首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to study the load-bearing failure characteristics of a RPCCP under internal load, a field prototype test was designed, and a finite element model was established. An internal load was applied up to 2.0 MPa step by step and the force variation law of each part was obtained. During the production of the RPCCP, by wrapping prestressed steel bars around the concrete core with a cylinder, the core was subjected to an initial precompression stress. In the loading process, the protective cover cracked first, from where the concrete core gradually changed from the initial compression state to a tension state, finally cracking from the inner and outer diameter. The stresses of the cylinder and steel bars increased steadily with the internal load and did not yield. The finite element calculation results were in good agreement with the test results, and the influence characteristics of the tension control stress of the steel bar and the concrete strength on the failure of the RPCCP under internal load were discussed. The results showed that the internal load of the protective cover was independent of the tension control stress, but decreases with a decrease in concrete strength, while the load corresponding to the concrete core entering plasticity is related to the tension control stress and the concrete strength, and the relationships were basically linear.  相似文献   

2.
The risk of cracking in the early stage is a critical indicator of the performance of concrete structures. Concrete cracked when the tensile stresses caused by deformation under restraint conditions exceeded its tensile strength. This research aims at an accurate prediction of shrinkage cracking of concrete under constraints. Based on the theory of capillary tension under the concrete shrinkage mechanism, the method to test and compute the elastic modulus of a micro-matrix around the capillary, Et, was derived. Shrinkage and porosity determination tests were conducted to obtain the shrinkage values and confining stresses of concrete at different strength grades, different ages and under different restraint conditions, accordingly. Meanwhile, the proposed method of this research was used to obtain Et. The restraint stress given by Et was compared with the experimental result under the corresponding time. The results suggested a positive correlation between the elastic modulus of a micro-matrix around the capillary, Et, precomputed by the theory, and the static elastic modulus, Ec, and that the ratio between the two gradually decreased with the passage of time, which ranged from 2.8 to 3.1.  相似文献   

3.
Prestressed concrete sleepers are an important track component that is widely used in railway ballast track. Prestressed concrete sleepers have high strength, strong stability, and good durability; thus, their operation and use in railways are beneficial. However, in different countries and regions, certain damage to sleepers typically appears. Existing research on concrete sleepers focuses primarily on the structural design method, the application of new materials, theoretical analysis, and bearing strength test research, while ignoring sleeper damage. There are a few sleeper damage studies, but they look at only one type of damage; thus, there is no comprehensive study of prestressed concrete sleeper damage. The damage forms of prestressed concrete sleeper damage are thus summarized in this study, and the theory of the causes of prestressed concrete sleepers is analyzed based on the limit state method for the first time. The findings indicate that sleeper structure design is the primary cause of its operation and use status, and that special measures should be considered based on sleeper use conditions. In addition to meeting design requirements, materials, curing systems, product inspection, and other factors must be considered during manufacturing to improve the sleepers’ long-term performance. Keeping the track in good condition, including but not limited to the state of fasteners, ballast bed, and track geometry is also an important aspect of preventing sleeper damage. The outcomes of this study provide better insights into the influences of damage to railway prestressed concrete sleepers and can be used to improve track maintenance and inspection criteria.  相似文献   

4.
The numerical simulation of concrete fracture is difficult because of the brittle, inelastic-nonlinear nature of concrete. In this study, notched plain and reinforced concrete beams were investigated numerically to study their flexural response using different crack simulation techniques in ABAQUS. The flexural response was expressed by hardening and softening regime, flexural capacity, failure ductility, damage initiation and propagation, fracture energy, crack path, and crack mouth opening displacement. The employed techniques were the contour integral technique (CIT), the extended finite element method (XFEM), and the virtual crack closure technique (VCCT). A parametric study regarding the initial notch-to-depth ratio (ao/D), the shear span-to-depth ratio (S.S/D), and external post-tensioning (EPT) were investigated. It was found that both XFEM and VCCT produced better results, but XFEM had better flexural simulation. Contrarily, the CIT models failed to express the softening behavior and to capture the crack path. Furthermore, the flexural capacity was increased after reducing the (ao/D) and after decreasing the S.S/D. Additionally, using EPT increased the flexural capacity, showed the ductile flexural response, and reduced the flexural softening. Moreover, using reinforcement led to more ductile behavior, controlled damage propagation, and a dramatic increase in the flexural capacity. Furthermore, CIT showed reliable results for reinforced concrete beams, unlike plain concrete beams.  相似文献   

