首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Titanium alloys and composites are of great interest for a wide variety of industrial applications; however, most of them suffer from poor tribological performance, especially at elevated temperatures. In this study, spark plasma sintering was utilized to produce a fully dense and thermodynamically stable TiB–Ti composite with a high content of ceramic phase (88 wt.%) from self-propagating high temperature synthesized (SHS) powders of commercially available Ti and B. Microstructural examination, thermodynamic assessments, and XRD analysis revealed the in situ formation of titanium borides with a relatively broad grain size distribution and elongated shapes of different aspect ratio. The composite exhibits a considerable hardness of 1550 HV30 combined with a good indentation fracture toughness of 8.2 MPa·m1/2. Dry sliding wear tests were performed at room and elevated temperature (800 °C) under 5 and 20 N sliding loads with the sliding speed of 0.1 m·s−1 and the sliding distance of 1000 m. A considerable decline in the coefficient of friction and wear rate was demonstrated at elevated temperature sliding. Apart from the protective nature of generated tribo-oxide layer, the development of lubricious boric acid on the surface of the composite was wholly responsible for this phenomenon. A high load bearing capacity of tribo-layer was demonstrated at 800 °C test.  相似文献   

2.
The aim of the present study is to investigate the role of Ti on corrosion and the wear properties of Mg-5Sn-xTi (x = 0, 0.15, 0.75, 1.5 wt.%) alloys. The samples were fabricated by conventional casting followed by hot extrusion, and the studies were examined by means of a pin-on-disc tribometer at various loads of 6, 10, and 20 N with constant sliding velocities of 0.04 m/s at ambient temperature. The corrosion performance, using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS), was studied in a basic solution containing 3.5 wt.% NaCl. The observation indicated a drop in the wear rate with an increase in Ti, while the average coefficient of friction was raised in higher Ti contents compared to the base material. The sample with 0.75 wt.% Ti exhibited superior wear properties at 6 and 10 N of normal force, while the sample with 0.15 wt.% Ti presented better wear resistance for 20 N. Electrochemical test observations demonstrated that the Ti deteriorated the corrosion features of the Mg-5Sn alloy, owing to the galvanic effects of Ti. The Mg-5Sn alloy exhibited excellent corrosion behavior (corrosion potential (Ecorr) = −1.45V and current density (Icorr) = 43.92 A/cm2). The results indicated the significant role of Ti content in modulating wear and corrosion resistance of the Mg-5Sn alloy.  相似文献   

3.
The microstructural and wear properties of laser-cladding WC/Ni-based layer on Al–Si alloy were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and wear-testing. The results show that, compared with the original specimen, the microhardness and wear resistance of the cladding layer on an Al–Si alloy were remarkably improved, wherein the microhardness of the layer achieved 1100 HV and the average friction coefficient of the layer was barely 0.14. The mainly contributor to such significant improvement was the generation of a WC/Ni-composite layer of Al–Si alloy during laser cladding. Two types of carbides, identified as M7C3 and M23C6, were found in the layer. The wear rate of the layer first increased and then decreased with the increase in load; when the load was 20 N, 60 N and 80 N, the wear rate of layer was1.89 × 10−3 mm3·m−1, 3.73 × 10−3 mm3·m−1 and 2.63 × 10−3 mm3·m−1, respectively, and the average friction coefficient (0.14) was the smallest when the load was 60 N.  相似文献   

4.
This work reports on the spark plasma sintering (SPS) of self-propagating high-temperature-synthesis (SHS)-derived Ni-W and Ni-W-2wt%hBN (4:1 molar ratio of metals) powders. The synthesis was carried out from a mixture of NiO and WO3 using Mg + C combined reducers through a thermo-kinetic coupling approach. Experiments performed in the thermodynamically optimal area demonstrated the high sensitivity of combustion parameters and product phase composition to the amount of reducers and hBN powder. The powder precursors with and without the addition of hBN were consolidated using SPS at a temperature and pressure of 1300 °C and 50 MPa, respectively, followed by a thorough phase and microstructural characterization of the obtained specimens. SHS-derived powders comprised the nano-sized agglomerates and were characterized by a high sinterability. The specimens of >95% density were subjected to ball-on-plate dry sliding wear tests at a sliding speed of 0.1 ms−1 and a distance of 1000 m utilizing an alumina ball of 10 mm in diameter under a 15 N normal load. The tests were performed at a temperature of 800 °C. A significant improvement in wear behavior was demonstrated for SHS-processed composites in comparison with their counterparts produced via conventional high-energy ball milling technique owing to the phenomena of ‘micro-polishing’, cyclic ‘self-healing’ and fatigue. However, the decisive effect of hBN addition in imparting lubrication during an HT wear test was not confirmed.  相似文献   

