首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dielectric films with a high energy storage density and a large breakdown strength are promising material candidates for pulsed power electrical and electronic applications. Perovskite-type dielectric SrTiO3 (STO) has demonstrated interesting properties desirable for capacitive energy storage, including a high dielectric constant, a wide bandgap and a size-induced paraelectric-to-ferroelectric transition. To pave a way toward large-scale production, STO film capacitors were deposited on Pt(111)/Ti/SiO2/Si(100) substrates by the sol–gel method in this paper, and their electrical properties including the energy storage performance were studied as a function of the annealing temperature in the postgrowth rapid thermal annealing (RTA) process. The appearance of a ferroelectric phase at a high annealing temperature of 750 °C was revealed by X-ray diffraction and electrical characterizations (ferroelectric P-E loop). However, this high dielectric constant phase came at the cost of a low breakdown strength and a large hysteresis loss, which are not desirable for the energy storage application. On the other hand, when the RTA process was performed at a low temperature of 550 °C, a poorly crystallized perovskite phase together with a substantial amount of impurity phases appeared, resulting in a low breakdown strength as well as a very low dielectric constant. It is revealed that the best energy storage performance, which corresponds to a large breakdown strength and a medium dielectric constant, is achieved in STO films annealed at 650 °C, which showed a large energy density of 55 J/cm3 and an outstanding energy efficiency of 94.7% (@ 6.5 MV/cm). These findings lay out the foundation for processing high-quality STO film capacitors via the manufacturing-friendly sol–gel method.  相似文献   

2.
Flexible indium tin oxide (ITO)/Y2O3/Ag resistive random access memory (RRAM) devices were successfully fabricated using a thermal-energy-free ultraviolet (UV)/ozone-assisted photochemical annealing process. Using the UV/ozone-assisted photochemical process, the organic residue can be eliminated, and thinner and smother Y2O3 films than those formed using other methods can be fabricated. The flexible UV/ozone-assisted photochemical annealing process-based ITO/Y2O3/Ag RRAM devices exhibited the properties of conventional bipolar RRAM without any forming process. Furthermore, the pure and amorphous-phase Y2O3 films formed via this process showed a decreased leakage current and an increased high-resistance status (HRS) compared with the films formed using other methods. Therefore, RRAM devices can be realized on plastic substrates using a thermal-energy-free UV/ozone-assisted photochemical annealing process. The fabricated devices exhibited a resistive window (ratio of HRS/low-resistance status (LRS)) of >104, with the HRS and LRS values remaining almost the same (i.e., limited deterioration occurred) for 104 s and up to 102 programming/erasing operation cycles.  相似文献   

3.
In this work, a BiFeO3 film is prepared via a facile sol–gel method, and the effects of the relative humidity (RH) on the BiFeO3 film in terms of capacitance, impedance and current–voltage (IV) are explored. The capacitance of the BiFeO3 film increased from 25 to 1410 pF with the increase of RH from 30% to 90%. In particular, the impedance varied by more than two orders of magnitude as RH varied between 30% and 90% at 10 Hz, indicating a good hysteresis and response time. The mechanism underlying humidity sensitivity was analyzed by complex impedance spectroscopy. The adsorption of water molecules played key roles at low and high humidity, extending the potential application of ferroelectric BiFeO3 films in humidity-sensitive devices.  相似文献   