5.
6.
Vacuum insulated glass (VIG) panels are becoming more and more popular due to their good thermal performance. Little information about the mechanical or strength parameters, which are crucial for the durability of a window, might be found in the published papers. The purpose of this work was to analyse the impact of different parameters on VIG panels’ mechanical properties. Parameter diversity refers to both geometrical and material characteristics. Static and dynamic analyses using the finite element method (ABAQUS program) were conducted. In addition, 101 various numerical models, created with the use of Python language, were tested. The changes of geometrical parameters were made with constant material parameters and the reverse. It has been concluded that pillars’ material and geometrical properties are crucial considering not only the static response of the VIG plates, but also the dynamic one. Moreover, it was proven that getting rid of the first row of pillars near every edge seal led to an increase in deflection of the glass panes. Additionally, considering results for dynamic response associated with out-of-phase vibrations, spacing between support pillars should be large enough in order to avoid possible damage to the glass pane due to rapidly decreasing distance between them. Further research opportunities have been described.  相似文献   

7.
This paper investigates prefabricated utility tunnels composed of composite slabs with a spiral stirrup-constrained connection, considering material nonlinearity with concrete damage. An experiment was set up based on the prototype of a practical utility tunnel project, and the results were compared with finite element (FEM) simulation results with reasonable agreement obtained. The parametric analysis was carried out considering variations of seam location, haunch height and reinforcement, and embedment depth, using FEM simulations. It is found that, as with the increase in seam distance above haunch, the load capacity increases slightly, while the ductility does not vary much. The haunch height is not found to have an apparent effect on stiffness, load capacity or ductility. The increase in the embedment depth can enhance both the yield and peak loads while decreasing the ductility. A simplified method is proposed for evaluating the seismic performance in terms of deformation coefficient considering ductility demand, based on three different methods for calculating interaction coefficients considering soil–structure interactions. The findings from this investigation provide theoretical and practical guidance for underground engineering design of prefabricated utility tunnels.  相似文献   

8.
Self-healing of a crack is a relatively novel technique allowing for the partial recovery of the initial mechanical characteristics of a structural element after some period of exploitation. By a widely accepted convention, self-healing is either autogenous or autonomous. The former is a mechanism inherent for cementitious composites (in particular—concrete), while the latter is an engineered process. Both autogenous and engineered healing have recently been the object of numerous studies. Despite the large amount of research work being carried out, the potential of this technique has not yet been fully realized. The article focuses on the modeling and the finite element simulation of the recovery of the initial material properties resulting from the sealing of cracks. The employed numerical procedure uses a constitutive relation for concrete based on the continuum damage mechanics. It captures both the strain-softening and the inverse process—the crack healing. Finite element simulations of benchmark cases illustrate the effect of self-healing. The numerically obtained constitutive relations for specimens with and without a healing agent are compared.  相似文献   

9.
In this paper, a parallel homogenization model for recycled concrete was proposed. A new type of finite element method, the base force element method, based on the complementary energy principle and the parallel homogenization model, is used to conduct meso-level damage research on recycled concrete. The stress–strain softening curve and failure mechanism of the recycled concrete under uniaxial tensile load are analyzed using the nonlinear damage analysis program of the base force element method based on the parallel homogenization model. The tensile strength and destructive mechanisms of recycled concrete materials are studied using this parallel homogenization model. The calculation results are compared with the results of the experiments and meso-level random aggregate model analysis methods. The research results show that this parallel homogenization analysis method can be used to analyze the nonlinear damage analysis of recycled concrete materials. The tensile strength, stress–strain softening curve, and crack propagation process of recycled concrete materials can be obtained using the present method.  相似文献   

10.
This study investigated the applicability of using ultrasonic wave signals in detecting early fire damage in concrete. This study analyzed the reliability of using the linear (wave velocity) and nonlinear (coherence) parameters from ultrasonic pulse measurements and the applicability of machine learning in assessing the thermal damage of concrete cylinders. While machine learning has been used in some damage detections for concrete, its feasibility has not been fully investigated in classifying thermal damage. Data was collected from laboratory experiments using concrete specimens with three different water-to-binder ratios (0.54, 0.46, and 0.35). The specimens were subjected to different target temperatures (100 °C, 200 °C, 300 °C, 400 °C, and 600 °C) and another set of cylinders was subjected to room temperature (20 °C) to represent the normal temperature condition. It was observed that P-wave velocities increased by 0.1% to 10.44% when the concretes were heated to 100 °C, and then decreased continuously until 600 °C by 48.46% to 65.80%. Conversely, coherence showed a significant decrease after exposure to 100 °C but had fluctuating values in the range of 0.110 to 0.223 thereafter. In terms of classifying the thermal damage of concrete, machine learning yielded an accuracy of 76.0% while the use of P-wave velocity and coherence yielded accuracies of 30.26% and 32.31%, respectively.  相似文献   