5.
In this study, the wear behavior of a heat-treatable Al-7Si-0.5Mg-0.5Cu alloy fabricated by selective laser melting was investigated systematically. Compared with the commercial homogenized AA2024 alloy, the fine secondary phase of the SLM Al-Cu-Mg-Si alloy leads to a low specific wear rate (1.8 ± 0.11 × 10−4 mm3(Nm)−1) and a low average coefficient of friction (0.40 ± 0.01). After the T6 heat treatment, the SLM Al-Cu-Mg-Si alloy exhibits a lower specific wear rate (1.48 ± 0.02 × 10−4 mm3(Nm)−1), but a similar average coefficient of friction (0.34 ± 0.01) as the heat-treated AA2024 alloy. Altogether, the SLM Al-3.5Cu-1.5Mg-1Si alloy is suitable for the achievement of not only superior mechanical performance, but also improved tribological properties.  相似文献   

6.
This article concerns the tribological properties of three selected polymer materials: polyamide PA6, polyethylene PE-HD and polyetheretherketone composite PEEK/BG during sliding against aluminium alloy EN AW-2017A in the presence of hydraulic oil HLP 68. The tests were carried out under contact pressure p of 3.5–11 MPa at ambient temperature T ranging from −20 °C to +20 °C. The dependence of kinetic friction coefficient μk on the two parameters was determined through tribological tests carried out using a pin-on-disc tribometer. A five-level central composite rotatable design (CCRD) was adopted for the experiment. All the test results were statistically analysed. The microhardness of the surface of the polymeric material was measured before and after the friction process. The surface was also examined under SEM. Temperature and contact pressure have been found to have a significant effect on the tribological properties of the tested sliding pairs. Relative to the applied friction conditions, the surfaces after friction showed rather heavy signs of wear.  相似文献   

7.
The ceramic–carbon refractory lining of an oxygen converter is subjected to variable thermochemical stresses, causing a progressive loss of material over time, which is expressed in a decreasing residual thickness of the lining. The forecasting method using Bayesian statistics has become a valuable skill in steel production planning and is one of the main conditions constituting the appropriate organization of steel and refractories production. This paper presents examples of Bayesian modelling of the unit wear rate value of the refractory materials for the zone with the highest wear in the refractory lining of a converter. From the experience gained during long-term operation of a steel-producing oxygen converter, it was found that the value of the unit wear rate of the refractory material in the slag spout zone of the steel-producing oxygen converter is subjected to an a posteriori normal distribution, with the following parameters: mean value µ = 401.23 µ heat−1, standard deviation σ = 13.74 µm heat−1. The forecasted mean value of the unit wear rate of the MC95/10 refractories lined in the slag spout zone of the oxygen converter used for steel production, and which operates in intensive exploitation conditions, was equal to µ = 420 µm heat−1.  相似文献   

8.
Objectives: The aim of the present work was to comparatively investigate the generation and characteristics of fretting and sliding wear debris produced by CuNiAl against 42CrMo4. Methods: Tribological tests were conducted employing a self-developed tribometer. Most experimental conditions were set the same except for the amplitudes and number of cycles. Morphological, chemical, microstructural and dimensional features of the worn area and debris were investigated using optical microscope (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) and a laser particle sizer. Outcomes: Not only wear scar profiles but also the wear debris color, distribution and generated amount under fretting and sliding wear modes were quite different, which can be attributed to the significant difference in wear mechanisms. Particle size analysis indicates that the fretting debris has a smaller size distribution range; the biggest detected fretting and sliding wear debris sizes were 141 μm and 355 μm, respectively. Both fretting and sliding debris are mainly composed of copper and its oxides, but the former shows a higher oxidation degree.  相似文献   

9.
In this study, aluminum alloy (Al7075) composites with a 4% weight fraction of tungsten carbide (WC) were manufactured using a stir casting process and the developed composites were subjected to various ageing temperatures. An attempt has been made to predict the age-hardening temperature with the enhanced mechanical and wear properties of Al7075-WC. The result shows that the composite specimen aged at 250 °C offered maximum tensile strength and the Brinell hardness number was increased by 37.1% and 50.5%, respectively; the maximum impact energy was observed to be 92.2% for the 450 °C aged composites, compared to the non-aged Al7075-WC composites. The strength properties of the Al7075-WC composite decreased to 30.86%, 4.7%, and 24.9% when the composite specimens aged at 350 °C. The mechanical properties of the Al7075-WC composite were increased at the age-hardening temperatures from 150 °C to 250 °C and decreased from 250 °C to 350 °C. The wear testing pin-on-disc setup utilized to determine the wear characteristics of the prepared MMC with wear parameters of load and sliding distance and the wear resistance of the composite specimens increased due to ageing. The fractography analysis of the composite samples carried out by scanning electron microscope (SEM) images revealed that the fracture of the composite during the tensile test is a mixture of ductile and brittle modes.  相似文献   

