首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Depression is a major social and health concern, and ketamine exerts a quick, remarkable and persistent anti-depressive effect. microRNAs (miRNAs) show remarkable potential in the treatment of clinical depression. Here, we determined the expression profile of miRNAs in the hippocampus of rats treated with ketamine (15 mg/kg). The results suggest that multiple miRNAs were aberrantly expressed in rat hippocampus after ketamine injection (18 miRNAs were significantly reduced, while 22 miRNAs were significantly increased). Among them, miR-206 was down-regulated in ketamine-treated rats. In both cultured neuronal cells in vitro and hippocampus in vivo, we identified that the brain-derived neurotrophic factor (BDNF) was a direct target gene of miR-206. Via this target gene, miR-206 strongly modulated the expression of BDNF. Moreover, overexpression of miR-206 significantly attenuated ketamine-induced up-regulation of BDNF. The results indicated that miRNA-206 was involved in novel therapeutic targets for the anti-depressive effect of ketamine.  相似文献   

2.
Findings from molecular genetic studies and analyses of postmortem and peripheral tissue led to the hypothesis that neurotrophins—as crucial moderators of neuroplasticity—impact on the pathophysiology of autism spectrum disorder (ASD). The study projects aimed to complement former results on the role of brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family with fundamental impact on brain development and function. The purpose of this work was to investigate peripheral BDNF mRNA expression and BDNF protein concentrations in ASD as potential surrogates for the effects observed in the central nervous system. In a BDNF protein quantification study, serum concentrations were analyzed using Enzyme-Linked Immunosorbent Assays in 24 male patients with ASD, all with an IQ > 70 (age 13.9 ± 3.0 years) and 20 age- and gender-matched healthy control subjects (age 14.4 ± 2.1 years; p = 0.522). In a further independent project, a BDNF mRNA expression analysis, mRNA levels from total blood were assessed by quantitative real-time polymerase chain reaction in a sample of 16 male ASD patients (age 10.8 ± 2.2), 15 age- and gender-matched healthy controls (age 12.1 ± 2.2) and 15 patients with attention deficit hyperactivity disorder as a clinical control group (age 11.8 ± 2.2; p = 0.207). In the protein quantification project, significantly decreased BDNF serum concentrations were found in ASD cases compared to healthy control children (t = ?2.123, df = 42, p < 0.05). Analysis of covariance (ANCOVA) revealed this result in accordance with significant reductions in BDNF mRNA expression in ASD, observed in the mRNA expression study (F = 3.65; df = 2.43; p < 0.05); neither age nor IQ confounded the result, as indicated by ANCOVA (F = 3.961; df = 2.41; p < 0.05, η 2  = 0.162). Our study projects supported the notion that neurotrophins are involved in the pathophysiology of ASD. Further studies may eventually contribute to the identification of distinct peripheral mRNA expression and protein concentration patterns possibly supporting diagnostic and therapeutic processes.  相似文献   

3.
The brain-derived neurotrophic factor (BDNF) gene may influence eating behavior, body weight and cognitive impairments. We aimed to investigate whether BDNF genetic variability may affect anthropometric and psychological parameters in patients with anorexia or bulimia nervosa (AN, BN) and/or modulate the risk for the disorder. A total of 169 unrelated female patients and 312 healthy controls were genotyped for two common BDNF single-nucleotide polymorphisms (SNPs), Val66Met and C-270T, and several selected tag-SNPs. Associated personality characteristics and psychopathological symptoms were assessed by the EDI-2 and SCL-90R inventories, respectively. No single SNP or haplotype played a relevant role in the risk for AN or BN. The rs16917237 TT genotype was significantly associated with increased weight (74.63 ± 16.58 vs. 57.93 ± 13.02) and body mass index (28.94 ± 6.22 vs. 22.23 ± 4.77) in the BN group after correcting for multiple testing. Haplotype analyses using a sliding window approach with three adjacent SNPs produced four loci of interest. Locus 3 (rs10835210/rs16917237/C-270T) showed a broad impact on the measured psychopathological symptoms. Haplotypes CGC and CGT in this locus correlated with scores in all three scales of the SCL-90R inventory, both in AN and BN patients. In contrast, the results of the EDI-2 inventory were largely unaffected. These preliminary results suggest that variability in the BDNF gene locus may contribute to anthropometric characteristics and also psychopathological symptoms that are common but not exclusive of ED patients.  相似文献   