11.
In order to study the durability of concrete materials subjected to sulfate attack, in a sulfate attack environment, a series of concrete tests considering different fly ash contents and erosion times were conducted. The mechanical properties and the micro-structure of concrete under sulfate attack were studied based on the following: uniaxial compressive strength test, split tensile test, ultrasonic impulse method, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The mechanical properties were compressive strength, splitting tensile strength, and relative dynamic elastic modulus, respectively. Additionally, according to the damage mechanical theory, experimental results and micro-structure analysis, the damage evolution process of concrete under a sulfate attack environment were studied in detail. Finally, according to the sulfate attack time and fly ash content, a damage model of the sulfate attack of the binary surface was established. The specific results are as follows: under the action of sulfate attack, the change law of the rate of mass change, relative dynamic modulus of elasticity, corrosion resistance coefficient of compressive strength, and the corrosion resistance coefficient of the splitting tensile strength of concrete all increase first and then decrease. Under the same erosion time, concrete mixed with 10% fly ash content has the best sulfate resistance. Through data regression, the damage evolution equation of the sulfate attack was developed and there is an exponential function relationship among the different damage variables. The binary curved surface regression effect of the concrete damage and the erosion time and the amount of fly ash is significant, which can predict deterioration of concrete damage under sulfate attack. During the erosion time, the combined expansion of ettringite and gypsum caused micro cracks. With an increase of corrosion time, micro cracks developed and their numbers increased.  相似文献   

12.
The fatigue process of concrete under compressive cyclic loading is still not completely explored. The corresponding damage processes within the material structure are especially not entirely investigated. The application of acoustic measurement methods enables a better insight into the processes of the fatigue in concrete. Normal strength concrete was investigated under compressive cyclic loading with regard to the fatigue process by using acoustic methods in combination with other nondestructive measurement methods. Acoustic emission and ultrasonic signal measurements were applied together with measurements of strains, elastic modulus, and static strength. It was possible to determine the anisotropic character of the fatigue damage caused by uniaxial loading based on the ultrasonic measurements. Furthermore, it was observed that the fatigue damage seems to consist not exclusively of load parallel oriented crack structures. Rather, crack structures perpendicular to the load as well as local compacting are likely components of the fatigue damage. Additionally, the ultrasonic velocity appears to be a good indicator for fatigue damage beside the elastic modulus. It can be concluded that acoustic methods allow an observation of the fatigue process in concrete and a better understanding, especially in combination with further measurement methods.  相似文献   

13.
Damage in concrete structures initiates as the growth of diffuse microcracks that is followed by damage localisation and eventually leads to structural failure. Weak changes such as diffuse microcracking processes are failure precursors. Identification and characterisation of these failure precursors at an early stage of concrete degradation and application of suitable precautionary measures will considerably reduce the costs of repair and maintenance. To this end, a reduced order multiscale model for simulating microcracking-induced damage in concrete at the mesoscale level is proposed. The model simulates the propagation of microcracks in concrete using a two-scale computational methodology. First, a realistic concrete specimen that explicitly resolves the coarse aggregates in a mortar matrix was generated at the mesoscale. Microcrack growth in the mortar matrix is modelled using a synthesis of continuum micromechanics and fracture mechanics. Model order reduction of the two-scale model is achieved using a clustering technique. Model predictions are calibrated and validated using uniaxial compression tests performed in the laboratory.  相似文献   

14.
This paper presents experimental investigations of reinforced concrete (RC) beams flexurally strengthened with carbon fiber reinforced polymer (CFRP) strips. Seven 3300 mm × 250 mm × 150 mm beams of the same design, with the tension reinforcement ratio of 1.01%, were tested. The beams differed in the way they were strengthened: one of the beams was the reference, two beams were passively strengthened as precracked (series B-I), two beams were passively strengthened as unprecracked (series B-II) and two beams were actively strengthened as unprecracked (series B-III). Moreover, the strengthening parameters differed between the particular series. The parameters were: CFRP strip cross-sectional areas (series B-I, B-II) or prestressing forces (series B-III). The beams were statically loaded, up to the assumed force value, in the three-point bending test and deflections at midspan were registered. After unloading the beams were suspended on flexible ropes (the free-free beam system) and their eigenfrequencies were measured using operational modal analysis (OMA). The static measurements (deflections) and the dynamic measurements (eigenfrequencies) were conducted for the adopted loading steps until failure. Static stiffnesses and dynamic stiffnesses were calculated on the basis of respectively the deflections and the eigenfrequencies. The qualitative and quantitative differences between the parameters are described.  相似文献   

