首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An energy-efficient eutectic hydrated salt phase change material based on sodium carbonate decahydrate and disodium hydrogen phosphate dodecahydrate (SD) was prepared. Then, SD was encapsulated into expanded graphite (EG) to produce form-stable composite phase change materials (SD/E), which indicated a positive effect on preventing the leakage of SD, decreasing the supercooling and improving the thermal conductivity. SD/E was further tested for thermal efficiency by simulating the indoor environment with a house-like model which was composed of SD/E and magnesium oxychloride cement. The results showed an excellent thermal insulation effect. This exciting porous composite phase shift material reveals possible architectural applications because of the attractive thermos-physical properties of SD/E.  相似文献   

2.
Rising energy and raw material prices, dwindling resources, increased recycling, and the need for sustainable management have led to growth in the smart materials sector. In recent years, the importance and diversity of bio-based adhesives for industrial applications has grown steadily. This article focuses on the production and characterization of insulation panels consisting of peat moss and two bio-based adhesives. The panels were pressed with tannin and animal-based resins and compared to panels bonded with urea formaldehyde. The physical–mechanical properties, namely, thermal conductivity (TC), water vapor diffusion resistance, modulus of rupture (MOR), modulus of elasticity (MOE), internal bond (IB), compression resistance (CR), water absorption (WA) and thickness swelling (TS) were measured and analyzed. The results show that the insulation effectiveness and mechanical stability of moss panels bound with tannin and animal glue are comparable to standard adhesives used in the composite industry.  相似文献   

3.
An effective model to calculate thermal conductivity of polymer composites using core-shell fillers is presented, wherein a core material of filler grains is covered by a layer of a high-thermal-conductivity (HTC) material. Such fillers can provide a significant increase of the composite thermal conductivity by an addition of a small amount of the HTC material. The model employs the Lewis-Nielsen formula describing filled systems. The effective thermal conductivity of the core-shell filler grains is calculated using the Russel model for porous materials. Modelling results are compared with recent measurements made on composites filled with cellulose microbeads coated with hexagonal boron nitride (h-BN) platelets and good agreement is demonstrated. Comparison with measurements made on epoxy composites, using silver-coated glass spheres as a filler, is also provided. It is demonstrated how the modelling procedure can improve understanding of properties of materials and structures used and mechanisms of thermal conduction within the composite.  相似文献   

4.
Fused silica is a ceramic with promising applications as a filler in composites due to its near-zero thermal expansion. Substitution of heavy cast iron with Al-based light alloys is of utmost importance for the automotive industry. However, the high thermal expansion of Al alloys is an obstacle to their use in some applications. As such, ceramic fillers are natural candidates for tuning thermal expansion of Al-based matrices, due to their inherently moderate or low thermal expansion. Alumix-231 is a new promising alloy, and fused silica has never been used before to lower its thermal expansion. Composites with the addition of 5 to 20 vol.% of fused silica were developed through powder metallurgy, and the best results in terms of reduction of thermal expansion were reached after liquid phase sintering at 565 °C. Coefficients of thermal expansion as low as 13.70 and 12.73 × 10−6 °C−1 (between 25 and 400 °C) were reached for the addition of 15 and 20 vol.% of fused silica, a reduction of 29.9% and 34.8%, respectively, in comparison to neat Alumix-231. In addition, the density and hardness of these composites were not significantly affected, since they suffered only a small decrease, no higher than 6% and 5%, respectively. As such, the obtained results showed that Alumix-231/fused silica composites are promising materials for automotive applications.  相似文献   

5.
The remarkable tunability of 2D carbon structures combined with their non-toxicity renders them interesting candidates for thermoelectric applications. Despite some limitations related to their high thermal conductivity and low Seebeck coefficients, several other unique properties of the graphene-like structures could out-weight these weaknesses in some applications. In this study, hybrid structures of alumina ceramics and graphene encapsulated alumina nanofibers are processed by spark plasma sintering to exploit advantages of thermoelectric properties of graphene and high stiffness of alumina. The paper focuses on thermal and electronic transport properties of the systems with varying content of nanofillers (1–25 wt.%) and demonstrates an increase of the Seebeck coefficient and a reduction of the thermal conductivity with an increase in filler content. As a result, the highest thermoelectric figure of merit is achieved in a sample with 25 wt.% of the fillers corresponding to ~3 wt.% of graphene content. The graphene encapsulated nanofibrous fillers, thus, show promising potential for thermoelectric material designs by tuning their properties via carrier density modification and Fermi engineering through doping.  相似文献   

