2 group showed a significant decrease in neutrophils at 2 h and 24 h (p = 0.041) and 2 h and 14 days (p = 0.017). There was no statistically significant difference for lymphocyte/plasmocyte and macrophage counts among the different concentration groups.ConclusionsCa(OCl)2 showed favorable results of viability and induced a low-level inflammatory response. Ca(OCl)2 presented acceptable cytotoxicity and biocompatibility as an irrigant solution.  相似文献   

13.
ObjectivesTo investigate the effect of fluoride (0, 275 and 1250 ppm F; NaF) in combination with normal and low salivary flow rates on enamel surface loss and fluoride uptake using an erosion–remineralization–abrasion cycling model.DesignEnamel specimens were randomly assigned to 6 experimental groups (n = 8). Specimens were individually placed in custom made devices, creating a sealed chamber on the enamel surface, connected to a peristaltic pump. Citric acid was injected into the chamber for 2 min followed by artificial saliva at 0.5 (normal flow) or 0.05 (low flow) ml/min, for 60 min. This cycle was repeated 4×/day, for 5 days. Toothbrushing with abrasive suspensions containing fluoride was performed for 2 min (15 s of actual brushing) 2×/day. Surface loss was measured by optical profilometry. KOH-soluble fluoride and enamel fluoride uptake were determined after the cycling phase. Data were analysed by two-way ANOVA.ResultsNo significant interactions between fluoride concentration and salivary flow were observed for any tested variable. Low caused more surface loss than normal flow rate (p < 0.01). At both flow rates, surface loss for 0 was higher than for 275, which did not differ from 1250 ppm F. KOH-soluble and structurally-bound enamel fluoride uptake were significantly different between fluoride concentrations with 1250 > 275 > 0 ppm F (p < 0.01).ConclusionsSodium fluoride reduced enamel erosion/abrasion, although no additional protection was provided by the higher concentration. Higher erosion progression was observed in low salivary flow rates. Fluoride was not able to compensate for the differences in surface loss between flow rates.  相似文献   

14.
《Dental materials》2020,36(10):e316-e328
ObjectiveDentin remineralization at the bonded interface would protect it from external risk factors, therefore, would enhance the longevity of restoration and combat secondary caries. Dental biofilm, as one of the critical biological factors in caries formation, should not be neglected in the assessment of caries preventive agents. In this work, the remineralization effectiveness of demineralized human dentin in a multi-species dental biofilm environment via an adhesive containing nanoparticles of amorphous calcium phosphate (NACP) and dimethylaminohexadecyl methacrylate (DMAHDM) was investigated.MethodsDentin demineralization was promoted by subjecting samples to a three-species acidic biofilm containing Streptococcus mutans, Streptococcus sanguinis, Streptococcus gordonii for 24 h. Samples were divided into a control group, a DMAHDM adhesive group, an NACP group, and an NACP + DMAHDM adhesive group. A bonded model containing a control-bonded group, a DMAHDM-bonded group, an NACP-bonded group, and an NACP + DMAHDM-bonded group was also included in this study. All samples were subjected to a remineralization protocol consisting of 4-h exposure per 24-h period in brain heart infusion broth plus 1% sucrose (BHIS) followed by immersion in artificial saliva for the remaining period. The pH of BHIS after 4-h immersion was measured every other day. After 14 days, the biofilm was assessed for colony-forming unit (CFU) count, lactic acid production, live/dead staining, and calcium and phosphate content. The mineral changes in the demineralized dentin samples were analyzed by transverse microradiography.ResultsThe in vitro experiment results showed that the NACP + DMAHDM adhesive effectively achieved acid neutralization, decreased biofilm colony-forming unit (CFU) count, decreased biofilm lactic acid production, and increased biofilm calcium and phosphate content. The NACP + DMAHDM adhesive group had higher remineralization value than the NACP or DMAHDM alone adhesive group.SignificanceThe NACP + DMAHDM adhesive was effective in remineralizing dentin lesion in a biofilm model. It is promising to use NACP + DMAHDM adhesive to protect bonded interface, inhibit secondary caries, and prolong the longevity of restoration.  相似文献   