15.
The mechanical response characteristics of mudstone from the ingate roadway of the west ventilation shaft in Yuandian No. 2 coal mine, Huaibei City, Anhui Province, China to dynamic loads were quantified in single- and cyclic-impact compression tests, using the split-Hopkinson pressure bar test device. The dynamic stress–strain relationships and the failure characteristics of mudstone samples under different impact loads were analyzed systematically. Considering the “rate effect” of the mudstone dynamic strength, the dynamic strength criterion of mudstone was proposed, and the dynamic damage constitutive model of mudstone was established, based on the statistical damage theory. In response to single-impact loads, with increasing impact pressure, the mudstone peak stress and strain gradually increased, and the peak stress and average strain rate increased nonlinearly. In response to cyclic-impact loads, with an increasing number of impacts, the mudstone peak stress first increased and then decreased, and the peak strain increased gradually. With increasing impact pressure, the number of impacts to the samples’ failure decreased gradually. By parameter identification and comparative analysis of the test results, the proposed dynamic damage constitutive model of mudstone was validated. The model can be used for stability analysis of roadway-surrounding rock under dynamic loads.  相似文献   

16.
In this study, an investigation of the shear behavior of full-scale reinforced concrete (RC) beams affected from alkali–silica reactivity damage is presented. A detailed finite element model (FEM) was developed and validated with data obtained from the experiments using several metrics, including a force–deformation curve, rebar strains, and crack maps and width. The validated FEM was used in a parametric study to investigate the potential impact of alkali–silica reactivity (ASR) degradation on the shear capacity of the beam. Degradations of concrete mechanical properties were correlated with ASR expansion using material test data and implemented in the FEM for different expansions. The finite element (FE) analysis provided a better understanding of the failure mechanism of ASR-affected RC beam and degradation in the capacity as a function of the ASR expansion. The parametric study using the FEM showed 6%, 19%, and 25% reduction in the shear capacity of the beam, respectively, affected from 0.2%, 0.4%, and 0.6% of ASR-induced expansion.  相似文献   

17.
Compared with normal strength concrete (NSC), ultra-high-performance steel fiber-reinforced concrete (UHPFRC) shows superior performance. The concrete damage plasticity (CDP) model in ABAQUS can predict the mechanical properties of UHPFRC components well after calibration. However, the simulation of the whole structure is seriously restricted by the computational capability. In this study, a novel multi-scale modeling strategy for UHPFRC structure was proposed, which used a calibrated CDP model. A novel combined multi-point constraint (CMPC) was established by the simultaneous equations of displacement coordination and energy balance in different degrees of freedom of interface nodes. The advantage is to eliminate the problem of the tangential over-constraint of displacement coordination equation at the interface and to avoid stress iteration of the energy balance equation in the plastic stage. The expressions of CMPC equations of typical multi-scale interface connection were derived. The multi-scale models of UHPFRC components under several load cases were established. The results show that the proposed strategy can well predict the strain distribution and damage distribution of UHPFRC while significantly reducing the number of model elements and improving the computational efficiency. This study provides an accurate and efficient finite element modeling strategy for the design and analysis of UHPFRC structures.  相似文献   

18.
Although basalt fiber-reinforced polymers (BFRPs) have been known for a few decades, new trends such as sustainability and environmental care have provoked intensified research on its structural applications. In construction, BFRPs, as internal reinforcement, have to compete with traditional steel reinforcement products. Because of their high resistance to aggressive environments, BFRPs have emerged as an attractive solution for the infrastructure in coastal zones. In this article, we discuss some aspects of BFRP applications such as flexural reinforcement of concrete beams. The mechanical performances of a BFRP-reinforced beam are illustrated by using a widely accepted model based on the classical beam theory. The elasticity modulus of the BFRP reinforcement is lower than that of structural steel. Therefore, to meet serviceability requirements (e.g., in terms of limitation on the mid-span deflection of a beam), BFRP could be pre-tensioned. The positive effect of pre-tensioning is outlined by finite element analysis. An original numerical procedure involves a constitutive relation for concrete based on damage mechanics. Experimental results previously reported in the literature provide the background for the numerical model procedures. The numerical procedure predicts the mechanical response of the concrete beam with BFRP reinforcement subjected to four-point bending in terms of load-deflection relationship and dominant failure mode.  相似文献   

19.
A combination of multiple nondestructive testing (NDT) methods speeds up the assessment of concrete and increases the precision. This is why the UIR-Scanner was developed at Warsaw University of Technology. The scanner uses an Impact-Echo (IE) method with a unique arrangement of multiple transducers. This paper presents the development of the IE module using numerical models validated with experimental testing. It was found that rectangular arrangement of four transducers with the impactor in the middle is optimal for quick scanning of area for faults and discontinuities, changing the method from punctual to volumetric. A numerical study of void detectability depending on its position with respect to the IE module is discussed as well. After confirmation of the findings of models using experimental tests, the module was implemented into the scanner.  相似文献   

20.
In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete’s compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号