首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BACKGROUND: Bronchial asthma (BA) is characterized by a unique type of airway inflammation, epithelial cell damage and increased airway smooth muscle (ASM) contractility. The regulatory network between the immunological events and the neuronal control of ASM contractility remains to be defined. METHODS: Utilizing a well-characterized mouse model of airway inflammation and BA, we analyzed the production and function of neurotrophins in allergic asthma. To confirm these data in humans, segmental allergen provocation was performed in mild asthmatics. RESULTS: Allergen-induced airway inflammation was associated with increased local production of the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in mice as well as in humans. In bronchoalveolar lavage fluid (BALF), NGF levels were increased 4- to 5-fold in men and mice 1 day after allergen provocation. The increase in BDNF was about 2-fold in both models. Treatment of mice with anti-NGF prevented development of airway hyperresponsiveness (AHR). In the human study group, NGF levels in BALF after allergen provocation were correlated significantly with baseline FEV1 levels. CONCLUSION: These data strongly suggest that neurotrophins serve as a link between airway inflammation and neuronal control of ASM constriction in BA.  相似文献   

2.
Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodeling, which is associated with increased airway smooth muscle (ASM) mass. Licochalcone A is the predominant characteristic chalcone in licorice root. We found that licochalcone A inhibited vascular endothelial growth factor (VEGF)-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed via inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) activity, but not that of Akt. Furthermore, licochalcone A treatment inhibited VEGF-induced activation of VEGF receptor 2 (VEGFR2) and ERK and blocked the downregulation of caveolin-1 in a concentration-dependent manner. Collectively, our findings suggested that licochalcone A inhibited VEGF-induced ASM cell proliferation by suppressing VEGFR2 and ERK1/2 activation and downregulating caveolin-1. Further studies of these mechanisms are needed to facilitate the development of treatments for smooth muscle hyperplasia-associated diseases of the airway, such as asthma.  相似文献   

3.
Airway smooth muscle: a modulator of airway remodeling in asthma   总被引:10,自引:0,他引:10  
Asthma is a disease characterized, in part, by airway hyperresponsiveness and inflammation. Although asthma typically induces reversible airway obstruction, in some patients with asthma, airflow obstruction can become irreversible. Such obstruction might be a consequence of persistent structural changes in the airway wall caused by the frequent stimulation of airway smooth muscle (ASM) by contractile agonists, inflammatory mediators, and growth factors. Traditional concepts concerning airway inflammation have focused on trafficking leukocytes and on the effects of inflammatory mediators, cytokines, and chemokines secreted by these cells. Recent studies suggest that ASM cells might modulate airway remodeling by secreting cytokines, growth factors, or matrix proteins and by expressing cell adhesion molecules and other potential costimulatory molecules. These ASM cell functions might directly or indirectly modulate submucosal airway inflammation and promote airway remodeling.  相似文献   

4.
5.
Lung inflammation and airway hyperresponsiveness (AHR) are hallmarks of asthma, but their interrelationship is unclear. Excessive shortening of airway smooth muscle (ASM) in response to bronchoconstrictors is likely an important determinant of AHR. Hypercontractility of ASM could stem from a change in the intrinsic properties of the muscle, or it could be due to extrinsic factors such as chronic exposure of the muscle to inflammatory mediators in the airways. The latter could be the link between lung inflammation and AHR. The present study was designed to examine the influence of chronic exposure to a contractile agonist on the force-generating capacity of ASM. Force generation in response to electric field stimulation (EFS) was measured in ovine trachealis with or without a basal tone induced by acetylcholine (ACh). While the tone was maintained, the EFS-induced force decreased transiently but increased over time to reach a plateau in approximately 50 minutes. The total force (ACh tone + EFS force) increased monotonically and in proportion to ACh concentration. The results indicate that the muscle adapted to the basal tone and regained its contractile ability in response to a second stimulus (EFS) over time. Analysis suggests that this is due to a cytoskeletal transformation that allows the cytoskeleton to bear force, thus freeing up actomyosin crossbridges to generate more force. Force adaptation in ASM as a consequence of prolonged exposure to the many spasmogens found in asthmatic airways could be a mechanism contributing to AHR seen in asthma.  相似文献   