6.
Electroconductive cement-based composites are modern materials that are commonly used in many industries such as the construction industry, among others. For example, these materials can be used as sensors for monitoring changes in construction, grounding suspension, and resistance heating materials, etc. The aim of the research presented in this article is to monitor the impact of carbon particle character on cement-based electroconductive composites. Four types of graphite were analyzed. Natural and synthetic types of graphite, with different particle sizes and one with improved electrically conductive properties, were tested. For the analysis of the electrical conductivity of powder raw materials, a new methodology was developed based on the experience of working with these materials. Various types of graphite were tested in pure cement paste (80% cement, 20% graphite) as well as in a composite matrix, which consisted of cement (16.8%), a mixture of silica sand 0–4 mm (56.4%), graphite filler (20.0%) ground limestone (6.7%) and super plasticizers (0.1%). The resistivity and physical-mechanical properties of the composite material were determined. Furthermore, the resistivity of the test samples was measured with a gradual decrease in saturation. It may be concluded that graphite fillers featuring very fine particles and high specific surface are most suitable and most effective for creating electrically conductive silicate composites. The amount, shape and, in particular, the fineness of the graphite filler particles thus creates suitable conditions for the creation of an integrated internal electricity-conductive network. In the case of the use of a coarse type of graphite or purely non-conductive fillers, the presence of an electrolyte, for example, in the form of water, is necessary to achieve a low resistivity. Samples with fine types of graphite fillers achieved stable resistivity values when the sample humidity changed. The addition of graphite fillers caused a large decrease in the strength of the samples.  相似文献   

7.
In this paper, native cellulose I was subjected to alkaline treatment. As a result, cellulose I was transformed to cellulose II and some nanometric particles were formed. Both polymorphic forms of cellulose were modified with poly(ethylene glycol) (PEG) and then used as fillers for polyurethane. Composites were prepared in a one-step process. Cellulosic fillers were characterized in terms of their chemical (Fourier transformation infrared spectroscopy) and supermolecular structure (X-ray diffraction), as well as their particle size. Investigation of composite polyurethane included measurements of density, characteristic processing times of foam formation, compression strength, dimensional stability, water absorption, and thermal conductivity. Much focus was put on the application aspect of the produced insulation polyurethane foams. It was shown that modification of cellulosic filler with poly(ethylene glycol) has a positive influence on formation of polyurethane composites—if modified filler was used, the values of compression strength and density increased, while water sorption and thermal conductivity decreased. Moreover, it was proven that the introduction of cellulosic fillers into the polyurethane matrix does not deteriorate the strength or thermal properties of the foams, and that composites with such fillers have good application potential.  相似文献   

8.
Polymer composites containing conductive fillers that utilize the piezoresistive effect can be employed in flexible pressure sensors. Depending on the filler used, different characteristics of a pressure sensor such as repeatability, sensitivity, and hysteresis can be determined. To confirm the variation of the pressure sensing tendency in accordance with the dimensions of the filler, carbon black (CB) and carbon nanotubes (CNTs) were used as representative 0-dimension and 1-dimension conductive fillers, respectively. The piezoresistive effect was exploited to analyze the process of resistance change according to pressure using CB/PDMS (polydimethylsiloxane) and CNT/PDMS composites. The electrical characteristics observed for each filler were confirmed to be in accordance with its content. The pressure sensitivity of each composite was optimized, and the pressure-sensing mechanism that explains the difference in sensitivity is presented. Through repeated compression experiments, the hysteresis and repeatability of the pressure-sensing properties were examined.  相似文献   