4.
In this study, assessment of the antimicrobial activity of a novel, plasma-cured 2.5% (w/v) Cu(NO3)2-containing sol–gel surface was performed. In contrast to state-of-the-art sol–gel coatings, the plasma curing led to a gradient in cross-linking with the highest values at the top of the coating. As a result, the coating behaved simultaneously hard, scratch-resistant, and tough, the latter due to the more flexible bulk of the coating toward the substrate. Further, the diffusion and permeation through the coating also increased toward the substrate. In our study, tests according to ISO 22196 showed antibacterial activity of the 2.5% (w/v) Cu(NO3)2-containing sol–gel surface against all bacterial strains tested, and we expanded the testing further using a “dry” evaluation without an aqueous contact phase, which confirmed the antimicrobial efficacy of the 2.5% (w/v) Cu(NO3)2-containing sol–gel surface. However, further investigation under exposure to soiling with the addition of 0.3% albumin, used to simulate organic load, led to a significant impairment in the antibacterial effect under both tested conditions. Furthermore, re-testing of the surface after disinfection with 70% ethanol led to a total loss of antibacterial activity. Our results showed that besides the mere application of an antimicrobial agent to a surface coating, it is also necessary to consider the future use of these surfaces in the experimental phase combining industry and science. Therefore, a number of tests corresponding to the utilization of the surface should be obligative on the basis of this assessment.  相似文献   

5.
The main goal of the present work was to synthesize a composite consisting of h-BN particles coated with a γ-Al2O3 nanolayer. A method was proposed for applying nanocrystalline γ-Al2O3 to h-BN particles using a sol–gel technique, which ensures the chemical homogeneity of the composite at the nano level. It has been determined that during crystallization on the h-BN surface, the proportion of spinel in alumina decreases from 40 wt.% in pure γ-Al2O3 to 30 wt.% as a result of the involvement of the B3+ ions from the surface nitride monolayers into the transition complex. For comparison, nano-alumina was synthesized from the same sol under the same conditions as the composite. The characterization of the obtained nanostructured powders was carried out using TEM and XRD. A mechanism is proposed for the formation of a nanostructured γ-Al2O3@h-BN composite during the interaction of Al-containing sol and h-BN suspension in aqueous organic media. The resulting composite is a promising model of powdered raw materials for the development of fine-grained ceramic materials for a wide range of applications.  相似文献   

6.
In this paper, we used differential scanning calorimetry (DSC), high-temperature X-ray diffraction (HT-XRD), and confocal scanning laser microscopy (CSLM) to investigate the Li2O–Al2O3–SiO2 glass crystallization process. At 943 K, lithium disilicate (Li2Si2O5) phase crystals began to precipitate in the Li2O–Al2O3–SiO2 glass with a crystal size of 50–70 nm. At the temperature of 1009 K, petalite (LiAlSi4O10) crystals began to precipitate in the vitreous phase, forming composite spherical crystals of LiAlSi4O10 and Li2Si2O5 with size in the range of 90–130 nm. Furthermore, the Kissinger method and KAS method of the JMAK model were used to calculate the crystallization activation energy and the Avrami index “n”. It was found that the precipitation mechanism of the two kinds of crystals is whole crystallization; accordingly, the selection of crystallization heat treatment system was guided to determine the nucleation and crystallization temperature.  相似文献   

7.
Aluminum oxide is one of the most commonly used materials in the industry. It is used in the field of catalysis, refractories, and optics. Despite the fact that there are many techniques available, there is still a great challenge in obtaining a material with desired and designed properties. Nevertheless, there is a great flexibility in making customized alumina materials with desired physicochemical properties synthesized by sol–gel methods. This work consists in characterizing the physicochemical properties of sol–gel synthesized aluminum oxide using different sol–gel preparation routes. Three different sols were obtained by using organic precursors and underwent thermal treatment. The structure (Middle Infrared Spectroscopy, Diffused Reflectance Infrared Spectroscopy, X-ray Diffraction, Magic Angle Spinning Nuclear Magnetic Resonance) and microstructure (Scanning Electron Microscopy with Electron Dispersive Spectroscopy) tests of the materials were carried out. The specific surface area was determined by using the Brunauer–Emmett–Teller (BET) method. Thermal analysis was performed for all the powders, in order to analyze the specific temperature of materials transformation.  相似文献   