10.
Carbide coatings are frequently used to improve the wear resistance of industrial components in various wear environments. In this research, aiming at the service characteristics of easy wear and short service life of ball mill liners, WC–10Cr3C2–12Ni coatings were prepared by supersonic flame spraying technology (HVOF). The reciprocating sliding tests were conducted under four different WC particle size conditions, and the differences in the tribological behavior of the coatings and three–body abrasive wear mechanism were obtained. The findings reveal that the average nanohardness of the WC–Cr3C2–Ni coating is nearly five times greater than that of the steel substance. The COF of tribo-pairs decreases and then increases as the particle size increases. In the case of no particles, the surface of the coating is slightly worn, with fatigue and oxidative wear being the primary wear mechanisms. Small particles (1.5 μm and 4 μm) are crushed and coated on the coating surface, in which the extremely fine particles are plasticized to form friction layers that have a protective effect on the coatings. The protective effect of the particles disappears as the particle size increases and is replaced by a powerful chiseling effect on the coatings, resulting in serious material loss. The particle size has a direct relationship with coating wear.  相似文献   

11.
This work evaluates the dry sliding behavior of anodic aluminum oxides (AAO) formed during one traditional hard anodizing treatment (HA) and two golden hard anodizing treatments (named G and GP, respectively) on a EN AW-6060 aluminum alloy. Three different thicknesses of AAO layers were selected: 25, 50, and 100 μm. Prior to wear tests, microstructure and mechanical properties were determined by scanning electron microscopy (VPSEM/EDS), X-ray diffractometry, diffuse reflectance infrared Fourier transform (DRIFT-FTIR) spectroscopy, roughness, microhardness, and scratch tests. Wear tests were carried out by a pin-on-disc tribometer using a steel disc as the counterpart material. The friction coefficient was provided by the equipment. Anodized pins were weighed before and after tests to assess the wear rate. Worn surfaces were analyzed by VPSEM/EDS and DRITF-FTIR. Based on the results, the GP-treated surfaces with a thickness of 50 μm exhibit the lowest friction coefficients and wear rates. In any case, a tribofilm is observed on the wear tracks. During sliding, its detachment leads to delamination of the underlying anodic aluminum oxides and to abrasion of the aluminum substrate. Finally, the best tribological performance of G- and GP-treated surfaces may be related to the existence of a thin Ag-rich film at the coating/aluminum substrate interfaces.  相似文献   

12.
Sliding wear performance of thermal spray WC-based coatings has been widely studied. However, there is no systematic investigation on the influence of test conditions on wear behaviour of these coatings. In order to have a good understanding of the effect of test parameters on sliding wear test performance of HVAF-sprayed WC–CoCr coatings, ball-on-disc tests were conducted under varying test conditions, including different angular velocities, loads and sliding distances. Under normal load of 20 N and sliding distance of 5 km (used as ‘reference’ conditions), it was shown that, despite changes in angular velocity (from 1333 rpm up to 2400 rpm), specific wear rate values experienced no major variation. No major change was observed in specific wear rate values even upon increasing the load from 20 N to 40 N and sliding distance from 5 km to 10 km, and no significant change was noted in the prevailing wear mechanism, either. Results suggest that no dramatic changes in applicable wear regime occur over the window of test parameters investigated. Consequently, the findings of this study inspire confidence in utilizing test conditions within the above range to rank different WC-based coatings.  相似文献   

13.
Surface roughness parameters are an important factor affecting surface wear resistance, but the relevance between the wear resistance and the surface roughness parameters has not been well studied. This paper based on the finite element simulation technology, through the grey incidence analysis (GIA) method to quantitatively study the relevance between the wear amount of per unit sliding distance (ΔVs) and the surface texture roughness parameters under dry friction conditions of the different surface topography. A zeroth order six-variables grey model, GM(0,6), for prediction the wear characteristic parameter ΔVs was established, and the experiment results verified that the prediction model was accurate and reasonable.  相似文献   