15.
ObjectiveMouthrinsing with antacids, following erosive episodes, have been suggested as a preventative strategy to minimize tooth surface loss due to their neutralizing effect. The purpose of this in situ study was to evaluate the effect of an antacid suspension containing sodium alginate, sodium bicarbonate and calcium carbonate in controlling simulated erosion of enamel of intrinsic origin.DesignThe experimental units were 48 slabs (3 × 3 × 2 mm) of bovine enamel, randomly divided among 12 volunteers who wore palatal appliances with two enamel slabs. One of them was exposed extra-orally twice a day to 25 mL of a hydrochloric acid (HCl) solution (0.01 M, pH 2) for 2 min. There were two independent phases, lasting 5 days each. In the first phase, according to a random scheme, half of the participants rinsed with 10 mL of antacid suspension (Gaviscon®, Reckitt Benckiser Healthcare Ltd.), while the remainder was rinsed with deionized water, for 1 min. For the second phase, new slabs were inserted and participants switched to the treatment not received in the first stage. Therefore, the groups were as follows: (a) erosive challenge with HCl + antacid suspension; (b) erosive challenge with HCl + deionized water (DIW); (c) no erosive challenge + antacid suspension; (d) no erosive challenge + DIW. Specimens were assessed in terms of surface loss using optical profilometry and Knoop microhardness. The data were analyzed using repeated measures two-way analysis of variance and Tukey’s tests.ResultsCompared to DIW rinses, surface loss of enamel was significantly lower when using an antacid rinse following erosive challenges (p = 0.015). The Knoop microhardness of the enamel was significantly higher when the antacid rinse was used (p = 0.026).ConclusionsThe antacid suspension containing sodium alginate, sodium bicarbonate and calcium carbonate, rinsed after erosive challenges of intrinsic origin, reduced enamel surface loss.  相似文献   

16.
ObjectivesThe aim of this study was to investigate the effect of the nanostructured hydroxyapatite (NHAp) and titanium dioxide nanoparticles (NTiO2) on dispersion in an adhesive containing monomers of Dipenta erythritol penta-acrylate monophosphate (PENTA) and Urethane dimethacrylate (UDMA), as well as evaluating the structural, optical and mechanical behavior of the composite material for dental aesthetic application.MethodsThe NHAp powders were synthesized through the wet chemical methods of hydrothermal and ultrasound-assisted precipitation. The microstructure, morphology and composition analysis of the powder of NHAp and NTiO2 were performed by scanning and transmission electron microscopy. The optical microscopic identification of the different colors was obtained due to varying the amounts of NHAp and NTiO2 in the adhesive. On the other hand, the diffuse reflectance spectra of the coatings were evaluated every 2 nm with the wavelength from 400 to 800 nm for combined specular and diffuse reflectance. The nanomechanical properties of the aesthetic coating such as (H), elastic modulus (E) and nanoscratching were evaluated by nanoindentation. The roughness of the composite coatings were evaluated by AFM.ResultsFrom different powders combinations, NHAP 75%Wt-NTiO2 %25 Wt, at (10Wt %) into a dental adhesive, the resulting mixture manifested the optimum aesthetic white appearance. The scanning and transmission electron microscopy images confirmed that the HAp nanorods and TiO2 nanoparticles sized were 55 nm and 20 nm respectively prepared by the high-energy ball mixed process. The values of nanomechanical properties of the optimum aesthetic coating were hardness, H = 3.2 ± 0.3 GPa, elastic modulus, E = 78 ± 3 GPa, Yield point, Y = 107 MPa ± 2 and scratching, maximum wear track deformation 3.7 ± 0.12 μm2. The percentage of reflectance to optimum aesthetic white appearance was of 46.83% at 423 nm of wavelength.ConclusionsThe nanocomposite PENTA/UDMA with mixtures of Nanohydroxyapatite and titanium dioxide may be considerate as a mechanical toughened, also an option to modify shade qualities for dental aesthetic applications.  相似文献   

