首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been used to alleviate symptoms of Parkinson's disease. During image-guided stereotactic surgery, signals from microelectrode recordings are used to distinguish the STN from adjacent areas, particularly from the substantia nigra pars reticulata (SNr). Neuronal firing patterns based on interspike intervals (ISI) are commonly used. In the present study, arrival time-based measures, including Lempel-Ziv complexity and deviation-from-Poisson index were employed. Our results revealed significant differences in the arrival time-based measures among non-motor STN, motor STN and SNr and better discrimination than the ISI-based measures. The larger deviations from the Poisson process in the SNr implied less complex dynamics of neuronal discharges. If spike classification was not used, the arrival time-based measures still produced statistical differences among STN subdivisions and SNr, but the ISI-based measures only showed significant differences between motor and non-motor STN. Arrival time-based measures are less affected by spike misclassifications, and may be used as an adjunct for the identification of the STN during microelectrode targeting.  相似文献   

2.
The rate function underlying single-trial spike trains can vary from trial to trial. We propose to estimate the amplitude and latency variability in single-trial neuronal spike trains on a trial-by-trial basis. The firing rate over a trial is modeled by a family of rate profiles with trial-invariant waveform and trial-dependent amplitude scaling factors and latency shifts. Using a Bayesian inference framework we derive an iterative fixed-point algorithm from which the single-trial amplitude scaling factors and latency shifts are estimated. We test the performance of the algorithm on simulated data and then apply it to actual neuronal recordings from the sensorimotor cortex of the monkey.  相似文献   

3.
4.
Investigations of neural coding in many brain systems have focused on the role of spike rate and timing as two means of encoding information within a spike train. Recently, statistical pattern recognition methods, such as linear discriminant analysis (LDA), have emerged as a standard approach for examining neural codes. These methods work well when data sets are over-determined (i.e., there are more observations than predictor variables). But this is not always the case in many experimental data sets. One way to reduce the number of predictor variables is to preprocess data prior to classification. Here, a wavelet-based method is described for preprocessing spike trains. The method is based on the discriminant pursuit (DP) algorithm of Buckheit and Donoho [Proc. SPIE 2569 (1995) 540-51]. DP extracts a reduced set of features that are well localized in the time and frequency domains and that can be subsequently analyzed with statistical classifiers. DP is illustrated using neuronal spike trains recorded in the motor cortex of an awake, behaving rat [Laubach et al. Nature 405 (2000) 567-71]. In addition, simulated spike trains that differed only in the timing of spikes are used to show that DP outperforms another method for preprocessing spike trains, principal component analysis (PCA) [Richmond and Optican J. Neurophysiol. 57 (1987) 147-61].  相似文献   

5.
Identification of bursts in spike trains.   总被引:2,自引:0,他引:2  
A computer algorithm to identify 'bursts' in trains of spikes is described. The algorithm works by constructing a histogram of interspike intervals, then analyzing the histogram to detect the critical interval value in the distribution that represents the break between short intervals within a burst and the longer intervals between bursts. When such a value is found, it is used as the 'threshold' to determine those intervals in the spike train that lie within a burst and those that lie between bursts and, thereby, to identify the beginning and end of each burst in the train. The validity of the bursts is evaluated with a chi-square test. The performance of the algorithm and how it can be assessed is discussed.  相似文献   

6.
Favored patterns in spontaneous spike trains.   总被引:1,自引:0,他引:1  
Y H Ku  X Q Wang 《Brain research》1991,559(2):241-248
By using the modified detection method, favored patterns can be detected in a total of 44 spontaneous spike trains. Among these the 'periodical burst' discharge of one sympathetic preganglionic neuron and the 'fast-slow' alternative discharge of some hypothalamic neurons have visible characteristics, hence we use them to test the reliability of our method by comparing the detected patterns with the non-sequential interval histograms and oscillograms of the spike trains. The comparisons show that our method is reliable. The spike trains of nucleus raphe magnus (NRM) and the locus coeruleus (LC) have no visible characteristics; from these the following results have been observed: (1) all spike trains have one or more favored patterns; (2) some spike trains from neurons in the same nucleus have common fragments of favored patterns; (3) the favored patterns in spike trains recorded from different nuclei are different from each other; (4) some favored patterns in spike trains of the NRM neurons remain unchanged from beginning to end in 35-min records and their repetitions are relatively stable; and (5) microinjection of normal saline or normal serum into the LC has no significant influence on the occurrence of favored patterns in 35-min records of spike trains of the LC neurons. The above results indicate that the favored patterns in spike trains are objective and regular phenomena with relative stability. It seems likely that favored pattern may be used (as an index of the neuronal activity) in combination with the microinjection technique, etc., for various studies including studies on neural coding.  相似文献   