8.
The paper describes an investigation of Al2O3 samples and NiAl–Al2O3 composites consolidated by pulse plasma sintering (PPS). In the experiment, several methods were used to determine the properties and microstructure of the raw Al2O3 powder, NiAl–Al2O3 powder after mechanical alloying, and samples obtained via the PPS. The microstructural investigation of the alumina and composite properties involves scanning electron microscopy (SEM) analysis and X-ray diffraction (XRD). The relative densities were investigated with helium pycnometer and Archimedes method measurements. Microhardness analysis with fracture toughness (KIC) measures was applied to estimate the mechanical properties of the investigated materials. Using the PPS technique allows the production of bulk Al2O3 samples and intermetallic ceramic composites from the NiAl–Al2O3 system. To produce by PPS method the NiAl–Al2O3 bulk materials initially, the composite powder NiAl–Al2O3 was obtained by mechanical alloying. As initial powders, Ni, Al, and Al2O3 were used. After the PPS process, the final composite materials consist of two phases: Al2O3 located within the NiAl matrix. The intermetallic ceramic composites have relative densities: for composites with 10 wt.% Al2O3 97.9% and samples containing 20 wt.% Al2O3 close to 100%. The hardness of both composites is equal to 5.8 GPa. Moreover, after PPS consolidation, NiAl–Al2O3 composites were characterized by high plasticity. The presented results are promising for the subsequent study of consolidation composite NiAl–Al2O3 powder with various initial contributions of ceramics (Al2O3) and a mixture of intermetallic–ceramic composite powders with the addition of ceramics to fabricate composites with complex microstructures and properties. In composites with complex microstructures that belong to the new class of composites, in particular, the synergistic effect of various mechanisms of improving the fracture toughness will be operated.  相似文献   

9.
White LEDs were encapsulated using Cs4PbBr6 quantum dots and Gd2O3:Eu red phosphor as lamp powder. Under the excitation of a GaN chip, the color coordinates of the W-LED were (0.33, 0.34), and the color temperature was 5752 K, which is close to the color coordinate and color temperature range of standard sunlight. The electric current stability was excellent with an increase in the electric current, voltage, and luminescence intensity of the quantum dots and phosphors by more than 10 times. However, the stability of the quantum dots was slightly insufficient over long working periods. The photocatalytic devices were constructed using TiO2, CsPbBr3, and NiO as an electron transport layer, light absorption layer, and catalyst, respectively. The Cs–Pb–Br-based perovskite quantum dot photocatalytic devices were constructed using a two-step spin coating method, one-step spin coating method, and full PLD technology. In order to improve the water stability of the device, a hydrophobic carbon paste and carbon film were selected as the hole transport layer. The TiO2 layer and perovskite layer with different thicknesses and film forming qualities were obtained by changing the spin coating speed. The influence of the spin coating speed on the device’s performance was explored through SEM and a J–V curve to find the best spin coating process. The device constructed by the two-step spin coating method had a higher current density but no obvious increase in the current density under light, while the other two methods could obtain a more obvious light response, but the current density was very low.  相似文献   

10.
This paper is devoted to the sintering process of Al2O3–SiO2–ZrO2 ceramics. The studied method was electroconsolidation with directly applied electric current. This method provides substantial improvements to the mechanical properties of the sintered samples compared to the traditional sintering in the air. The research covered elemental and phase analysis of the samples, which revealed phase transition of high-alumina solid solutions into mullite and corundum. Zirconia was represented mainly by tetragonal phase, but monoclinic phase was present, too. Electroconsolidation enabled samples to reach a density of 3.0 g/cm3 at 1300 °C, while the sample prepared by traditional sintering method obtained it only at 1700 °C. For the composite Al2O3—20 wt.% SiO2—10 wt.% ZrO2 fabricated by electroconsolidation, it was demonstrated that fracture toughness was higher by 20–30%, and hardness was higher by 15–20% compared to that of samples sintered traditionally. Similarly, the samples fabricated by electroconsolidation exhibited elastic modulus E higher by 15–20%. The hypothesis was proposed that the difference in mechanical and physical properties could be attributed to the peculiarities of phase formation processes during electroconsolidation.  相似文献   