4.
PACAP (ADCYAP1) was isolated from ovine hypothalami. PACAP activates three distinct receptor types: G-protein coupled PAC1, VPAC1, and VPAC2 with seven transmembrane domains. Eight splice variants of PAC1 receptor are described. A part of the hypothalamic PACAP is released into the hypophyseal portal circulation. Both hypothalamic and pituitary PACAP are involved in the dynamic control of gonadotropic hormone secretion. In female rats, PACAP in the paraventricular nucleus is upregulated in the morning and pituitary PACAP is upregulated in the late evening of the proestrus stage of the reproductive cycle. PACAP mRNA peak in the hypothalamic PVN precedes the LHRH release into the portal circulation. It is supposed that PACAP peak is evoked by the elevated estrogen on proestrous morning. At the beginning of the so-called critical period of the same day, PACAP level starts to decline allowing LHRH release into the portal circulation, resulting in the LH surge that evokes ovulation. Just before the critical period, icv-administered exogenous PACAP blocks the LH surge and ovulation. The blocking effect of PACAP is mediated through CRF and endogenous opioids. The effect of the pituitary-born PACAP depends on the intracellular cross-talk between PACAP and LHRH.  相似文献   

5.
6.
This study aims to explore the influence of paternal variables on outcome of behavioral parent training (BPT) in children with attention-deficit/hyperactivity disorder (ADHD). 83 referred, school-aged children with ADHD were randomly assigned to BPT plus ongoing routine clinical care (RCC) or RCC alone. Treatment outcome was based on parent-reported ADHD symptoms and behavioral problems. Moderator variables included paternal ADHD symptoms, depressive symptoms, and parenting self-efficacy. We conducted repeated measures analyses of variance (ANOVA) for all variables, and then analyzed the direction of interaction effects by repeated measures ANOVA in high and low scoring subgroups. Paternal ADHD symptoms and parenting self-efficacy played a moderating role in decreasing behavioral problems, but not in decreasing ADHD symptoms. Paternal depressive symptoms did not moderate either treatment outcome. BPT is most beneficial in reducing children’s behavioral problems when their fathers have high levels of ADHD symptoms or high-parenting self-efficacy.  相似文献   

7.
8.
9.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuroprotective peptide expressed in the central nervous system. Although many studies have shown a neuroprotective effect of PACAP, the mechanism of PACAP in the treatment of spinal cord injury (SCI) is yet to be elucidated. The purpose of this study was to examine the efficacy and underlying mechanism of PACAP in a mouse SCI model where PACAP was delivered via a biodegradable hydrogel. When PACAP or saline was delivered immediately after SCI, the functional motor recovery 14 days after SCI was significantly improved in the PACAP group compared with that in the saline group. Expression levels of messenger RNA (mRNA) for collapsin response mediator protein 2 (CRMP2), a factor related to axonal regeneration, were increased in the PACAP group 14 days after SCI compared with those in the saline group. A significantly increased number of CRMP2-positive cells were observed around the injury lesion in the PACAP group, while CRMP2 co-labeling with neuronal and oligodendrocyte markers was detected in intact spinal cord. Fourteen days after SCI, anterograde tracing revealed that a significantly increased number of neuronal fibers extended caudally from the lesion epicenter in the PACAP group. These results suggest that PACAP stimulates functional motor recovery after SCI through axonal regeneration mediated by CRMP2.  相似文献   

10.
Diabetic nephropathy is the leading cause of end-stage renal failure and accounts for 30–40 % of patients entering renal transplant programmes. The nephroprotective effects of the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP38) against diabetes have been shown previously, but the molecular mechanisms responsible for these effects remain unknown. In the present study, we showed that PACAP treatment counteracted the diabetes-induced increase in the level of the proapoptotic pp38MAPK and cleaved caspase-3 and also decreased the p60 subunit of NFκB. The examined antiapoptotic factors, including pAkt and pERK1/2, showed a slight increase in the diabetic kidneys, while PACAP treatment resulted in a notable elevation of these proteins. PCR and Western blot revealed the downregulation of fibrotic markers, like collagen IV and TGF-β1 in the kidney. PACAP treatment resulted in increased expression of the antioxidant glutathione. We conclude that the nephroprotective effect of PACAP in diabetes is, at least partly, due to its antiapoptotic, antifibrotic and antioxidative effect in addition to the previously described antiinflammatory effect.  相似文献   

