首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
In mammals, multiple physiological, metabolic, and behavioral processes are subject to circadian rhythms, adapting to changing light in the environment. Here we analyzed circadian rhythms in the fecal microbiota of mice using deep sequencing, and found that the absolute amount of fecal bacteria and the abundance of Bacteroidetes exhibited circadian rhythmicity, which was more pronounced in female mice. Disruption of the host circadian clock by deletion of Bmal1, a gene encoding a core molecular clock component, abolished rhythmicity in the fecal microbiota composition in both genders. Bmal1 deletion also induced alterations in bacterial abundances in feces, with differential effects based on sex. Thus, although host behavior, such as time of feeding, is of recognized importance, here we show that sex interacts with the host circadian clock, and they collectively shape the circadian rhythmicity and composition of the fecal microbiota in mice.The composition of intestinal microbiota is influenced by host genetics (1), aging (2), antibiotic exposure (3), lifestyle (4), diet (5), pet ownership (6), and concomitant disease (7, 8). The impact of diet in shaping the composition of the microbiota has been well established in both humans and mice (9, 10). The type of food consumed and also the feeding behavior of the host influence the microbiota. For example, a 24-h fast increases the abundance of Bacteroidetes and reduces that of Firmicutes in mouse cecum, without altering the communal microbial diversity (11). Bacteroidetes are also dominant in the microbiota of the fasted Burmese python, whereas ingestion of a meal shifts the intestinal composition toward Firmicutes (12).The rotation of the earth results in the oscillation of light during the 24-h cycle. Organisms adapted to this cycle by developing a circadian rhythm, an endogenous and entrainable mechanism that times daily events such as feeding, temperature, sleep-wakefulness, hormone secretion, and metabolic homeostasis (13, 14). In mammals, this rhythm is controlled by a master clock that resides in the suprachiasmatic nucleus of the hypothalamus. It responds to the changing light cycle and signals this information to peripheral clocks in most tissues (15). The core mammalian clock is comprised of activators BMAL1 and CLOCK as well as repressors PERIOD (PER) and CRYPTOCHROME (CRY), forming an interlocked regulatory loop (14).Circadian rhythms also exist in fungi and cyanobacteria (16). For example, a pacemaker in cyanobacteria transduces the oscillating daylight signal to regulate gene expression and to time cell division (17, 18). Hence, the synchronization of endogenous circadian rhythms with the environment is crucial for the survival of the bacteria as well as metazoa.Recent studies show that the intestinal microbiota undergo diurnal oscillation under the control of host feeding time, and that ablation of the host molecular clock Per genes causes dysbiosis (19, 20). Here, we report that microbial composition and its oscillation are influenced by the host clock, including the Bmal1-dependent forward limb of the signaling pathway. We also find that rhythmicity is conditioned by the sex of the host, being more pronounced in females than in males.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号