6.
Asthma is characterized by eosinophilic airway inflammation and remodeling of the airway wall. Features of airway remodeling include increased airway smooth muscle (ASM) mass. However, little is known about the interaction between inflammatory eosinophils and ASM cells. In this study, we investigated the effect of eosinophils on ASM cell proliferation. Eosinophils were isolated from peripheral blood of mild asthmatics and non-asthmatic subjects and co-cultured with human primary ASM cells. ASM proliferation was estimated using Ki-67 expression assay. The expression of extracellular matrix (ECM) mRNA in ASM cells was measured using quantitative real-time PCR. The role of eosinophil derived Cysteinyl Leukotrienes (CysLTs) in enhancing ASM proliferation was estimated by measuring the release of leukotrienes from eosinophils upon their direct contact with ASM cells using ELISA. This role was confirmed either by blocking eosinophil-ASM contact or co-culturing them in the presence of leukotrienes antagonist. ASM cells co-cultured with eosinophils, isolated from asthmatics, but not non-asthmatics, had a significantly higher rate of proliferation compared to controls. This increase in ASM proliferation was independent of their release of ECM proteins but dependent upon eosinophils release of CysLTs. Eosinophil-ASM cell to cell contact was required for CysLTs release. Preventing eosinophil contact with ASM cells using anti-adhesion molecules antibodies, or blocking the activity of eosinophil derived CysLTs using montelukast inhibited ASM proliferation. Our results indicated that eosinophils contribute to airway remodeling during asthma by enhancing ASM cell proliferation and hence increasing ASM mass. Direct contact of eosinophils with ASM cells triggers their release of CysLTs which enhance ASM proliferation. Eosinophils, and their binding to ASM cells, constitute a potential therapeutic target to interfere with the series of biological events leading to airway remodeling and Asthma.  相似文献   

7.
BACKGROUND: Several topical corticosteroids are available as anti-inflammatory treatment for asthma. Their comparative effects on allergic inflammation and airway remodeling are unclear. OBJECTIVE: We compared the effects of ciclesonide with those of fluticasone propionate in a Brown Norway rat model of chronic allergic asthma. METHODS: Rats sensitized and exposed to ovalbumin (OVA) were treated with dry powder vehicle, ciclesonide, or fluticasone (0.01, 0.03, and 0.1 mg/kg administered intratracheally) 24 hours and 1 hour before each of 6 OVA exposures. In a second protocol we administered 0.1 mg/kg ciclesonide or fluticasone only after the third OVA exposure. RESULTS: Ciclesonide at all doses inhibited the allergen-induced increase in airway eosinophils and T cells, reduced goblet cell hyperplasia, and decreased 5-bromo-2'-deoxyuridine-immunoreactive airway smooth muscle (ASM) and epithelial cells. At 0.03 and 0.1 mg/kg ciclesonide, bronchial hyperresponsiveness (BHR) was also inhibited. Fluticasone did not attenuate allergen-induced BHR, despite inhibiting airway eosinophils and T cells, goblet cell hyperplasia, and 5-bromo-2'-deoxyuridine-immunoreactive ASM and epithelial cells. Fluticasone (0.1 mg/kg) caused a significant reduction in body weight (9%) compared with ciclesonide (0.1 mg/kg). Ciclesonide did not change plasma corticosterone levels, whereas fluticasone (0.1 mg/kg) reduced them. In the second protocol both fluticasone and ciclesonide inhibited BHR, bronchial inflammation, goblet cell hyperplasia, and ASM proliferation. CONCLUSION: Ciclesonide potently inhibited chronic allergic inflammation, remodeling, and BHR without having an effect on body weight and the hypothalamic-pituitary-adrenal axis. Fluticasone prevented airway inflammation but not BHR, but both fluticasone and ciclesonide are effective at reversal of BHR, inflammation, and remodeling features.  相似文献   

8.
Asthma is a chronic inflammatory disease of the airways that is characterized by the presence of inflammatory cells and remodeling, a term used to define complex morphological changes involving all the structures of the bronchial wall (e.g., goblet cell hyperplasia of the epithelium, thickening of reticular basement membrane, increases of airway smooth muscle[ASM], and blood vessels). An important factor in the pathophysiology of asthma is the recognition that airway inflammation and airway remodeling are linked, as they are in other chronic inflammatory diseases. First-line therapy of persistent asthma involves the use of inhaled corticosteroids to control the underlying inflammation of the airways. Because remodeling of the airway wall is thought to be a result of chronic inflammation within the bronchial wall, it follows that because steroids reduce or reverse inflammation, they may also prevent or modulate remodeling. It has been revealed that steroids improve the subepithelial fibrosis and also significantly reduce airway vascularity. The cysteinyl leukotrienes receptor antagonists may also be helpful regarding the targeting of the inflammation and remodeling in asthma. However,long-term studies were needed to appreciate the prevention and treatment of remodeling by drug therapies.  相似文献   