11.
To meet aero-engine aluminum skirt requirements, an experiment was carried out using Al–Nb–B2O3–CuO as the reaction system and a 6063 aluminum alloy melt as the reaction medium for a contact reaction, and 6063 aluminum matrix composites containing in situ particles were prepared with the near-liquid-phase line-casting method after the reaction was completed. The effects of the reactant molar ratio and the preheating temperature on the in situ reaction process and products were explored in order to determine the influence of in situ-reaction-product features on the organization and the qualities of the composites. Thermodynamic calculations, DSC analysis, and experiments revealed that the reaction could continue when the molar ratio of the reactants of Al–Nb–B2O3–CuO was 6:1:1:1.5. A kinetic study revealed that the Al thermal reaction in the system produced Al2O3 and [B], and the [B] atoms interacted with Nb to generate NbB2. With increasing temperature, the interaction between the Nb and the AlB2 produced hexagonal NbB2 particles with an average longitudinal size of 1 μm and subspherical Al2O3 particles with an average longitudinal size of 0.2 μm. The microstructure of the composites was reasonably fine, with an estimated equiaxed crystal size of around 22 μm, a tensile strength of 170 MPa, a yield strength of 135 MPa, an elongation of 13.4%, and a fracture energy of 17.05 × 105 KJ/m3, with a content of 2.3 wt% complex-phase particles. When compared to the matrix alloy without addition, the NbB2 and Al2O3 particles produced by the in situ reaction had a significant refinement effect on the microstructure of the alloy, and the plasticity of the composite in the as-cast state was improved while maintaining higher strength and better overall mechanical properties, allowing for industrial mass production.  相似文献   

12.
We studied the fabrication of functionally graded Al2O3–CeO2-stabilized-ZrO2 (CTZ) ceramics by spark plasma sintering. The ceramic composite exhibits a gradual change in terms of composition and porosity in the axial direction. The composition gradient was created by layering starting powders with different Al2O3 to CTZ ratios, whereas the porosity gradient was established with a large temperature difference, which was induced by an asymmetric graphite tool configuration during sintering. SEM investigations confirmed the development of a porosity gradient from the top toward the bottom side of the Al2O3–CTZ ceramic and the relative pore volume distributed in a wide range from 0.02 to 100 µm for the samples sintered in asymmetric configuration (ASY), while for the reference samples (STD), the size of pores was limited in the nanometer scale. The microhardness test exhibited a gradual change along the axis of the ASY samples, reaching 10 GPa difference between the two opposite sides of the Al2O3–CTZ ceramics without any sign of delamination or cracks between the layers. The flexural strength of the samples for both series showed an increasing tendency with higher sintering temperatures. However, the ASY samples achieved higher strength due to their lower total porosity and the newly formed elongated CeAl11O18 particles.  相似文献   

13.
A nanocomposite composed of carboxymethyl cellulose (CMC) and core–shell nanoparticles of Fe3O4@SiO2 was prepared as a pH-responsive nanocarrier for quercetin (QC) delivery. The nanoparticles were further entrapped in a water-in-oil-in-water emulsion system for a sustained release profile. The CMC/Fe3O4@SiO2/QC nanoparticles were characterized using dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), a field emission scanning electron microscope (FE-SEM), and a vibrating sample magnetometer (VSM) to obtain insights into their size, stability, functional groups/chemical bonds, crystalline structure, morphology, and magnetic properties, respectively. The entrapment and loading efficiency were slightly improved after the incorporation of Fe3O4@SiO2 NPs within the hydrogel network. The dialysis method was applied for drug release studies. It was found that the amount of QC released increased with the decrease in pH from 7.4 to 5.4, while the sustained-release pattern was preserved. The A549 cell line was chosen to assess the anticancer activity of the CMC/Fe3O4@SiO2/QC nanoemulsion and its components for lung cancer treatment via an MTT assay. The L929 cell line was used in the MTT assay to determine the possible side effects of the nanoemulsion. Moreover, a flow cytometry test was performed to measure the level of apoptosis and necrosis. Based on the obtained results, CMC/Fe3O4@SiO2 can be regarded as a novel promising system for cancer therapy.  相似文献   

