首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
In order to reuse red mud and bauxite tailings mud (two typical aluminum industrial wastes) to reduce the occupation of land resources and environmental damage, these two wastes were combined to develop subgrade materials for the first time. With different combinations, the effects of the amounts of red mud, tailings mud, and cementitious materials on the strength of tested subgrade materials were investigated. The mechanism of strength growth was analyzed by a micro-test. The test results showed that the material strength of three combinations met the requirements when the unconfined compression strength (UCS) of all combinations increased with age. The UCS of the A1BC2 combination (the mass ratio of red mud and tailings mud was 2:1, the mass ratio of cement and quicklime was 1:1, and the mass ratio of waste and cementitious materials was 1:0.2) was the best, with the UCS being 3.03 MPa in 7 days. Microscopic imaging showed that specimens with high red mud contents had compact structures without cracks. The strength of these materials is mainly due to hydration reactions and pozzolanic reactions; the cementitious products generated by the reactions solidify Na+ and inhibit the release of OH, while the addition of tailings mud can reduce the content of Na2O in the material, which makes the environmental compatibility of the A3BC2 combination the best (the mass ratio of red mud and tailings mud was 1:2, the mass ratio of cement and quicklime was 1:1, and the mass ratio of waste and cementitious materials was 1:0.2). Its pH value was 8.75. This experiment verifies the feasibility of the combined application of red mud and tailings mud in subgrade materials. To this end, a feasible scheme for the simultaneous consumption of these two kinds of aluminum industrial wastes has been proposed.  相似文献   

2.
In order to explore the effect of the foaming agent type on the properties of foamed mixture lightweight soil mixed with bauxite tailings (FMLSB), low-density (437.5 kg/m3 and 670 kg/m3) and high-density (902.5 kg/m3 and 1170 kg/m3) FMLSB were prepared using protein-based and synthetic-based foaming agents (AF and SF, respectively). The foam stability, micro characteristics, compressive strength, fluidity, and volume of water absorption of the FMLSB were investigated. The results showed that the foam made from AF had better strength and stability compared to SF. The internal pore sizes of both AF- and SF-FMLSB at low density were large, but at high density the internal pore sizes and area porosity of AF-FMLSB were smaller than those of SF-FMLSB. In terms of compressive strength, the compressive strength of AF-FMLSB was improved by 17.5% to 43.2% compared to SF-FMLSB. At low density, the fluidity of AF- and SF-FMLSB is similar, while at high density the fluidity of AF-FMLSB is much higher than that of SF-FMLSB. In addition, the stable volume of water absorption of SF-FMLSB is smaller than that of AF-FMLSB at low density, and the corresponding water resistance is better, but the situation is reversed at high density.  相似文献   

3.
Red mud and iron tailings are representative solid wastes in China, which have caused serious environmental pollution and potential harmful risk to people. Based on the alkali characteristic of Bayer red mud and natural fine-grained feature of iron tailings, these two solid wastes were used as raw materials to prepare alkali-activated cementitious mortar (AACM). The microstructure of C-A-S-H gel, pore structure characteristics, environmental impact and economic potential of this AACM were investigated. The results show that C-A-S-H gel was mainly composed of SiQ3 structure in the 28-day cured AACM. The relative content of SiQ4 structure increased while that of SiQ2 structure decreased as the hydration time advanced from 7 to 28 days, resulting in the increase of relative bridge oxygen value by 11.02%. The pores in the AACM sample accounted for 6.73% of the total volume, and these pores were not connected. The pore distribution was relatively uniform, which supported the good development of mechanical strength for AACM. This research elucidates the formation mechanism of C-A-S-H gels in the Bayer red mud–iron tailings-based AACM. In addition, the lower embodied carbon and material cost demonstrate that the prepared AACM has great environmental benefit and certain economic potential.  相似文献   

4.
Bayer red mud (BRM) is a kind of solid waste with high hematite content, and its effective utilization is difficult due to the special physicochemical properties. In this work, Fe2O3 in BRM was reduced to Fe3O4 by biomass, and iron concentrate and high activity tailings were obtained after magnetic separation. The pozzolanic activity and hydration characteristics of the tailings were systematically studied. The results showed that the relatively stable polymerization structures of Si-O and Al-O in BRM are destroyed under the effect of biomass reduction at 650 °C, and some fracture bonds and activation points are formed in the structures. The aluminosilicate phases in the BRM were easy to transform into the active substances of Si and Al. The pozzolanic activity of tailings is greatly improved, and its pozzolanic activity index is 91%. High polymerization degree of gel and ettringite are formed since more active substances and alkali in the tailings promote the hydration reaction of cement-based cementitious materials, which made cementitious materials have dense matrix, good mechanical properties, and environmental performance. This work has realized the full quantitative utilization of BRM and provided a feasible way for the resource utilization of BRM.  相似文献   