9.
Although the pathogenesis of asthma remains unclear, substantial progress has been made over the past decades in the characterization of airway inflammation as a pathogenetic mechanism in asthma. New evidence suggests that airway smooth muscle (ASM), the most important cell modulating bronchomotor tone, plays an important immunomodulatory role in the orchestration and perpetuation of airway inflammation. Evidence now suggests that the signaling pathways that modulate leukocyte function may be disparate from those found in resident effector cells such as ASM, fibroblasts and epithelial cells. Further investigation and understanding of the critical signaling pathways that modulate ASM cell release, secretion of chemokines/cytokines and expression of cell adhesion molecules (CAMs) may offer new therapeutic approaches in the treatment of asthma.  相似文献   

10.
The relationship between airway inflammation and structural changes of airway remodeling, and their relative effects on airway function, are poorly understood. Remodeling is thought to result from chronic repetitive injury to the airway wall caused by airway inflammation; however, the mechanisms regulating remodeling changes have not been clearly defined. We examined the sequence of events in remodeling using three commonly used mouse models of allergic airways disease in which mice are exposed to nebulized ovalbumin for four consecutive days (acute), seven consecutive days (subacute), or three times a week for 6 wk (chronic). Surprisingly, we found that a very short period of exposure to ovalbumin was sufficient to elicit early changes of remodeling. Goblet cell hyperplasia and epithelial thickening were evident after just 4 d. In chronically challenged mice, these changes persisted and, in addition, subepithelial collagen deposition was significantly increased. This collagen deposition was associated with a failure to upregulate matrix metalloproteinase (MMP)-2, in conjunction with increased transforming growth factor-beta and MMP-9 expression. The relationship between inflammation, remodeling changes, and airway hyperresponsiveness (AHR) were examined. The acute and subacute models exhibited marked airway inflammation, whereas the chronic model had very modest inflammation. Conversely, airway fibrosis was only evident in the chronic model. AHR was present in all three models; however, it was significantly higher in the chronic model compared with the acute (P<0.05) and subacute (P<0.05) models. These data demonstrate that both airway inflammation and airway fibrosis may contribute to AHR, with airway fibrosis leading to the greatest increases in AHR.  相似文献   

11.
The purpose of this commentary is to highlight the emerging role of IgE on airway smooth muscle (ASM) cells function through activation of the high-affinity Fc receptor for IgE. We discuss the potential implications of IgE-mediated ASM sensitization in airway inflammation and remodeling, the hallmark features of allergic asthma.  相似文献   

12.
Asthma is a complex and heterogeneous disease that is characterized by airway hyper‐reactivity (AHR) and airway inflammation. Although asthma was long thought to be driven by allergen‐reactive TH2 cells, it has recently become clear that the pathogenesis of asthma is more complicated and associated with multiple pathways and cell types. A very exciting recent development was the discovery of innate lymphoid cells (ILCs) as key players in the pathogenesis of asthma. ILCs do not express antigen receptors but react promptly to “danger signals” from inflamed tissue and produce an array of cytokines that direct the ensuing immune response. The roles of ILCs may differ in distinct asthma phenotypes. ILC2s may be critical for initiation of adaptive immune responses in inhaled allergen‐driven AHR, but may also function independently of adaptive immunity, mediating influenza‐induced AHR. ILC2s also contribute to resolution of lung inflammation through their production of amphiregulin. Obesity‐induced asthma is associated with expansion of IL‐17A‐producing ILC3s in the lungs. Furthermore, ILCs may also contribute to steroid‐resistant asthma. Although the precise roles of ILCs in different types of asthma are still under investigation, it is clear that inhibition of ILC function represents a potential target that could provide novel treatments for asthma.  相似文献   

13.
BACKGROUND: Airway remodeling in asthma comprises a range of structural changes. Several studies have suggested an association between these changes and disease severity. The relationship between the extent of remodeling and lung function is not well defined. OBJECTIVE: We sought to contrast the structural changes in the airways of well-defined groups of subjects with severe and moderate asthma and to correlate the extent of remodeling with disease severity. METHODS: Endobronchial biopsy specimens were obtained from 15 subjects with severe and 13 subjects with moderate asthma. Epithelial integrity, cell-layer areas, subepithelial fibrosis, and the distance between epithelial and airway smooth muscle (ASM) layers were measured by means of image analysis. Collagen was identified by using Van Giesen stain, and ASM was defined by using smooth muscle alpha-actin immunostaining. Specific immunostains were performed for the evaluation of RANTES, IL-8, and eotaxin expression as markers of ASM phenotype. RESULTS: ASM area was greater in subjects with severe (0.24+/- 0.03 mm(2)) than in subjects with moderate (0.05+/- 0.01 mm(2)) asthma (P<.001). The distance between the epithelial and ASM layers was less in the severe group (0.12+/- 0.01 mm) than in the moderate group (0.24+/- 0.02, P<.001). A trend toward greater subepithelial fibrosis in subjects with severe asthma did not reach statistical significance. IL-8 and eotaxin expression, but not RANTES expression, were increased in the ASM of subjects with severe asthma compared with in subjects with moderate asthma. CONCLUSION: Smooth muscle alteration is the key structural change that distinguishes severe from moderate asthma, and phenotypic change in ASM might contribute to the difficulty in obtaining adequate control in some subjects with severe asthma.  相似文献   