14.
In the present study, two different cermet coatings, WC–CrC–Ni and Cr3C2–NiCr, manufactured by the high-velocity oxy-fuel (HVOF) method were studied. They are labeled as follows: WC–CrC–Ni coating—WC and Cr3C2–NiCr coating—CrC. These coatings were deposited onto a magnesium alloy (AZ31) substrate. The goal of the study was to compare these two types of cermet coating, which were investigated in terms of microstructure features and selected mechanical properties, such as hardness, instrumented indentation, fracture toughness, and wear resistance. The results reveal that the WC content influenced the hardness and Young’s modulus. The most noticeable effect of WC addition was observed for the wear resistance. WC coatings had a wear intensity value that was almost two times lower, equal to 6.5·10−6 mm3/N·m, whereas for CrC ones it was equal to 12.6·10−6 mm3/N·m. On the other hand, the WC coating exhibited a lower value of fracture toughness.  相似文献   

15.
Hybrid aluminium metal matrix composites have the potential to replace single reinforced aluminium metal matrix composites due to improved properties. Moreover, tribological performance is critical for these composites, as they have extensive application areas, such as the automotive, aerospace, marine and defence industries. The present work aims to establish the tribological characteristics of Al7068/Si3N4/BN hybrid metal matrix composites prepared by stir casting route and studied using a pin-on-disc apparatus under dry sliding conditions. The hybrid composite samples were prepared at various weight percentages (0, 5, 10) of Si3N4 and BN particles. To investigate the tribological performance of the prepared composites, the wear experiments were conducted by varying the load (20, 40 and 60 N), sliding velocity (1.5, 2.5 and 3.5 m/s) and sliding distance (500, 1000 and 1500 m). Wear experimental runs were carried out based on the plan of experiments proposed by Taguchi. The minimum wear rate was found with the composite material reinforced with 10 wt. % of Si3N4 and 5 wt. % of BN. Analysis of Variance (ANOVA) was employed to analyse the effect of process parameters on wear rate and coefficient of friction (COF). The ANOVA test revealed that the weight fraction of Si3N4 has more of a contribution percentage (36.60%) on wear rate, and load has more of a contribution percentage (29.73%) on COF. The worn-out surface of the wear test specimens was studied using its corresponding SEM micrograph and correlated with the dry sliding wear experiment results.  相似文献   

16.
The use of a PMMA composite with graphene is being commercialized for application as dental prostheses. The different proportions of fibers provide a wide range of colors that favors dental esthetics in prostheses. However, there are no studies that have explained the influence that graphene has on the mechanical properties. In this contribution, we studied the PMMA and PMMA material with graphene fibers (PMMA-G) in the form of discs as supplied for machining. The presence of graphene fibers has been studied by Raman spectroscopy and the Shore hardness and Vickers micro hardness were determined. Mechanical compression tests were carried out to obtain the values of maximum strength and Young’s modulus (E) and by means of pin-on-disc wear tests, the specific wear rate and the friction coefficients were determined following the established international standards. Finally, the samples were characterized by field emission scanning electron microscopy (FESEM) to characterize the graphene’s morphology inside the PMMA. The results showed the presence of graphene in PMMA and was estimated in an amount of 0.1027% by weight in G-PMMA. The Shore hardness and Vickers microhardness values did not show statistically significant differences. Differences were observed in the compression maximum strength (129.43 MPa for PMMA and 140.23 for PMMA-G) and E values (2.01 for PMMA and 2.89 GPa for PMMA-G) as well as in the lower wear rate for the G-PMMA samples (1.93 × 10−7 for PMMA and 1.33 × 10−7 mm3/N·m) with a p < 0.005. The coefficients of friction for PMMA-G decreased from 0.4032 for PMMA to 0.4001 for PMMA-G. From the results obtained, a slight content in graphene produced a significant improvement in the mechanical properties that could be observed in the prosthesis material. Therefore, we can state that the main attraction of this material for dental prosthesis is its esthetics.  相似文献   