7.
A new statistical technique, the Cox method, used for analysing functional connectivity of simultaneously recorded multiple spike trains is presented. This method is based on the theory of modulated renewal processes and it estimates a vector of influence strengths from multiple spike trains (called reference trains) to the selected (target) spike train. Selecting another target spike train and repeating the calculation of the influence strengths from the reference spike trains enables researchers to find all functional connections among multiple spike trains. In order to study functional connectivity an "influence function" is identified. This function recognises the specificity of neuronal interactions and reflects the dynamics of postsynaptic potential. In comparison to existing techniques, the Cox method has the following advantages: it does not use bins (binless method); it is applicable to cases where the sample size is small; it is sufficiently sensitive such that it estimates weak influences; it supports the simultaneous analysis of multiple influences; it is able to identify a correct connectivity scheme in difficult cases of "common source" or "indirect" connectivity. The Cox method has been thoroughly tested using multiple sets of data generated by the neural network model of the leaky integrate and fire neurons with a prescribed architecture of connections. The results suggest that this method is highly successful for analysing functional connectivity of simultaneously recorded multiple spike trains.  相似文献   

8.
Evidence is presented on the parameters that affect the occurrence of precisely replicating patterns of neural discharge present as 'hidden' patterns in individual neuronal discharge trains of the visual cortical cells of the rhesus monkey in response to precisely controlled stimuli described in our previous publication. Using the All-Interval analytical paradigm we demonstrate: (1) that precisely replicating patterns are present in numbers that cannot be generated through continuous, smoothly varying probability distributions of interspike intervals; (2) that the records contain very large numbers of precisely replicating patterns--doublets, triplets, quadruplets, quintuplets and hextuplets of pulses; (3) that triplet-antitriplet pairs and symmetrical quadruplets are also present in improbable numbers; (4) that different stimuli generate different triplets; (5) and that the first order decay constant of capacity to generate specific precise patterns is a direct function of the number of events making up the patterns and thus that a temporary memory of the occurrence of a pattern exists following the presentation of a stimulus. It is concluded that such patterns of pulses are almost certainly coded symbols related to visual information; that such symbols are sufficiently precise in their replication to permit them to be decoded through spatial summation mechanisms and finally that the ability to generate and the capacity to store such symbols are probably present in the brain as related and coordinated complexes of specific facilitated synapses. Some properties of a proposed model for the production and decoding of such patterns are presented and discussed as are specific mechanisms through which neural networks may implement such functions. Finally, existing and further experimental tests of the mechanisms proposed are outlined.  相似文献   

9.
Recent development of multi-unit recording techniques such as optical recording and multi-electrode arrays makes it possible to record neuronal activities from tens or hundreds of neurons simultaneously. To analyze functional connections between these neurons, cross-correlation analysis has been most commonly applied to the hundreds to thousands of pairs of these neurons. However, conventional cross-correlation data needs statistical tests for significance especially when the sample size of recorded spike trains is small. Here, a multiple hypergeometric model based on a transformation of the cross-correlogram data to a 2×J table has been suggested. The exact p value for significance can be obtained by the generalized Fisher's method with small sample size and a cross-correlation coefficient for the strength of cross-correlation can be obtained based on the R-square analogue for nominal data. For large sample size, χ2 test can be applied based on the same transformation. Examples of real spike train data set and simulation show that the methods are applicable to the data of multi-unit activity with only tens of spikes. These methods are especially useful when thousands of cross-correlograms need to be screened quickly and automatically.  相似文献   

10.
One of the most important building blocks of the brain–machine interface (BMI) based on neuronal spike trains is the decoding algorithm, a computational method for the reconstruction of desired information from spike trains. Previous studies have reported that a simple linear filter is effective for this purpose and that no noteworthy gain is achieved from the use of nonlinear algorithms. In order to test this premise, we designed several decoding algorithms based on the linear filter, and two nonlinear mapping algorithms using multilayer perceptron (MLP) and support vector machine regression (SVR). Their performances were assessed using multiple neuronal spike trains generated by a biophysical neuron model and by a directional tuning model of the primary motor cortex. The performances of the nonlinear algorithms, in general, were superior. The advantages of using nonlinear algorithms were more profound for cases where false-positive/negative errors occurred in spike trains. When the MLPs were trained using trial-and-error, they often showed disappointing performance comparable to that of the linear filter. The nonlinear SVR showed the highest performance, and this may be due to the superiority of SVR in training and generalization.  相似文献   