17.
《Dental materials》2019,35(10):1464-1470
ObjectivesEnamel thickness determination by Cross-Polarization Optical Coherence Tomography (CP-OCT) is a promising approach for quantitative monitoring of tooth wear progression. This study evaluated the ability of CP-OCT to quantify the thickness of natural enamel before, during and after tooth wear simulation.Materials and MethodsNatural, unpolished human dental enamel slabs were submitted to five wear stages (Wear 1: to level the surfaces; Wear 2 to Wear 5: 0.05 ± 0.02 mm reduction each) simulated by an automatic grinding/polishing machine. Enamel thickness was evaluated with CP-OCT and a gold-standard method (micro-CT) at baseline and after every wear stage. Data were analyzed using ANOVA with pairwise comparisons for wear stages’ impact on the thickness and wear depth measurements. The inter-method agreement was analyzed using intra-class correlation coefficients, the difference between means, and Bland-Altman plots.ResultsEnamel thickness measurements (mean ± standard error, in mm) with natural (1.40 ± 0.05) and worn surfaces (1.08 ± 0.02) by CP-OCT did not differ significantly from those measured by micro-CT (natural = 1.39 ± 0.05; worn = 1.09 ± 0.02; p-values = 0.30 and 0.39, respectively). CP-OCT and micro-CT showed excellent agreement on natural (ICC = 0.98) and worn surfaces (ICC = 0.98) enamel thickness measurements. Among and between wear stages, there were significant differences in enamel thickness and wear depth measurements for both methods (p-value <0.0001 for all). Both methods yielded similar measurements’ mean (0.14 ± 0.01; p-value = 0.87) and were in good agreement (ICC = 0.77) for wear depth estimation.SignificanceCP-OCT allows accurate measurement of enamel thickness on natural tooth surfaces. Enamel thickness measurement by CP-OCT allows quantitative monitoring of enamel thickness changes and wear depth following progressive wear.  相似文献   

18.
ObjectiveProanthocyanidin (PA) is a natural collagen cross-linker that has been used in dentine matrix biomodification for reparative and preventive therapies. This study evaluated the ultrastructure of collagen after its interaction with PA. Furthermore, the mineralization of PA-biomodified collagen matrix was observed.MethodsTen freshly extracted sound human molars were sectioned into 0.5 mm × 1.7 mm × 7 mm beams for ultrastructural evaluation of PA and dentine matrix under Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM). Specimens for TEM were completely demineralized and divided into three groups according to PA treatments: deionized water, 2% PA and 6.5% PA. The specimens were fixed, dehydrated, sectioned and examined using TEM. Specimens for FESEM were lightly conditioned with EDTA and similarly divided into the three groups for observation using FESEM. Type I collagen from calf skin was used to analyse the mineral interaction after treatment with 6.5% PA. Formvar- and carbon-coated 400-mesh Ni grids (EMS, Hatfiels, PA, USA) were placed over a 2 mg/mL collagen solution prepared from calf skin-derived Type I collagen to achieve self-assembly of collagen fibrils. Grids were treated with 6.5% PA and divided into two groups. One group was floated over a remineralization solution containing 20 mM HEPES, 2.25 mM CaCl2-2H2O, 1.35 mM KH2PO4, 3.08 mM NaN3 and 130 mM KCl and the other group was over a CPP-ACP solution (Tooth mousse 1:100 dilution with deionized water). The floating samples were kept in a 37 °C and 100% humidity chamber. Grids were taken out at selected time durations (24 h, 48 h and 72 h for mineralization solution/24 h for CPP-ACP) and observed under TEM without staining. Selected area electron diffractions (SAEDs) were performed at 110 kV.ResultsFollowing treatment of demineralized dentine collagen matrix with PA, the size and number of interfibrillar spaces were reduced. The collagen fibrils aggregated together with a reduction in porosity. A characteristic banding pattern of collagen fibrils was observed under TEM. Treatment of PA-biomodified collagen fibrils with remineralization solution increased mineral aggregation along its long axis, when compared to the control group. Furthermore, treatment of PA-biomodified collagen fibrils with CPP-ACP solution enhanced mineral uptake and deposition as well as initiated apatite formation within 24 h.ConclusionProanthocyanidin alters the ultrastructure of demineralized dentine collagen matrix. The PA-biomodified collagen matrix promotes remineralization.  相似文献   