14.
Fe2O3-Bi2O3-B2O3 (FeBiB) glasses were developed as novel pH responsive hydrophobic glasses. The influence of the glass composition on the pH sensitivity of FeBiB glasses was investigated. The pH sensitivity drastically decreased with decreasing B2O3 content. A moderate amount of Fe2O3 and a small amount of B2O3 respectively produces bulk electronic conduction and a pH response on glass surfaces. Because the remaining components of the glass can be selected freely, this discovery could prove very useful in developing novel pH glass electrodes that are self-cleaning and resist fouling.  相似文献   

15.
An Al2O3/5 vol%·ZrO2/5 vol%·Y3Al5O12 (YAG) tri-phase composite was manufactured by surface modification of an alumina powder with inorganic precursors of the second phases. The bulk materials were produced by die-pressing and pressureless sintering at 1500 °C, obtaining fully dense, homogenous samples, with ultra-fine ZrO2 and YAG grains dispersed in a sub-micronic alumina matrix. The high temperature mechanical properties were investigated by four-point bending tests up to 1500 °C, and the grain size stability was assessed by observing the microstructural evolution of the samples heat treated up to 1700 °C. Dynamic indentation measures were performed on as-sintered and heat-treated Al2O3/ZrO2/YAG samples in order to evaluate the micro-hardness and elastic modulus as a function of re-heating temperature. The high temperature bending tests highlighted a transition from brittle to plastic behavior comprised between 1350 and 1400 °C and a considerable flexural strength reduction at temperatures higher than 1400 °C; moreover, the microstructural investigations carried out on the re-heated samples showed a very limited grain growth up to 1650 °C.  相似文献   

16.
In this study, we have developed a self-cleaning transparent coating on a glass substrate by dip coating a TiO2 – KH550 – PEG mixed solution with super-hydrophilicity and good antifogging properties. The fabrication of the thin-film-coated glass is a one-step solution blending method that is performed by depositing only one layer of modified TiO2 nanoparticles at room temperature. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to determine the structure and morphology of the nanoparticles and the thin-film-coated glass. The surface functional groups were investigated using Fourier-transform infrared spectroscopy (FT-IR), and the optical properties of the glass coating were measured using a UV/Vis spectrometer. The results revealed that the KH-500-modified TiO2 film coating was in an anatase crystalline form. The hydrophilicity of the coated and uncoated glass substrates was observed by measuring their water contact angle (WCA) using a contact angle instrument. The maximum transparency of the coated glass measured in the visible region (380–780 nm) was approximately 70%, and it possessed excellent super-hydrophilic properties (WCA ~0°) at an annealing temperature of 350 °C without further need of UV or plasma treatment. These results demonstrate the super-hydrophilic coated glass surface has potential for use in self-cleaning and anti-fogging applications.  相似文献   