9.
Polyurethane (PUR) composites were modified with 2 wt.% of lavender fillers functionalized with kaolinite (K) and hydroxyapatite (HA). The impact of lavender fillers on selected properties of PUR composites, such as rheological properties (dynamic viscosity, foaming behavior), mechanical properties (compressive strength, flexural strength, impact strength), insulation properties (thermal conductivity), thermal characteristic (temperature of thermal decomposition stages), flame retardancy (e.g., ignition time, limiting oxygen index, heat peak release) and performance properties (water uptake, contact angle) was investigated. Among all modified types of PUR composites, the greatest improvement was observed for PUR composites filled with lavender fillers functionalized with kaolinite and hydroxyapatite. For example, on the addition of functionalized lavender fillers, the compressive strength was enhanced by ~16–18%, flexural strength by ~9–12%, and impact strength by ~7%. Due to the functionalization of lavender filler with thermally stable flame retardant compounds, such modified PUR composites were characterized by higher temperatures of thermal decomposition. Most importantly, PUR composites filled with flame retardant compounds exhibited improved flame resistance characteristics—in both cases, the value of peak heat release was reduced by ~50%, while the value of total smoke release was reduced by ~30%.  相似文献   

10.
Composite materials are emerging as a vital entity for the sustainable development of both humans and the environment. Polylactic acid (PLA) has been recognized as a potential polymer candidate with attractive characteristics for applications in both the engineering and medical sectors. Hence, the present article throws lights on the essential physical and mechanical properties of PLA that can be beneficial for the development of composites, biocomposites, films, porous gels, and so on. The article discusses various processes that can be utilized in the fabrication of PLA-based composites. In a later section, we have a detailed discourse on the various composites and nanocomposites-based PLA along with the properties’ comparisons, discussing our investigation on the effects of various fibers, fillers, and nanofillers on the mechanical, thermal, and wear properties of PLA. Lastly, the various applications in which PLA is used extensively are discussed in detail.  相似文献   

11.
The aim of this paper is to analyze the influence of hybrid fiber reinforcement on the properties of a lightweight fly ash-based geopolymer. The matrix includes the ratio of fly ash and microspheres at 1:1. Carbon and steel fibers have been chosen due to their high mechanical properties as reinforcement. Short steel fibers (SFs) and/or carbon fibers (CFs) were used as reinforcement in the following proportions: 2.0% wt. CFs, 1.5% wt. CFs and 0.5% wt. SFs, 1.0% wt. CFs and 1.0% wt. SFs, 0.5% wt. CFs and 1.5% wt. SFs and 2.0% wt. SFs. Hybrid reinforcement of geopolymer composites was used to obtain optimal strength properties, i.e., compressive strength due to steel fiber and bending strength due to carbon fibers. Additionally, reference samples consisting of the geopolymer matrix material itself. After the production of geopolymer composites, their density was examined, and the structure (using scanning electron microscopy) and mechanical properties (i.e., bending and compressive strength) in relation to the type and amount of reinforcement. In addition, to determine the thermal insulation properties of the geopolymer matrix, its thermal conductivity coefficient was determined. The results show that the addition of fiber improved compressive and bending strength. The best compressive strength is obtained for a steel fiber-reinforced composite (2.0% wt.). The best bending strength is obtained for the hybrid reinforced composite: 1.5% wt. CFs and 0.5% wt. SFs. The geopolymer composite is characterized by low thermal conductivity (0.18–0.22 W/m ∙ K) at low density (0.89–0.93 g/cm3).  相似文献   

12.
Composite materials are still finding new applications that require the modification of various properties and are characterized by the summary impact on selected operational features. Due to the operating conditions of electrical equipment enclosures in potentially explosive atmospheres, the surface resistivity ensuring anti-electrostatic properties, i.e., below 109 Ω and resistance to the flame while maintaining appropriate operational enclosure properties is very important. It is also crucial to dissipate heat while reducing weight. Currently metal or cast-iron enclosures are used for various types of electrical devices. As part of the work, a material that can be used for a composite matrix for the enclosure was developed. The study aimed to assess the influence of selected fillers and chemical modifications on the thermal conductivity coefficient, resistivity, and strength properties of matrix materials for the production of electrical device enclosures used in the mining industry. Selected resins were modified with graphite, copper, and carbon black. Tests were carried out on the coefficient of thermal conductivity, surface resistivity, flammability, and flexural strength. At the final stage of the work, a multi-criteria analysis was carried out, which allowed the selection of a composite that meets the assumed characteristics to the highest degree. It is a vinyl ester composite modified with 15 wt.% MG394 and 5 wt.% MG1596 graphite (W2). The thermal conductivity of composite W2 is 5.64 W/mK, the surface resistivity is 5.2 × 103 Ω, the flexural strength is 50.61 MPa, and the flammability class is V0.  相似文献   