17.
Mo-Mo2N nanocomposite coating was produced by reactive magnetron sputtering of a molybdenum target, in the atmosphere, of Ar and N2 gases. Coating was deposited on Ti6Al4V titanium alloy. Presented are the results of analysis of the XRD crystal structure, microscopic SEM, TEM and AFM analysis, measurements of hardness, Young’s modulus, and adhesion. Coating consisted of α-Mo phase, constituting the matrix, and γ-Mo2N reinforcing phase, which had columnar structure. The size of crystallite phases averaged 20.4 nm for the Mo phase and 14.1 nm for the Mo2N phase. Increasing nitrogen flow rate leads to the fragmentation of the columnar grains and increased hardness from 22.3 GPa to 27.5 GPa. The resulting coating has a low Young’s modulus of 230 GPa to 240 GPa. Measurements of hardness and Young’s modulus were carried out using the nanoindentation method. Friction coefficient and tribological wear of the coatings were determined with a tribometer, using the multi-cycle oscillation method. Among tested coatings, the lowest friction coefficient was 0.3 and wear coefficient was 10 × 10−16 m3/N∙m. In addition, this coating has an average surface roughness of RMS < 2.4 nm, determined using AFM tests, as well as a good adhesion to the substrate. The dominant wear mechanism of the Mo-Mo2N coatings was abrasive wear and wear by oxidation. The Mo-Mo2N coating produced in this work is a prospective material for the elements of machines and devices operating in dry friction conditions.  相似文献   

18.
The conventional copper infiltrated high speed steel (HSS) valve seats used in gasoline engines are not suitable for CNG combustion because the exhaust gas temperature is at least 80 °C higher, which drastically shortens the service life of the engine valves. Therefore, a proprietary high-alloy HSS-base material was designed to combat hot corrosion and mechanical wear of valve seat faces in CNG fuelled engines. A batch of −100 mesh water atomized HSS powder was commissioned. The powder was vacuum annealed in order to reduce oxygen content and increase its compressibility. To improve the final part machinability, 1.2% MnS was admixed to the HSS powder prior to compaction. The green compacts were sintered at 1135 °C in nitrogen to around 83% TD and subsequently infiltrated with a copper alloy. After installing the valve seat components on a cylinder head, the engine was tested for 100 h according to the automotive industry valve seat wear test procedures. Both the periodic 8-h checks as well as the final examination of the valve seats showed very slow wear, indicating their suitability for CNG powered engines.  相似文献   

19.
In view of the serious sliding electrical contact performance caused by external vibration and environmental contaminant, a study on the tribological characteristic and contact resistance of Cu alloy was conducted using a self-developed micro-load reciprocating electric contact device. Various glue concentrations (0%, 10%, 30%, and 50%) were prepared with anhydrous ethanol and deposited on the surface of a pure copper block via the deposition method. An external vibration source was installed on the sliding module to achieve vertical vibration. The results indicate that the final contact resistance and coefficient of friction (COF) in direct metal contact are about 0.01 Ω and 0.3, respectively. At this time, the wear volume is 2 to 3 orders of magnitude higher than the condition with glue residual. As glue concentration is above 10%, residual glue on the surface of Cu alloy hinders efficient contact between friction pairs, resulting in higher contact resistance. Glue exhibits lubrication, anti-wear, and insulation properties. External vibration causes friction pairs to briefly separate, leading to a lower glue removal capacity than that under non-vibration conditions. The contact resistance with glue addition under vibration conditions is higher than that under non-vibration conditions at 3 × 104 cycles. The dominant oxide product is CuO, which has a limited effect on contact resistance.  相似文献   

20.
Pore networks with multimodal pore size distributions combining advantages from isotropic and anisotropic shaped pores of different sizes are highly attractive to optimize the physical properties of porous ceramics. Multimodal porous Al2O3 ceramics were manufactured using pyrolyzed cellulose fibers (l = 150 µm, d = 8 µm) and two types of isotropic phenolic resin spheres (d = 30 and 300 µm) as sacrificial templates. The sacrificial templates were homogeneously distributed in the Al2O3 matrix, compacted by uniaxial pressing and extracted by a burnout and sintering process up to 1700 °C in air. The amount of sacrificial templates was varied up to a volume content of 67 Vol% to form pore networks with porosities of 0–60 Vol%. The mechanical and thermal properties were measured by 4-point-bending and laser flash analysis (LFA) resulting in bending strengths of 173 MPa to 14 MPa and heat conductivities of 22.5 Wm−1K−1 to 4.6 Wm−1K−1. Based on µCT-measurements, the representative volume-of-interest (VOI) of the samples digital twin was determined for further analysis. The interconnectivity, tortuosity, permeability, the local and global stress distribution as well as strut and cell size distribution were evaluated on the digital twin’s VOI. Based on the experimental and simulation results, the samples pore network can be tailored by changing the fiber to sphere ratio and the overall sacrificial template volume. The presence pore formers significantly influenced the mechanical and thermal properties, resulting in higher strengths for samples containing fibrous templates and lower heat conductivities for samples containing spherical templates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号