17.
We present a systematic study of the lithium-ion transport upon the mixed manganese-iron oxide phosphate glasses 3Li2O-xMn2O3-(2-x)Fe2O3-3P2O5(LMxF2−xPO; 0 x 2.0) proposed for the use in a cathode for lithium secondary batteries. The glasses have been fabricated using a solid reaction process. The electrical characteristics of the glass samples have been characterized by electrical impedance in the frequency range from 100 Hz to 30 MHz and temperature from 30 °C to 240 °C. Differential thermal analysis and X-ray diffraction were used to determine the thermal and structural properties. It has been observed that the dc conductivity decreases, but the activation energies of dc and ac and the glass-forming ability increase with the increasing Mn2O3 content in LMxF2−xPO glasses. The process of the ionic conduction and the relaxation in LMxF2−xPO glasses are determined by using power–law, Cole–Cole, and modulus methods. The Li+ ions migrate via the conduction pathway of the non-bridging oxygen formed by the depolymerization of the mixed iron–manganese–phosphate network structure. The mixed iron–manganese content in the LMxF2−xPO glasses constructs the sites with different depths of the potential well, leading to low ionic conductivity.  相似文献   

18.
Ag/Y2O3 has excellent potential to replace Ag/CdO as the environmentally friendly electrical contact material. Using spherical Y2O3 as the starting material, Ag/Y2O3 contacts with a quasi-continuous network structure were successfully fabricated by a low-energy ball milling treatment. The mean size of Y2O3 used ranged from 243 to 980 nm. Due to the differences in the size of Y2O3, Ag/Y2O3 contacts had different primitive microstructures, thereby exhibiting distinctive anti-arc-erosion capabilities. Ag/Y2O3 contact prepared using 243 nm Y2O3 showed the best anti-arc-erosion capability and the most outstanding electrical performance measures, such as low contact resistance, less mass transfer, and no failure up to 105 cycle times. The quasi-continuous network structure formed in the micro-scale was responsible for the excellent electrical performance. The short distance between Y2O3 particles in the network promoted the cathode arc motion, and thus alleviated the localized erosion. The results obtained herein may inspire further attempts to design electrical contacts rationally.  相似文献   

19.
In the paper, a novel technique for highly dispersed pyrochlore Y2Ti2O7 is proposed. The experimental results proved that the application of microwave irradiation at a certain stage of calcination allowed synthesizing of Y2Ti2O7 in much shorter time, which ensured substantial energy savings. An increase up to 98 wt.% in the content of the preferred phase with a pyrochlore-type structure Y2Ti2O7 was obtained after 25 h of yttrium and titanium oxides calcination at a relatively low temperature of 1150 °C, while the microwave-supported process took only 9 h and provided 99 wt.% of pyrochlore. The proposed technology is suitable for industrial applications, enabling the fabrication of large industrial amounts of pyrochlore without solvent chemistry and high-energy mills. It reduced the cost of both equipment and energy and made the process more environmentally friendly. The particle size and morphology did not change significantly; therefore, the microwave-assisted method can fully replace the traditional one.  相似文献   

20.
In this study, the effects of Y2O3 addition on the magnetic properties, microstructure and magnetization reversal behavior of Sm(Co0.79Fe0.09Cu0.09Zr0.03)7.68 magnet were investigated. By addition of Y2O3, the coercivity was increased from 21.34 kOe to 27.42 kOe at 300 K and from 5.14 kOe to 6.27 kOe at 823 K. A magnet with a maximum magnetic energy product of 9.86 MGOe at 823 K was obtained. With the interdiffusion of Y and Sm after appropriate addition, the Cu content within the cell boundary phase close to the oxide was detected to be nearly twice as high as that away from the oxide. We report for the first time that a collection of lamellar phases were formed on both sides of the inserted oxide, providing a strong pinning field against magnetic domain wall motion based on in-situ Lorentz TEM observation. Furthermore, the ordering process of the original magnet was delayed after Y2O3 addition, resulting in the refinement of cellular structure, which can also enhance the domain wall pinning ability of cellular structures based on micromagnetic simulation. However, excessive addition of Y2O3 led to large Cu-rich phase and Zr-rich impurity phase precipitated at the edge of the oxide, resulting in the destruction of cellular structures and a significant reduction in coercivity. This study provides a new technical approach to regulate the microstructure of Sm2Co17 type magnets. Addition of Y2O3 is expected to play a significant role in improvement of high temperature magnetic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号