14.
Eosinophils represent one of the main effector cell populations of allergic airway inflammation and allergic bronchial asthma. Their infiltration correlates with many characteristics of the disease, including airway hyperresponsiveness (AHR) and increased mucus production. CCR-3 is the principle chemokine receptor involved in eosinophil attraction into inflamed tissue. Therefore, antagonizing CCR-3 could be a novel promising approach toward asthma therapy. We investigated the effect of a low-molecular-weight CCR-3 antagonist on established airway inflammation in a chronic model of experimental bronchial asthma. For this purpose, BALB/c mice intraperitoneally sensitized with ovalbumin (OVA) were chronically challenged with OVA aerosol to induce chronic airway inflammation and airway remodeling. The effect of antagonizing CCR-3 on asthma pathology was examined in BAL and lung histology. Airway reactivity was assessed by head-out body plethysmography. Treatment with the CCR-3 antagonist resulted in a marked reduction of eosinophils in the bronchoalveolar lumen and in airway wall tissue, whereas infiltration of lymphocytes or macrophages remained unchanged. The reduction in eosinophil infiltration was accompanied by normalization of AHR and prevention of goblet cell hyperplasia, indicating reduced mucus production. Furthermore, antagonizing CCR-3 prevented airway remodeling as defined by subepithelial fibrosis and increased accumulation of myofibrocytes in the airway wall of chronically challenged mice. These data demonstrate that antagonism of CCR3 reduces eosinophil numbers, which is accompanied by diminution of asthma pathology in a mouse model of established chronic experimental asthma. Therefore, antagonizing CCR-3 represents a new approach toward a promising asthma therapy.  相似文献   

15.
Airway hyperresponsiveness (AHR) to direct (histamine and methacholine) and indirect (exercise, cold air, hyperventilation, AMP) challenges is a universal and defining feature of asthma. One component of AHR is transient or inducible and occurs after allergen exposure, for example, and improves occasionally rapidly after inhaled corticosteroids or environmental control. This transient airway hyperresponsiveness is more marked to the indirect stimuli. There are convincing data linking this component of AHR to airway inflammation; however, the precise mechanisms linking airway inflammation and hyperresponsiveness of the airway smooth muscle are not clear. The other component of AHR is more persistent and is relatively refractory to environmental control and inhaled corticosteroids. This is likely secondary to structural airway changes, which are collectively referred to as airway remodeling, and which are a result of the chronic (rather than the acute) effects of airway inflammation. This persistent AHR is best reflected by airway hyperresponsiveness to direct stimuli such as methacholine. The mechanisms are also uncertain, but reduced airway caliber, increased airway wall thickness, increased airway smooth muscle mass, and perhaps contractility likely all play a role.  相似文献   

16.
Asthma is characterized by airway inflammation, with a consequent increase in spasmogens, and exaggerated airway narrowing in response to stimuli, termed airway hyperresponsiveness (AHR). The nature of any relationship between inflammation and AHR is less clear. Recent ex vivo data has suggested a novel mechanism by which inflammation may lead to AHR, in which increased basal ASM-tone, due to the presence of spasmogens in the airways, may "strengthen" the ASM and ultimately lead to exaggerated airway narrowing. This phenomenon was termed "force adaptation" [Bossé, Y., Chin, L.Y., Paré, P.D., Seow, C.Y., 2009. Adaptation of airway smooth muscle to basal tone: relevance to airway hyperresponsiveness. Am. J. Respir. Cell Mol. Biol. 40, 13-18]. However, it is unknown whether the magnitude of the effect of force adaptation ex vivo could contribute to exaggerated airway narrowing in vivo. Our aim was to utilize a computational model of ASM shortening in order to quantify the potential effect of force adaptation on airway narrowing when all other mechanical factors were kept constant. The shortening in the model is dictated by a balance between physiological loads and ASM force-generating capacity at different lengths. The results suggest that the magnitude of the effect of force adaptation on ASM shortening would lead to substantially more airway narrowing during bronchial challenge at any given airway generation. We speculate that the increased basal ASM-tone in asthma, due to the presence of inflammation-derived spasmogens, produces an increase in the force-generating capacity of ASM, predisposing to AHR during subsequent challenge.  相似文献   