13.
The thermal properties of clothing products are influenced by external environmental parameters, such as temperature, humidity, air flow and parameters related to the user’s body, which mainly include temperature and humidity. Depending on the type of raw material, its thickness and the material manufacturing technique, clothing products are characterised by certain insulating properties to protect the human body from external factors. A multilayer system made of different material groups can change the thermal insulating capacity significantly, which cannot be determined by the testing of individual layers used in the production. In order to determine the influence of weather conditions on thermal insulation and air permeability, tests were carried out for two types of sleeping bags (summer and autumn) produced by the same manufacturer, differing in insulation thickness. Simulations were carried out using SolidWorks and verified using a Newton thermal mannequin. During tests, both the temperature (range from −20 °C to 20 °C) and humidity values were changed (range 40–80% humidity). For sleeping bags, the effective thermal insulation decreases along with the increase of temperature and decrease of humidity. It can be observed, for the autumn sleeping bags, that for a temperature of 20 °C and humidity of 60%, the thermal insulation is 1.063 m2·K·W−1, while for a temperature of −20 °C and humidity of 60% thermal insulation increases significantly and amounts to 1.111 m2·K·W−1. A similar situation occurs for the effective thermal insulation of a summer sleeping bag (20 °C/60% thermal insulation is 0.794 m2·K·W−1, while for −20 °C/60%—0.851 m2·K·W−1. During the tests, the humidity and temperature between the layers of the clothing system were also controlled, in order to learn more about the influence of these parameters on the thermal insulation properties of the sleeping bags.  相似文献   

14.
Reinforced aluminum composites are the basic class of materials for aviation and transport industries. The machinability of these composites is still an issue due to the presence of hard fillers. The current research is aimed to investigate the drilling topographies of AA7075/TiB2 composites. The samples were prepared with 0, 3, 6, 9 and 12 wt.% of fillers and experiments were conducted by varying the cutting speed, feed, depth of cut and tool nose radius. The machining forces and surface topographies, the structure of the cutting tool and chip patterns were examined. The maximum cutting force was recorded upon increase in cutting speed because of thermal softening, loss of strength discontinuity and reduction of the built-up-edge. The increased plastic deformation with higher cutting speed resulted in the excess metal chip. In addition, the increase in cutting speed improved the surface roughness due to decrease in material movement. The cutting force was decreased upon high loading of TiB2 due to the deterioration of chips caused by fillers. Further introduction of TiB2 particles above 12 wt.% weakened the composite; however, due to the impact of the microcutting action of the fillers, the surface roughness was improved.  相似文献   

15.
Magnesium matrix composites are considered a desired solution for lightweight applications. As an attractive thermal management material, diamond particle-reinforced Mg matrix (Mg/diamond) composites generally exhibit thermal conductivities lower than expected. To exploit the potential of heat conduction, a combination of Cr coating on diamond particles and squeeze casting was used to prepare Mg/diamond (Cr) composites. The thickness of the Cr coating under different coating processes (950 °C/30 min, 950 °C/60 min, 950 °C/90 min, 1000 °C/30 min, and 1050 °C/30 min) was measured by FIB-SEM to be 1.09–2.95 μm. The thermal conductivity (TC) of the Mg/diamond composites firstly increased and then decreased, while the coefficient of thermal expansion (CTE) of Mg/diamond (Cr) composite firstly decreased and then increased with the increase in Cr coating thickness. The composite exhibited the maximum TC of 202.42 W/(m·K) with a 1.20 μm Cr coating layer, while a minimum CTE of 5.82 × 10−6/K was recorded with a coating thickness of 2.50 μm. The results clearly manifest the effect of Cr layer thickness on the TC and CTE of Mg/diamond composites.  相似文献   

16.
Silicone rubber is a promising insulating material that has been performing well for different insulating and dielectric applications. However, in outdoor applications, environmental stresses cause structural and surface degradations that diminish its insulating properties. This effect of degradation can be reduced with the addition of a suitable filler to the polymer chains. For the investigation of structural changes and hydrophobicity four different systems were fabricated, including neat silicone rubber, a micro composite (with 15% micro-silica filler), and nanocomposites (with 2.5% and 5% nanosilica filler) by subjecting them to various hydrothermal conditions. In general, remarkable results were obtained by the addition of fillers. However, nanocomposites showed the best resistance against the applied stresses. In comparison to neat silicone rubber, the stability of the structure and hydrophobic behavior was better for micro-silica, which was further enhanced in the case of nanocomposites. The inclusion of 5% nanosilica showed the best results before and after applying aging conditions.  相似文献   