11.
We present a method to estimate the neuronal firing rate from single-trial spike trains. The method, based on convolution of the spike train with a fixed kernel function, is calibrated by means of simulated spike trains for a representative selection of realistic dynamic rate functions. We derive rules for the optimized use and performance of the kernel method, specifically with respect to an effective choice of the shape and width of the kernel functions. An application of our technique to the on-line, single-trial reconstruction of arm movement trajectories from multiple single-unit spike trains using dynamic population vectors illustrates a possible use of the proposed method.  相似文献   

12.
The existence of precise temporal relations in sequences of spike intervals, referred to as 'spatiotemporal patterns', is suggested by brain theories that emphasize the role of temporal coding. Specific analytical methods able to assess the significance of such patterned activity are extremely important to establish its function for information processing in the brain. This study proposes a new method called 'pattern grouping algorithm' (PGA), designed to identify and evaluate the statistical significance of patterns which differ from each other by a defined and small jitter in spike timing of the order of few ms. The algorithm performs a pre-selection of template patterns with a fast computational approach, optimizes the jitter for each spike in the template and evaluates the statistical significance of the pattern group using three complementary statistical approaches. Simulated data sets characterized by various types of known non stationarities are used for validation of PGA and for comparison of its performance to other methods. Applications of PGA to experimental data sets of simultaneously recorded spike trains are described in a companion paper (Tetko IV, Villa AEP. A pattern grouping algorithm for analysis of spatiotemporal patterns in neuronal spike trains. 2. Application to simultaneous single unit recordings. J Neurosci Method 2000; accompanying article).  相似文献   

13.
14.
This study demonstrates the practical application of the pattern grouping algorithm (PGA), presented in the companion paper (Tetko IV, Villa AEP. A pattern grouping algorithm for analysis of spatiotemporal patterns in neuronal spike trains. 1. Detection of repeated patterns. J. Neurosci. Methods 2000; accompanying article), to data sets including up to 30 simultaneously recorded spike trains. The analysis of a large network of simulated neurons shows that the incidence of patterns cannot be simply related to an increase in firing rates obtained after Hebbian learning. Patterns that disappeared and reappeared in the thalamus of anesthetized rats when the cerebral cortex was reversibly inactivated suggest that widespread cell assemblies contribute to the generation and propagation of precisely timed activity. In an another experiment multiple spike trains were recorded from the temporal cortex of freely moving rats performing a complex two-choice discrimination task. The presence or absence of particular patterns in the period preceding the cue was associated with changes in reaction time. In conclusion, neuronal network interactions may generate spatiotemporal firing patterns detectable by PGA. We provide evidence of such patterned activity associated with specific animal's behavior, thus suggesting the existence of complex temporal coding schemes in the higher nervous centers of the brain.  相似文献   

15.
Spike trains of caudate neurons initially having mean interspike intervals of less than 4 ms were analyzed with progressive administration of pentobarbital (5 to 20 mg/kg). Among the neurons investigated, 77% (N = 79) showed evidence of a rhythmic basis of their activity in first-order interspike interval histograms and/or autocorrelation histograms in the course of becoming silent due to progressive administration of pentobarbital. Although the rhythmicies of given units varied depending on the level of anesthesia the most prominent cycle was almost always within the range of 200 to 320 ms; the majority were not discernable on visual inspection of the spike trains. Cortical stimuli reset the cycle. Cross-correlation histograms constructed from pairs of caudate neurons provided some evidence that their spontaneous firing was mutually inhibited. The possibility that the rhythmicities might arise from such mutual inhibition of spontaneously firing caudate neurons is discussed.  相似文献   

16.
Measuring pairwise and higher-order spike correlations is crucial for studying their potential impact on neuronal information processing. In order to avoid misinterpretation of results, the tools used for data analysis need to be carefully calibrated with respect to their sensitivity and robustness. This, in turn, requires surrogate data with statistical properties common to experimental spike trains. Here, we present a novel method to generate correlated non-Poissonian spike trains and study the impact of single-neuron spike statistics on the inference of higher-order correlations. Our method to mimic cooperative neuronal spike activity allows the realization of a large variety of renewal processes with controlled higher-order correlation structure. Based on surrogate data obtained by this procedure we investigate the robustness of the recently proposed method empirical de-Poissonization (Ehm et al., 2007). It assumes Poissonian spiking, which is common also for many other estimation techniques. We observe that some degree of deviation from this assumption can generally be tolerated, that the results are more reliable for small analysis bins, and that the degree of misestimation depends on the detailed spike statistics. As a consequence of these findings we finally propose a strategy to assess the reliability of results for experimental data.  相似文献   