5.
Sintering-free lightweight aggregates were prepared with high proportions of red mud and a binder material derived from whole solid wastes through rolling granulation at room temperature. The preparation process was optimized by changing the material matching and size parameters of the SFLAs. The physico-chemical performance, including the density, mechanical strength, water absorption, hydration products, heavy metal leaching, and microstructure were evaluated by jointly employing X-ray Fluorescence, X-ray Diffraction, and Inductively Coupled Plasma Optical Emission Spectrometry, Shadow Electron Microscope, etc. The results indicated that the red mud and waste-based binders were highly compatible in the granulation process, with up to 80% red mud being successfully added. The sintering-free lightweight aggregates products at the binder content of 30% and the size coverage of 10–16 mm exhibited a bulk density of 900–1000 kg·m−3, a 28 d cylinder compressive strength of 9.2–11.3 MPa, and water absorption of less than 10%. Owing to the formation of important hydration products, ettringite, the heavy metal leaching of the sintering-free lightweight aggregates was also proven to be environmentally acceptable. This work provides a promising pathway to prepare low-cost, high-strength, and green lightweight aggregates through the large-scale utilization of solid waste red mud.  相似文献   

6.
With increasing production of red mud, the environmental problems caused by it are increasingly serious, and thus the integrated treatment of red mud is imminent. This article provides an overview of the composition and the basic characteristics of red mud. The research progress of safe stockpiling and comprehensive utilization of red mud is summarized. The safe stockpiling of red mud can be divided into two aspects: the design and safe operation of the stocking yard. The comprehensive utilization of red mud can be further divided into three aspects: the effective recycling of components, resource utilization and application in the field of environmental protection. This paper points out that the main focus of previous studies on red mud stockpiling is cost reproduction and land tenure. The recovery of resources from red mud has a high value-added, but low level industrialization. The use of red mud as a building material and filler material is the most effective way to reduce the stockpiling of red mud. Red mud used for environmental remediation materials is a new hotspot and worth promoting for its simple processing and low cost.  相似文献   

7.
To study pore structure characteristics and the strength of red sandstone under freeze–thaw cycles, the saturated red sandstone was studied by the combination of freeze–thaw cycle test, high-pressure mercury injection test, uniaxial compression test and theoretical analysis, and research shows that: with the increase of freeze–thaw cycles, the pores of red sandstone continue to expand and extend, macropore volume and the total pore volume increases gradually, and the pore size distribution curves become more continuous. Porosity of samples after 10, 30, 70 and 100 freeze–thaw cycles is 1.14 times, 1.17 times, 1.28 times and 1.44 times of that of 0 cycle, and the uniaxial compressive strength of samples is 0.68 times, 0.53 times, 0.26 times and 0.17 times of that of 0 cycle, respectively. With the increase of freeze–thaw cycles, freeze–thaw damage continues to accumulate, the crack propagation direction changes from axial through-through failure mode to transverse and axial simultaneous failure mode. Taken the change of porosity as a parameter, through the regression analysis of the test data, the functional relationship between uniaxial compressive strength and the change of porosity in red sandstone is established. The research results will provide a theoretical basis for stability research of slopes of railway subgrade in cold region.  相似文献   

8.
The use of bulk solid-waste iron tailing (IOT), red mud (RM), and oyster shells to prepare cemented paste backfill (CPB) can effectively solve the ecological problems caused by industrial solid waste storage and improve the utilization rate of such materials. In this study, a new type of CPB was prepared by partially replacing slag with RM, with calcined oyster shell (COS) as the alkaline activator and IOT as aggregate. The central composite design (CCD) method was used to design experiments to predict the effects of the COS dosage, RM substitution rate, solid mass, and aggregate–binder ratio using 28-dUCS, slump, and the cost of CPB. In this way, a regression model was established. The quantum genetic algorithm (QGA) was used to optimize the regression model, and X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope (SEM), and energy dispersive spectroscopy (EDS) microscopic tests are performed on CPB samples of different ages with the optimal mix ratio. The results showed that COS is a highly active alkaline substance that provides an alkaline environment for polymerization reactions. In the alkaline medium, the hematite and goethite in RM and quartz in IOT gradually dissolved and participated in the process of polymerization. The main polymerization products of the CPB samples are calcium–silicate–hydrogel (C–S–H), calcium–aluminosilicate–hydrogel (C–A–S–H), and aluminosilicate crystals such as quartz, albite, and foshagite. These products are intertwined and filled in the internal pores of the CPB, enabling the pore contents to decrease and the interiors of the CPB samples to gradually connect into a whole. In this way, the compressive strength is increased.  相似文献   

