首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aim:

To study the effects of tanshinone IIA (TIIA) on lipopolysaccharide (LPS)-induced acute lung injury in mice and the underlying mechanisms.

Methods:

Mice were injected with LPS (10 mg/kg, ip), then treated with TIIA (10 mg/kg, ip). Seven hours after LPS injection, the lungs were collected for histological study. Protein, LDH, TNF-α and IL-1β levels in bronchoalveolar lavage fluid (BALF) and myeloperoxidase (MPO) activity in lungs were measured. Cell apoptosis and Bcl-2, caspase-3, NF-κB and HIF-1α expression in lungs were assayed.

Results:

LPS caused marked histological changes in lungs, accompanied by significantly increased lung W/D ratio, protein content and LDH level in BALF, and Evans blue leakage. LPS markedly increased neutrophil infiltration in lungs and inflammatory cytokines in BALF. Furthermore, LPS induced cell apoptosis in lungs, as evidenced by increased TUNEL-positive cells, decreased Bcl-2 content and increased cleaved caspase-3 content. Moreover, LPS significantly increased the expression of NF-κB and HIF-1α in lungs. Treatment of LPS-injected mice with TIIA significantly alleviated these pathological changes in lungs.

Conclusion:

TIIA alleviates LPS-induced acute lung injury in mice by suppressing inflammatory responses and apoptosis, which is mediated via inhibition of the NF-κB and HIF-1α pathways.  相似文献   

2.
ContextTaxifolin (TAX) has effective anti-inflammatory, antioxidant and hepatoprotective activities, but its potential mechanism has not been revealed.ObjectiveTo evaluate the potential protective effect of TAX on acute alcohol-induced liver injury in mice.Materials and methodsAlcoholic liver injury model was established by oral alcohol in mice, and randomly distributed in five groups (n = 10): Normal group (oral saline only); Alcohol group (concentration of fermented alcohol: 56%, 6 mL/kg); TAX groups, mice were orally administered with alcohol, and then TAX with doses of 20, 40, 80 mg/kg, respectively. Oral administration was conducted for 6 weeks.ResultsTAX treatment illustrated that the level of alanine aminotransferase (ALT) was reduced to 65.90 ± 2.26 U/L and aspartate aminotransferase (AST) to 33.28 ± 5.62 U/L compared with alcohol group (ALT 124.51 ± 4.40 U/L, AST 61.70 ± 4.09 U/L), while superoxide dismutase (SOD) was increased to 49.81 ± 2.39 U/mg and glutathione (GSH) to 8.16 ± 0.44 μmol/g, but MDA was reversed to 2.53 ± 0.24 nmol/mg. Histopathological examination showed TAX treatment alleviated alcohol-induced hepatocyte necrosis and inflammatory infiltration. Meanwhile, Western blot and rt-PCR indicated TAX reduced IL-6 to 2.49 ± 0.25 pg/mL and TNF-α to 1.79 ± 0.20 pg/mL, and inhibiting NF-κB activation in liver. Moreover, TAX reversed alcohol-induced apoptosis by regulating the expression of PI3K/Akt and its downstream apoptotic factors.ConclusionsThe research provides novel evidence of the hepatoprotective effect of TAX on alcohol-induced liver injury, while also providing the possibility for future treatment of alcoholic liver disease.  相似文献   

3.
ContextSalidroside, a compound extracted from Rhodiola rosea L. (Crassulaceae), possesses many beneficial pathological effects.ObjectiveTo explore the effect of salidroside on ventilator-induced lung endothelial dysfunction in vivo and in vitro.Materials and methodsIn vivo, male ICR mice were divided into sham, ventilation, salidroside, and ventilation plus salidroside groups. The mice were ventilated for 4 h, salidroside (50 mg/kg) was administrated intraperitoneally before ventilation, dexamethasone (Dex) (5 mg/kg) was used as a positive control. In vitro, mouse lung vascular endothelial cells (MLVECs) were treated with salidroside, MMP-9 siRNA, and BAY11-7082 (10 μM), and then exposed to cyclic stretch for 4 h. Afterward, lung tissues and MLVECs were collected for further analysis.ResultsSalidroside pre-treatment significantly reversed the expression of vascular endothelial cadherin (VE-cadherin) and zonula occluden-1 (ZO-1) proteins in cyclic stretch-treated MLVECs (0.46 ± 0.09 vs. 0.80 ± 0.14, 0.49 ± 0.05 vs. 0.88 ± 0.08) and ventilated lung tissues (0.56 ± 0.06 vs. 0.83 ± 0.46, 0.49 ± 0.08 vs. 0.80 ± 0.12). The results further indicated that salidroside inhibited the expression of matrix metalloproteinase-9 (MMP-9), whereas knockdown of its expression restored the expression levels of VE-cadherin (0.37 ± 0.08 vs. 0.85 ± 0.74) and ZO-1 (0.48 ± 0.08 vs. 0.81 ± 0.11) in stretched MLVECs. Meanwhile, salidroside inhibited the NF-κB signalling pathway and alleviated lung injury.ConclusionsSalidroside protected against stretch-induced endothelial barrier function, improving lung injury after ventilation. Thus, salidroside may be a promising therapeutic agent for patients with MV-induced lung injury.  相似文献   