11.
Theiler’s murine encephalomyelitis virus (TMEV) induces demyelination in susceptible strains of mice (SJL/J) through an immunopathological process that is mediated by CD4+ Th1 T cell. These T cells are chemoattracted to the central nervous system by chemokines. Hence, in this study, we focused on the production of the chemokine “interferon-gamma-inducible protein 10 kDa,” or IP-10/CXCL10, by cultured SJL/J mouse astrocytes infected with the BeAn strain of TMEV and its capacity to attract activated T cells. The analysis of the whole murine genome by DNA hybridization with cRNAs from mock- and TMEV-infected cultures revealed the upregulation of six sequences that potentially encode for CXCL10. This increased CXCL10 expression was validated by PCR and qPCR. The presence of this chemokine was further demonstrated by enzyme-linked immunoassay (ELISA). Significantly, astrocytes from BALB/c mice, a strain resistant to demyelination, did not produce CXCL10. The secreted CXCL10 was biologically active, inducing chemoattraction of activated lymphocytes. The inflammatory cytokines, IL-1α, IFN-γ, and TNF-α, were strong inducers of CXCL10 in astrocytes. Serum from TMEV-infected SJL/J but not BALB/c mice contains CXCL10, the levels of which peak at the onset of the clinical disease. Finally, this in vitro inflammation model was fully inhibited by 17β-estradiol and four selective estrogen receptor modulators, as demonstrated by ELISA and qPCR.  相似文献   

12.
Estrogen and serotonin play vital roles in the mechanism of premenstrual dysphoric disorder (PMDD). Cognitive deficit in the premenstrual phase contributes to impaired life function among women with PMDD. The aim of this study was to evaluate the difficulties in cognitive control and working memory (WM) in PMDD and to explore the effects of gonadotropic hormone and polymorphism of serotonin 1A receptor (HTR1A; rs6295) on cognitive deficit in PMDD. Women with PMDD completed diagnostic interviewing, questionnaire assessment, the Go/Nogo task, 2-back and 3-back tasks, and gonadotropic hormone analysis in the premenstrual and follicular phases. Further, they were followed up for two menstrual cycles to confirm two consecutive symptomatic cycles. A total of 59 subjects with PMDD and 74 controls completed all evaluation, fulfilled the criteria, and entered into the final analysis. The results demonstrated cognitive control and WM decline in the premenstrual among women with PMDD. The G/G genotype of HTR1A (rs6295) was found to be associated with impaired WM in the premenstrual phase and premenstrual decline of cognitive function. It also contributed to the vulnerability of cognitive function to the menstrual cycle effect and PMDD effect. As the G/G genotype of HTR1A (rs6295) involves in reducing serotonin neurotransmission, our results provide insight into the serotonin mechanism of cognitive function among women with PMDD.  相似文献   

13.
Children meeting the Child Behavior Checklist Dysregulation Profile (CBCL-DP) suffer from high levels of co-occurring internalizing and externalizing problems. Little is known about the cognitive abilities of these children with CBCL-DP. We examined the relationship between CBCL-DP and nonverbal intelligence. Parents of 6,131 children from a population-based birth cohort, aged 5 through 7 years, reported problem behavior on the CBCL/1.5–5. The CBCL-DP was derived using latent profile analysis on the CBCL/1.5–5 syndrome scales. Nonverbal intelligence was assessed using the Snijders Oomen Nonverbal Intelligence Test 2.5-7-Revised. We examined the relationship between CBCL-DP and nonverbal intelligence using linear regression. Analyses were adjusted for parental intelligence, parental psychiatric symptoms, socio-economic status, and perinatal factors. In a subsample with diagnostic interview data, we tested if the results were independent of the presence of attention deficit hyperactivity disorder (ADHD) or autism spectrum disorders (ASD). The results showed that children meeting the CBCL-DP (n = 110, 1.8 %) had a 11.0 point lower nonverbal intelligence level than children without problems and 7.2–7.3 points lower nonverbal intelligence level than children meeting other profiles of problem behavior (all p values <0.001). After adjustment for covariates, children with CBCL-DP scored 8.3 points lower than children without problems (p < 0.001). The presence of ADHD or ASD did not account for the lower nonverbal intelligence in children with CBCL-DP. In conclusion, we found that children with CBCL-DP have a considerable lower nonverbal intelligence score. The CBCL-DP and nonverbal intelligence may share a common neurodevelopmental etiology.  相似文献   