17.
The bronchial pathology of asymptomatic airway hyperreponsiveness (AHR) subjects is not well understood, and the role of atopy in the development of airway remodeling is unclear. The aim of this study was to evaluate whether atopy is associated with airway remodeling in asymptomatic AHR subjects. Five groups, i.e., atopic or non-atopic subjects with asymptomatic AHR, atopic or non-atopic healthy controls, and subjects with mild atopic asthma, were evaluated by bronchoscopic biopsy. By electron microscopy, mean reticular basement membrane (RBM) thicknesses were 4.3+/-1.7 microm, 3.4+/-1.8 microm, 2.5+/-1.5 microm, 2.6+/-1.1 microm, and 2.3+/-1.2 microm in the mild atopic asthma, atopic and non-atopic asymptomatic AHR, atopic and nonatopic control groups, respectively (p=0.002). RBM thicknesses were significantly higher in the mild atopic asthma group and in the atopic asymptomatic AHR group than in the other three groups (p=0.048). No significant difference in RBM thickness was observed between the atopic asymptomatic AHR group and the mild atopic asthma group (p>0.05), nor between non-atopic asymptomatic AHR group and the two control groups (p>0.05). By light microscopy, subepithelial layer thicknesses between the groups showed the same results. These findings suggest that RBM thickening occurs in subjects with atopic asymptomatic AHR, and that atopy plays an important role in airway remodeling.  相似文献   

18.
Conclusions MCs promote chronic inflammation and the development of airway remodeling in asthma through MC-derived cytokines, chemokines, proteases, and interaction with other immune cells (T cells and eosinophils). The rapid innovation of genetic technologies and new techniques of MC knock-out/knock-in animal model are improving our understanding of the complex relationships between the various cell types involved in the immune network of the airway and will clarify the role of MCs in the pathogenesis of asthma. Targeting MCs may be a new treatment modality in treatment and prevention of asthma.  相似文献   

19.
Matrix metalloproteinases (MMPs) modulate development, inflammation, and repair in lungs. Tissue inhibitors of MMPs (TIMPs) interact with MMPs, controlling the intensity and nature of the response to injury. Absence of MMP-9, -2, and -8 activities is associated with altered lung inflammation during allergic sensitization. To test the hypothesis that the absence of TIMP-1 enhances allergic lung inflammation, airway hyperreactivity (AHR), and lung remodeling in asthma, we studied TIMP-1 null (TIMP-1 KO) mice and their WT controls using an ovalbumin (OVA) asthma model. TIMP-1 KO mice, compared to WT controls, developed an asthma phenotype characterized by AHR, pronounced cellular lung infiltrates, greater reduction in lung compliance, enhanced Th2 cytokine mRNA and protein expression, and altered collagen lung content associated with enhanced MMP-9 activity. Our findings support the hypothesis that TIMP-1 plays a protective role by preventing AHR and modulating inflammation, remodeling, and cytokine expression in an animal model of asthma.  相似文献   

20.
We recently identified autocrine interferon (IFN)beta as a novel mechanism mediating tumor necrosis factor (TNF)alpha-induced expression of inflammatory genes in airway smooth muscle (ASM) cells, including CD38, known to regulate calcium signaling. Here, we investigated the putative involvement of IFNbeta in regulating TNFalpha-induced airway hyper-responsiveness (AHR), a defining feature of asthma. Using our pharmacodynamic model to assess ex vivo AHR isolated murine tracheal rings, we found that TNFalpha-induced enhanced contractile responses to carbachol and bradykinin was abrogated by neutralizing anti-IFNbeta antibody or in tracheal rings deficient in CD38. In cultured human ASM cells, where CD38 has been involved in TNFalpha-induced enhanced calcium signals to carbachol and bradykinin, we found that neutralizing anti-IFNbeta prevented TNFalpha enhancing action only on carbachol responses but not to that induced by bradykinin. In a well-characterized model of allergic asthma (mice sensitized and challenged with Aspergillus fumigatus (Af)), we found heightened expression of both IFNbeta and CD38 in the airways. Furthermore, allergen-associated AHR to methacholine, assessed by lung resistance and dynamic compliance, was completely suppressed in CD38-deficient mice, despite the preservation of airway inflammation. These data provide the first evidence that ASM-derived IFNbeta and CD38 may play a significant role in the development of TNFalpha-associated AHR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号