4.

Aim:

To investigate the effects of the PPAR-γ agonist rosiglitazone on acute lung injury induced by the herbicide paraquat (PQ) and the underlying mechanisms of action.

Methods:

Male Sprague-Dawley rats were injected with PQ (20 mg/kg, ip). Rosiglitazone (3 or 10 mg/kg, ip) was administered 1 h before PQ exposure. Peripheral blood was collected at 4, 8, 24 and 72 h after PQ exposure for measuring the levels of MDA, TNF-α and IL-1β, and the SOD activity. Lung tissues were collected at 72 h after PQ exposure to determine the wet-to-dry (W/D) ratios and lung injury scores, as well as the protein levels of NF-κBp65, PPAR-γ, Nrf2, IκBα and pIκBα.

Results:

At 72 h after PQ exposure, the untreated rats showed a 100% cumulative mortality, whereas no death was observed in rosiglitazone-pretreated rats. Moreover, rosiglitazone pretreatment dose-dependently attenuated PQ-induced lung edema and lung histopathological changes. The pretreatment significantly reduced the levels of TNF-α, IL-1β and MDA, increased SOD activity in the peripheral blood of PQ-treated rats. The pretreatment also efficiently activated PPAR-γ, induced Nrf2 expression and inhibited NF-κB activation in the lung tissues of PQ-treated rats. Furthermore, the pretreatment dose-dependently inhibited IκB-α degradation and phosphorylation, thus inhibiting NF-κB activation.

Conclusion:

Pretreatment with rosiglitazone protects rats against PQ-induced acute lung injury by activating PPAR-γ, inducing Nrf2 expression and inhibiting NF-κB activation.  相似文献   

5.
6.

BACKGROUND AND PURPOSE

Inhalation of the superantigen,staphylococcal enterotoxin B (SEB), leads to the activation of the host T and invariant natural killer (iNK) T cells, thereby resulting in acute lung inflammation and respiratory failure but the underlying mechanism(s) of disease remain elusive, with limited treatment options. In this study, we investigated the therapeutic effectiveness of resveratrol, a plant polyphenol, during SEB-induced lung inflammation.

EXPERIMENTAL APPROACH

C57BL/6 mice were exposed to SEB (50 µg·per mouse), administered intranasally, and were treated with resveratrol (100 mg·kg−1) before or after SEB exposure. Lung injury was studied by measuring vascular permeability, histopathological examination, nature of infiltrating cells, inflammatory cytokine induction in the bronchoalveolar fluid (BALF), apoptosis in SEB-activated T cells and regulation of SIRT1 and NF-κB signalling pathways.

KEY RESULTS

Pretreatment and post-treatment with resveratrol significantly reduced SEB-induced pulmonary vascular permeability, and inflammation. Resveratrol significantly reduced lung infiltrating cells and attenuated the cytokine storm in SEB-exposed mice, which correlated with increased caspase-8-dependent apoptosis in SEB-activated T cells. Resveratrol treatment also markedly up-regulated Cd11b+ and Gr1+ myeloid-derived suppressor cells (MDSCs) that inhibited SEB-mediated T cell activation in vitro. In addition, resveratrol treatment was accompanied by up-regulation of SIRT1 and down-regulation of NF-κB in the inflammatory cells of the lungs.