17.
Y Q Chen  Y H Ku 《Brain research》1992,578(1-2):297-304
By using 'the modified detection method', our previous study has shown that all spontaneous spike trains recorded from several areas of brain and spinal cord have favored patterns (FPs). The present study further shows that: (1) all newly detected spike trains from substantia nigra zona compacta, nucleus periventricularis hypothalami and nucleus hypothalamicus posterior also have FPs, and some spike trains from neurons in the same nucleus have a common favored pattern (CF, i.e. they share the same FP), indicating that FP and CF in spike trains are common phenomena; (2) all serial correlation coefficients of FP repetitions (in serial order) in different spike trains detected are less than 0.3 (close to 0), revealing that the repetition of FPs is a renewal process; (3) in different periods of the spike trains evoked by electroacupuncture (EA), the number of different FPs and the number of repetitions of the same representative FP either increase or decrease along with the change of firing rate. The tendencies of these changes are very similar, but after EA the repetitions of different FPs in the same spike trains change differently, showing that different (hidden) responses exist at the same time. The above results suggest that the FPs in spike trains may represent various neural codes, and 'the modified detection method of FP' can pick up more information from spike trains than the firing rate analysis, hence it is a very useful tool for the study of neural coding.  相似文献   

18.
Measurement of variability dynamics in cortical spike trains   总被引:2,自引:0,他引:2  
We propose a method for the time-resolved joint analysis of two related aspects of single neuron variability, the spiking irregularity measured by the squared coefficient of variation (CV(2)) of the ISIs and the trial-by-trial variability of the spike count measured by the Fano factor (FF). We provide a calibration of both estimators using the theory of renewal processes, and verify it for spike trains recorded in vitro. Both estimators exhibit a considerable bias for short observations that count less than about 5-10 spikes on average. The practical difficulty of measuring the CV(2) in rate modulated data can be overcome by a simple procedure of spike train demodulation which was tested in numerical simulations and in real spike trains. We propose to test neuronal spike trains for deviations from the null-hypothesis FF=CV(2). We show that cortical pyramidal neurons, recorded under controlled stationary input conditions in vitro, comply with this assumption. Performing a time-resolved joint analysis of CV(2) and FF of a single unit recording from the motor cortex of a behaving monkey we demonstrate how the dynamic change of their quantitative relation can be interpreted with respect to neuron intrinsic and extrinsic factors that influence cortical variability in vivo. Finally, we discuss the effect of several additional factors such as serial interval correlation and refractory period on the empiric relation of FF and CV(2).  相似文献   

19.
A procedure is proposed to compare single-unit spiking activity elicited in repetitive cycles with an inhomogeneous Poisson process (IPP). Each spike sequence in a cycle is discretized and represented as a point process on a circle. The interspike interval probability density predicted for an IPP is computed on the basis of the experimental firing probability density; differences from the experimental interval distribution are assessed. This procedure was applied to spike trains which were repetitively induced by opening-closing movements of the distal article of a lobster leg. As expected, the density of short interspike intervals, less than 20-40 ms in length, was found to lie greatly below the level predicted for an IPP, reflecting the occurrence of the refractory period. Conversely, longer intervals, ranging from 20-40 to 100-120 ms, were markedly more abundant than expected; this provided evidence for a time window of increased tendency to fire again after a spike. Less consistently, a weak depression of spike generation was observed for longer intervals. A Monte Carlo procedure, implemented for comparison, produced quite similar results, but was slightly less precise and more demanding as concerns computation time.  相似文献   

20.
This paper describes auto-and cross-correlation histograms from single and simultaneously recorded spike trains in 57 neurons and 32 pairs of neurons in and around the reticular formation region in the midbrain of the rat. Firing patterns in most of these cells are random although some cells exhibit marked slow rhythms in firing, and closer inspection reveals the occurrence of slow rhythms which in many cells are partially masked by the more vigorous random activity. Sixteen percent of cells are markedly rhythmic in firing, 53% are moderately or marginally rhythmic, and 32% show no slow rhythms. At least three and at most six of nine neuron pairs recorded with single electrodes show short latency correlations in firing. At least two and at most five of 23 pairs recorded with separate electrodes show short latency correlations in firing. The occurrence of short latency correlations in firing between cell pairs in associated with the occurrence of rhythmicities in the firing patterns of the cells. Neuron pairs recorded with single electrodes exhibit broad rhythmic correlations which are in phase, while pairs recorded with separate electrodes exhibit broad rhythmic correlations which are out of phase. These observations suggest but do not necessarily imply the existence of slow rhythmic oscillations which propagate through midbrain tissue and engage to various degrees many of the constituent neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号