9.
Silty soil has the characteristics of low natural moisture content and poor viscosity, and the strength and deformation required for foundation engineering can be satisfied by reinforcing and improving the silt. In order to study the reinforcement and improvement effects of polypropylene (PP) fiber and fly ash (FA) on cement–silty soil, an unconfined compressive strength (UCS) test, scanning electron microscope (SEM) test, and X-ray diffraction (XRD) analysis test were carried out. Cement (mixed amounts are 4%, 8%, 12%, and 16% of dry soil mass) was used as the basic modifier, and PP fiber (mixed amounts are 0%, 0.15%, 0.3%, and 0.45% of dry soil mass) compounded with FA (adding amounts of 0%, 5%, 10%, and 15% of dry soil mass) were used as an external admixture of cement–silty soil to study the mechanical properties, curing mechanism, and microstructure of the modified soil in different ages of 7 d, 14 d, 28 d, and 60 d. The test results show that with the increase in cement and curing age, the UCS of the modified soil increases, and with the increase in the PP fiber and FA, the UCS of the modified soil first increases and then decreases; there is an optimal content of FA and PP fiber, which are 10 and 0.15%, respectively. A large amount of C-S-H and AFt substances are produced inside the modified soil to cover the surface of soil particles or fill in the pores between soil particles, forming a tight spatial network structure and improving the mechanical properties of the cement–soil. The intensity of the diffraction peaks of the mineral components within the modified soils is more influenced by the cement and age, and the effect of FA is weaker. The stress–strain curve of the modified soil is divided into elastic stage, plastic deformation stage, and strain-softening stage, and the specimens in each stage have corresponding deformation characteristics. By analyzing the behavioral characteristics and curing improvement mechanism of modified soil from the duo perspective of macro-mechanical properties and microstructural composition, it can provide some basis for the engineering application of silty soil.  相似文献   

10.
To investigate the static and dynamic characteristics of rubber–sand composite soil (RS soil) reinforced with cement, a series of triaxial compression tests and resonant column tests was performed by considering the influence of rubber content (10%, 20%, 30%, 40%, and 50%), cement content (0, 1.5, 2.5, 3.5 and 4.0 g/100 mL), and effective consolidation confining pressure (50, 100, and 150 kPa). Compared with the RS soil, the addition of cement significantly improved the shear strength of a cement–rubber–sand composite soil (RCS soil), based on an undrained shear test. The increase in cement content not only makes the elastic modulus and cohesion of the RCS soil increase but also reduces the internal friction angle of the RCS soil. With the increase in rubber content, the failure of the RCS soil samples changes from strain-softening to hardening, and the prediction equation of the initial elastic modulus of the RCS soil is given herein when the recommended cement content is 3.5 g/100 mL. The effects of rubber content, cement content, and effective confining pressure on the dynamic shear modulus and damping ratio of the RCS soil were studied via the resonant column test. The test results show that the increase in rubber content slows down the modulus attenuation of the RCS soil, but increases its damping ratio. The test results also show that the increase in cement content makes the bonding force between particles greater so that the modulus attenuation of the RCS soil becomes slower and the damping ratio is reduced. At the same time, according to the change rule of the maximum dynamic shear modulus of the RCS soil with the rubber content, when the recommended cement content is 3.5 g/100 mL, an empirical formula and recommended value of the shear modulus Gmax of the RCS soil are proposed.  相似文献   

11.
Modifying the admixture of alkali-activated cementitious materials using components such as fly ash and fine sand may reduce CO2 emissions and conserve natural resources and energy. This study adopted strength testing, scanning electron microscopy, and mercury intrusion porosimetry to investigate the influence of different admixtures on the compressive strength and flexural strength of alkali slag cementing materials and the microstructure characteristics of hardened slurry under the action of load. The flexural strength of alkali slag cement slurry and mortar was reduced by replacing slag powder with fly ash. Content of fine sand less than 20% had little effect on the strength of alkali slag cement mortar; however, when the content of fine sand exceeded 30%, the strength decreased significantly. The hydration degree at 3 d was large, and the density of slurry increased with the extension of age. Increased fly ash or fine sand content decreased the density of the slurry, and increased fly ash resulted in a large number of unhydrated fly ash particles in the cementitious materials. Addition of fine sand resulted in a large number of microcracks in the slurry, which gradually decreased with the extension of hydration age.  相似文献   

12.
Expansive soil is prone to cracks under a drying–wetting cycle environment, which brings many disasters to road engineering. The main purpose of this study is use coal gangue powder to improve expansive soil, in order to reduce its cracks and further explore its micro-pore mechanism. The drying–wetting cycles test is carried out on the soil sample, and the crack parameters of the soil sample are obtained by Matlab and Image J software. The roughness and micro-pore characteristics of the soil samples are revealed by means of the Laser confocal 3D microscope and Mercury intrusion meter. The results show that coal gangue powder reduces the crack area ratio of expansive soil by 48.9%, and the crack initiation time is delayed by at least 60 min. Coal gangue powder can increase the internal roughness of expansive soil. The greater the roughness of the soil, the less cracks in the soil. After six drying–wetting cycles, the porosity and average pore diameter of the improved and expanded soil are reduced by 37% and 30%, respectively, as compared to the plain expansive soil. By analyzing the cumulative pore volume and cumulative pore density parameters of soil samples, it is found that the macro-cracks are caused by the continuous connection and fusion of micro-voids in soil. Coal gangue powder can significantly reduce the proportion of micro-voids, cumulative pore volume, and cumulative pore density in expansive soil, so as to reduce the macro-cracks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号