CONCLUSIONS AND IMPLICATIONS

The current study demonstrates that resveratrol may constitute a novel therapeutic modality to prevent and treat SEB-induced lung inflammation inasmuch because it acts through several pathways to reduce pulmonary inflammation.  相似文献   

7.
8.
ContextIntervertebral disc degeneration (IDD) is the pathological basis of spinal degenerative diseases. Puerarin (PU) is an isoflavonoid with functions and medicinal properties.ObjectiveTo explore the effect of PU on IDD and its potential mechanism of action.Materials and methodsSprague-Dawley (SD) rats were divided into sham, IDD, low PU, and high PU groups. Rat nucleus pulposus cells (NPCs) were isolated and divided into control, IL-1β, 100 and 200 μmol/mL PU, TAK-242 (TLR4 inhibitor), or 200 μmol/mL PU + LPS (TLR4 activator) groups. The water content, inflammatory factors, proliferation activity, TLR4/NF-κB pathway activity, apoptosis rate, protein expression of apoptosis, and histology of the extracellular matrix (ECM) were analysed.ResultsIn vivo: Compared with the IDD group, disorganization of intervertebral disc tissue was significantly improved, water content (2.80 ± 0.24 mg, 3.91 ± 0.31 mg vs. 2.02 ± 0.21 mg) and expression levels of collagen II and aggrecan were significantly increased, and the levels of inflammatory factors and the expression levels of TLR4, MyD88, and p-p65 were significantly decreased in IDD rats treated with PU. In vitro: Compared with the IL-1β group, the proliferation activity of IL-1β-treated NPCs and the expression of collagen II and aggrecan were significantly increased, while the apoptosis rate, levels of inflammatory factors, and the expression levels of TLR4, MyD88, and p-p65 were significantly decreased in IL-1β-treated NPCs treated with PU. LPS reversed the biological function changes of IL-1β-treated NPCs induced by PU.ConclusionsPU can delay the progression of IDD by inhibiting activation of the TLR4/NF-κB pathway.  相似文献   

9.
Previous studies have shown that baicalin,an active ingredient of the Chinese traditional medicine Huangqin,attenuates LPS-induced inflammation by inhibiting the activation of TLR4/NF-κBp65 pathway,but how it affects this pathway is unknown.It has been shown that CD14 binds directly to LPS and plays an important role in sensitizing the cells to minute quantities of LPS via chaperoning LPS molecules to the TLR4/MD-2 signaling complex.In the present study we investigated the role of CD14 in the anti-inflammatory effects of baicalin in vitro and in vivo.Exposure to LPS(1μg/mL)induced inflammatory responses in RAW264.7 cells,evidenced by marked increases in the expression of MHC II molecules and the secretion of NO and IL-6,and by activation of MyD88/NF-κB p65 signaling pathway,as well as the expression of CD14 and TLR4.These changes were dose-dependently attenuated by pretreatment baicalin(12.5–50μM),but not by baicalin post-treatment.In RAW264.7 cells without LPS stimulation,baicalin dose-dependently inhibit the protein and mRNA expression of CD14,but not TLR4.In RAW264.7 cells with CD14 knockdown,baicalin pretreatment did not prevent inflammatory responses and activation of MyD88/NF-κB p65 pathway induced by high concentrations(1000μg/mL)of LPS.Furthermore,baicalin pretreatment also inhibited the expression of CD14 and activation of MyD88/NF-κB p65 pathway in LPS-induced hepatocyte-derived HepG2 cells and intestinal epithelial-derived HT-29 cells.In mice with intraperitoneal injection of LPS and in DSS-induced UC mice,oral administration of baicalin exerted protective effects by inhibition of CD14 expression and inflammation.Taken together,we demonstrate that baicalin pretreatment prevents LPS-induced inflammation in RAW264.7 cells in CD14-dependent manner.This study supports the therapeutic use of baicalin in preventing the progression of LPS-induced inflammatory diseases.  相似文献   

10.

Background and purpose:

Tetrandrine, a well-known naturally occurring calcium antagonist with anti-inflammatory, antioxidant and anti-fibrogenetic activities, has long been used clinically for treatment of cardiovascular diseases such as hypertension and arrhythmia. However, little is known about the effect of tetrandrine on cardiac hypertrophy. The aims of the present study were to determine whether tetrandrine could attenuate cardiac hypertrophy and to clarify the underlying molecular mechanisms.

Experimental approach:

Tetrandrine (50 mg·kg−1·day−1) was administered by oral gavage three times a day for one week and then the mice were subjected to either chronic pressure overload generated by aortic banding (AB) or sham surgery (control group). Cardiac function was determined by echocardiography.

Key results:

Tetrandrine attenuated the cardiac hypertrophy induced by AB, as assessed by heart weight/body weight and lung weight/body weight ratios, cardiac dilatation and the expression of genes of hypertrophic markers. Tetrandrine also inhibited fibrosis and attenuated the inflammatory response. The cardioprotective effects of tetrandrine were mediated by blocking the increased production of reactive oxygen species and the activation of ERK1/2-dependent nuclear factor-κB and nuclear factor of activated T cells that occur in response to hypertrophic stimuli.