19.
ObjectiveTo explore how application sequence of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and fluoride influences remineralization of enamel white spot lesions (WSL) in primary teeth.DesignIn this in-vitro study, artificial WSLs were created in 130 primary teeth. Teeth were divided into 4 groups (n = 27) and a control group (n = 22) and exposed to one of the following remineralization regimens for 10 weeks: Group-1; 500 ppm fluoride dentifrice; Group-2; 10% w/v CPP-ACP; Group-3; fluoride applied first, then CPP-ACP; Group-4; CPP-ACP applied first, then fluoride, and Group-5 was control. All groups were kept in a remineralizing solution. Mineral changes (ΔF) were quantified weekly using quantitative light-induced fluorescence. Statistical analysis was done using Statistical Package for the Social Sciences (SPSS version 20.0).ResultsRemineralization occurred in all groups to different degrees; changes from baseline were significant in groups 1–4 (P  0.05). Group-4 showed the earliest significant remineralization (after 2 weeks) among groups, (P < 0.001). Group-4 showed maximum changes in ΔF among groups; however, only differences with Groups 1 and 5 were significant (P < 0.05 and P < 0.01, respectively). Group-3 showed better remineralization than Groups 1, 2 and 5; however, the difference was only significant with Group-5 (P < 0.001). There were no significant differences between Group 1and 2, however, only Group 2 showed better remineralization than Group 5, (P < 0.01).ConclusionCombined treatment with CPP-ACP followed by fluoride exhibited the best remineralization of white spot lesions in primary teeth in this study. Combined treatment with fluoride followed by CPP-ACP showed a tendency towards better remineralization than fluoride or CPP-ACP alone.  相似文献   

20.
ObjectiveFracture is one of the main causes for failure of resin-based composite restorations. To overcome this drawback, self-healing resin-based composites have been designed by incorporation of microcapsules. However, the relationship between their self-healing capacity and microcapsule and resin parameters is still poorly understood. Therefore, the objective of this study was to systematically investigate the effect of initiator concentration (in the resin) and microcapsule size and concentration on the self-healing performance of commercially available flowable resin-based composites.MethodsPoly(urea-formaldehyde) (PUF) microcapsules containing acrylic healing liquid were synthesized in small (33 ± 8 μm), medium (68 ± 21 μm) and large sizes (198 ± 43 μm) and characterized. Subsequently, these microcapsules were incorporated into a conventional flowable resin-based composite (Majesty Flow ES2, Kuraray) at different contents (5–15 wt%) and benzoyl peroxide (BPO) initiator concentrations (0.5–2.0 wt%). Fracture toughness (KIC) of test specimens was tested using a single edge V-notched beam method. Immediately after complete fracture (KIC-initial), the two fractured parts were held together for 72 h to allow for healing. Subsequently, fracture toughness of the healed resin-based composites (KIC-healed) was tested as well.ResultsThe fracture toughness of healed dental composites significantly increased with increasing microcapsule size and concentration (2 wt% BPO, p < 0.05). The highest self-healing efficiencies (up to 76%) were obtained with microcapsules sized 198 ± 43 um.Significancecommercially available resin-based composites can be rendered self-healing most efficiently by incorporation of large microcapsules (198 ± 43 μm). However, long-term tests on fatigue and wear behavior are needed to confirm the clinical efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号