17.
Due to growing restrictions on the use of halogenated flame retardant compounds, there is great research interest in the development of fillers that do not emit toxic compounds during thermal decomposition. Polymeric composite materials with reduced flammability are increasingly in demand. Here, we demonstrate that unmodified graphene and carbon nanotubes as well as basalt fibers or flakes can act as effective flame retardants in polymer composites. We also investigate the effects of mixtures of these carbon and mineral fillers on the thermal, mechanical, and rheological properties of EPDM rubber composites. The thermal properties of the EPDM vulcanizates were analyzed using the thermogravimetric method. Flammability was determined by pyrolysis combustion flow calorimetry (PCFC) and cone calorimetry.  相似文献   

18.
Environmental contamination, extensive exploitation of fuel sources and accessibility of natural renewable resources represent the premises for the development of composite biomaterials. These materials have controlled properties, being obtained through processes operated in mild conditions with low costs, and contributing to the valorization of byproducts from agriculture and industry fields. A novel board composite including lignocelullosic substrate as wheat straws, fungal mycelium and polypropylene embedded with bacterial spores was developed and investigated in the present study. The bacterial spores embedded in polymer were found to be viable even after heat exposure, helping to increase the compatibility of polymer with hydrophilic microorganisms. Fungal based biopolymer composite was obtained after cultivation of Ganoderma lucidum macromycetes on a mixture including wheat straws and polypropylene embedded with spores from Bacillus amyloliquefaciens. Scanning electron microscopy (SEM) and light microscopy images showed the fungal mycelium covering the substrates with a dense network of filaments. The resulted biomaterial is safe, inert, renewable, natural, biodegradable and it can be molded in the desired shape. The fungal biocomposite presented similar compressive strength and improved thermal insulation capacity compared to polystyrene with high potential to be used as thermal insulation material for applications in construction sector.  相似文献   

19.
The article presents results of experimental studies on mechanical properties of the polymer-composite material used in manufacturing firefighting helmets. Conducted studies included static and impact strength tests, as well as a shock absorption test of glass fiber-reinforced polyamide 66 (PA66) samples and firefighting helmets. Samples were subject to the impact of thermal shocks before or during being placed under a mechanical load. A significant influence of thermal shocks on mechanical properties of glass fiber-reinforced PA66 was shown. The decrease in strength and elastic properties after cyclic heat shocks ranged from a few to several dozen percent. The average bending strength and modulus during the 170 degree Celsius shock dropped to several dozen percent from the room temperature strength. Under these thermal conditions, the impact strength was lost, and the lateral deflection of the helmet shells increased by approximately 300%. Moreover, while forcing a thermal shock occurring during the heat load, it was noticed that the character of a composite damage changes from the elasto-brittle type into the elasto-plastic one. It was also proved that changes in mechanical and elastic properties of the material used in a helmet shell can affect the protective abilities of a helmet.  相似文献   

20.
The objective of this study is to determine selected properties of thin-walled rotationally moulded composite parts. Linear low-density polyethylene (LLDPE) filled with quartz flour (QF, 5–35 wt.%) was tested. High-density polyethylene functionalized with maleic anhydride (HDPE-g-MA) was used as a compatibility agent. Polymer samples were prepared with and without the compatibility agent (2 wt.% in relation to the QF content). The study investigated the effect of QF content and HDPE-g-MA on the properties of rotationally moulded parts, including their melt flow rate (MFR), thermal properties (DSC and TGA), thermomechanical properties (VST), mechanical and physical properties, microstructure, and geometry. Results showed that the properties of LLDPE/QF with HDPE-g-MA were significantly higher than those of LLDPE/QF without HDPE-g-MA. It was also found that the compatibility agent improved the composite material’s thermal stability. This improvement was attributed to interactions occurring between the composite material components due to the use of the compatibility agent. In addition to that, microscopic examination demonstrated that the use of HDPE-g-MA improved miscibility of the composite material components. The composite samples containing HDPE-g-MA had better surface geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号