Conclusions and implications:

Taken together, our results suggest that tetrandrine can improve cardiac function and prevent the development of cardiac hypertrophy by suppressing the reactive oxygen species-dependent ERK1/2 signalling pathway.  相似文献   

11.
12.
ContextJian Pi Qing Chang Hua Shi decoction (JPQCHSD) has been considered as an effective remedy for the treatment of inflammatory bowel disease (IBD) in Chinese traditional medicine.ObjectiveWe evaluated the efficacy of JPQCHSD on 2-4-6-trinitrobenzene sulphonic acid (TNBS)-induced IBD rats and the responsible mechanisms.Materials and methodsExcept the rats of the control group (50% ethanol), Sprague–Dawley rats (180 ± 20 g) induced by TNBS (150 mg/kg in 50% ethanol), received water extract of JPQCHSD daily at 0, 9.5, 19, or 38 g/kg for 12 days. The rats were sacrificed, and their colons were removed to evaluate the disease activity index. Malondialdehyde (MDA), superoxide dismutase (SOD), myeloperoxidase (MPO), immunoglobulin A (IgA), tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and nuclear factor-κB were evaluated.ResultsJPQCHSD extract significantly reduced the disease activity index of TNBS-induced colitis with a median effective dose (ED50) of 26.93 g/kg. MPO and MDA were significantly reduced in the 19 and 38 g/kg groups (ED50 values 37.38 and 53.2 g/kg, respectively). The ED50 values for the increased SOD and IgA were 48.98 and 56.3 g/kg. ED50 values for inhibition of TNF-α, IL-1β, and IL-6 were 32.66, 75.72, and 162.06 g/kg, respectively.DiscussionJPQCHSD promoted mucosal healing in IBD rats via its anti-inflammation, immune regulation, and antioxidation properties.ConclusionsJPQCHSD has healing function on IBD. Further clinical trials are needed to demonstrate its efficacy and tolerance to IBD.  相似文献   

13.
Neonatal hypoxia/ischemia (H/I), injures white matter, results in neuronal loss, disturbs myelin formation, and neural network development. Neuroinflammation and oxidative stress have been reported in neonatal hypoxic brain injuries. We investigated whether Paeoniflorin treatment reduced H/I-induced inflammation and oxidative stress and improved white matter integrity in a neonatal rodent model. Seven-day old Sprague–Dawley pups were exposed to H/I. Paeoniflorin (6.25, 12.5, or 25 mg/kg body weight) was administered every day via oral gavage from postpartum day 3 (P3) to P14, and an hour before induction of H/I. Pups were sacrificed 24 h (P8) and 72 h (P10) following H/I. Paeoniflorin reduced the apoptosis of neurons and attenuated cerebral infarct volume. Elevated expression of cleaved caspase-3 and Bad were regulated. Paeoniflorin decreased oxidative stress by lowering levels of malondialdehyde and reactive oxygen species generation and while, and it enhanced glutathione content. Microglial activation and the TLR4/NF-κB signaling were significantly down-regulated. The degree of inflammatory mediators (interleukin 1β and tumor necrosis factor-α) were reduced. Paeoniflorin markedly prevented white matter injury via improving expression of myelin binding protein and increasing O1-positive olidgodendrocyte and O4-positive oligodendrocyte counts. The present investigation demonstrates the potent protective efficiency of paeoniflorin supplementation against H/I-induced brain injury by effectually preventing neuronal loss, microglial activation, and white matter injury via reducing oxidative stress and inflammatory pathways.  相似文献   

14.
Doxorubicin (Dox) is widely used to the treatment of cancer, however, it could cause damage to gastric mucosa. To investigate the protective effects and related mechanisms of coenzyme Q10 (CoQ10) and vitamin C (VC) on Dox-induced gastric mucosal injury, we presented the survey of the 4 groups of the rats with different conditions. The results showed Dox treatment significantly induced GES-1 apoptosis, but preconditioning in GES-1 cells with VC or CoQ10 significantly inhibited the Dox-induced decrease and other harm effects, including the expression and of IκKβ, IκBα, NF-κB/p65 and tumor necrosis factor (TNF-α) in GES-1 cells. Moreover, high-throughput sequencing results showed Dox treatment increased the number of harmful gut microbes, and CoQ10 and VC treatment inhibited this effect. CoQ10 and VC treatment inhibits Dox-induced gastric mucosal injury by inhibiting the activation of the IkKB/IκBα/NF-κB/p65/TNF-α pathway, promoting anti-inflammatory effects of gastric tissue and regulating the composition of the intestinal flora.  相似文献   

15.
According to the expansion of lifespan, neuronal disorder based on inflammation has been social problem. Therefore, we isolated shikonin from Lithospermum erythrorhizon and evaluated anti-inflammatory effects of shikonin in lipopolysaccharide (LSP)-stimulated BV2 microglial cells. Shikonin dose-dependently inhibits the expression of the proinflammatory mediators, nitric oxide (NO), prostaglandin E2 (PGE2), and tumor necrosis factor-α (TNF-α) as well as their main regulatory genes and products such as inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-α in LPS-stimulated BV2 microglial cells. Additionally, shikonin suppressed the LPS-induced DNA-binding activity of nuclear factor-κB (NF-κB) to regulate the key regulatory genes of the proinflammatory mediators, such as iNOS, COX-2, and TNF-α, accompanied with downregulation of reactive oxygen species (ROS) generation. The results indicate that shikonin may downregulate the expression of proinflammatory genes involved in the synthesis of NO, PGE2, and TNF-α in LPS-treated BV2 microglial cells by suppressing ROS and NF-κB. Taken together, our results revealed that shikonin exerts downregulation of proinflammatory mediators by interference the ROS and NF-κB signaling pathway.  相似文献   

16.
Context Tanshinone IIA is a natural extract derived from a Chinese medicinal herb with multiple bioactivities; however, whether and how tanshinone IIA protects against colorectal cancer (CRC) are uncertain.Objective We investigated the potential beneficial effects of tanshinone IIA in a colitis-associated colorectal tumorigenesis mouse model and its underlying mechanisms.Materials and methods Male C57BL/6 mice were treated with azoxymethane (AOM) 10 mg/kg body weight and dextran sulphate sodium (2.5% DSS) to induce a colitis-associated cancer model. Tanshinone IIA (200 mg/kg body weight) was given to the mice intraperitoneally. After 12 weeks, all mice were sacrificed to measure tumour formation, intestinal permeability, neutrophil infiltration, and colonic inflammation. In addition, whether tanshinone IIA has inhibitory effects on neutrophil activation was determined through in vitro investigations.Results We observed that tanshinone IIA significantly decreased tumour formation in AOM/DSS-treated mice compared to AOM/DSS-treated alone mice (0.266 ± 0.057 vs. 0.78 ± 0.153, p = 0.013). Tanshinone IIA also decreased intestinal permeability compared to that in AOM/DSS-treated alone mice (3.12 ± 0.369 vs. 5.06 ± 0.597, p = 0.034) and consequently reduced neutrophil infiltration of the colonic mucosa (53.25 ± 8.85 vs. 107.6 ± 13.09, p = 0.014) as well as intestinal inflammation in mice. Mechanistically, tanshinone IIA downregulated the NF-κB signalling pathway in the colonic tumours of AOM/DSS-treated mice. In vitro assays further validated that tanshinone IIA suppressed LPS-induced neutrophil activation.Conclusion These data suggest that tanshinone IIA alleviates colorectal tumorigenesis through inhibition of intestinal inflammation. Tanshinone IIA may have a therapeutic potential for CRC in clinical practice.  相似文献   

17.
18.
19.
20.
Neuropathic pain (NP) that contributes to the comorbidity between pain and depression is a clinical dilemma. Neuroinflammatory responses are known to have potentially important roles in the initiation of NP and depressive mood. In this study, we aimed to investigate the effects of paeoniflorin (PF) on NP-induced depression-like behaviors by targeting the hippocampal neuroinflammation through the toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway. We used a murine model of NP caused by unilateral sciatic nerve cuffing (Cuff). PF was injected intraperitoneally once a day for a total of 14 days. Pain and depression-like behavior changes were evaluated via behavioral tests. Pathological changes in the hippocampus of mice were observed by H&E staining. The levels of proinflammatory cytokines in the hippocampus were detected using ELISA. Activated microglia were measured by immunohistochemical staining. The TLR4/NF-κB signaling pathway-associated protein expression in the hippocampus was detected by western blotting. We found that the PF could significantly alleviate Cuff-induced hyperalgesia and depressive behaviors, lessen the pathological damage to the hippocampal cell, reduce proinflammatory cytokines levels, and inhibit microglial over-activation. Furthermore, PF downregulated the expression levels of TLR4/NF-κB signaling pathway-related proteins in the hippocampus. These results indicate that PF is an effective drug for improving the comorbidity between NP and depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号