14.
15.
Pituitary adenylate cyclase activating polypeptide (PACAP) is a pleiotropic neuropeptide with widespread distribution. It plays pivotal role in neuronal development. PACAP-immunoreactive fibers have been found in the tooth pulp, and recently, it has been shown that PACAP may also play a role in the regeneration of the periodontium after luxation injuries. However, there is no data about the effect of endogenous PACAP on tooth development. Ectodermal organogenesis including tooth development is regulated by different members of bone morphogenetic protein (BMP), fibroblast growth factor (FGF), hedgehog (HH), and Wnt families. There is also a growing evidence to support the hypothesis that PACAP interacts with sonic hedgehog (SHH) receptor (PTCH1) and its downstream target (Gli1) suggesting its role in tooth development. Therefore, our aim was to study molar tooth development in mice lacking endogenous PACAP. In this study morphometric, immunohistochemical and structural comparison of molar teeth in pre-eruptive developmental stage was performed on histological sections of 7-day-old wild-type and PACAP-deficient mice. Further structural analysis was carried out with Raman microscope. The morphometric comparison of the 7-day-old samples revealed that the dentin was significantly thinner in the molars of PACAP-deficient mice compared to wild-type animals. Raman spectra of the enamel in wild-type mice demonstrated higher diversity in secondary structure of enamel proteins. In the dentin of PACAP-deficient mice higher intracrystalline disordering in the hydroxyapatite molecular structure was found. We also obtained altered SHH, PTCH1 and Gli1 expression level in secretory ameloblasts of PACAP-deficient mice compared to wild-type littermates suggesting that PACAP might play an important role in molar tooth development and matrix mineralization involving influence on SHH signaling cascade.  相似文献   

16.
There has been a growing recognition of the role of neuroinflammation caused by microglia-exaggerated release of inflammatory mediators in the pathogenesis of Parkinson’s disease (PD). Pituitary adenylate cyclase activating polypeptide (PACAP) is an endogenous 38 amino acid containing neuropeptide that has been shown to possess neurotrophic as well as neuroprotective properties. In this study, we sought to determine whether PACAP could protect SH-SY5Y dopaminergic cells against toxicity induced by inflammatory mediators. For this purpose, THP-1 cells which possess microglia-like property were stimulated by a combination of lipopolysaccharide (LPS) and interferon gamma (IFN-γ), and the media containing inflammatory mediators were isolated and applied to SH-SY5Y cells. Such treatment resulted in approximately 54 % cell death as well as a reduction in brain-derived neurotrophic factor (BDNF) and phosphorylated cyclic AMP response element-binding protein (p-CREB). Pretreatment of the SH-SY5Y cells with PACAP (1-38) dose-dependently attenuated toxicity induced by the inflammatory mediators. PACAP effects, in turn, were dose-dependently blocked by the PACAP receptor antagonist (PACAP 6-38). These results suggest protective effects of PACAP against inflammatory-induced toxicity in a cellular model of PD that is likely mediated by enhancement of cell survival markers through activation of PACAP receptors. Hence, PACAP or its agonists could be of therapeutic benefit in inflammatory-mediated PD.  相似文献   

17.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is predominantly localized in the nervous system, but the underlying mechanism in its neuron-specific expression remains unclear. In addition to two neural-restrictive silencer-like element (NRSLE1 and 2), as reported previously, we have identified the third element in ?1,601 to ?1,581 bp from the translational initiation site of mouse PACAP gene and termed it as NRSLE3, of which, the sequence and location were highly conserved among mouse, rat, and human PACAP genes. In luciferase reporter assay, the deletion or site-directed mutagenesis of NRSLE3 in the reporter gene construct, driven by heterologous SV40 promoter, cancelled the repression of luciferase activity in non-neuronal Swiss-3T3 cells. Furthermore, its promoter activity was significantly repressed in Swiss-3T3 cells, but not in neuronal-differentiated PC12 cells. The electrophoretic mobility shift assay (EMSA) with nuclear extracts of Swiss-3T3 cells demonstrated a specific complex with NRSLE3 probe that exhibited the same migration with the neural-restrictive silencer element (NRSE) probe of rat type II sodium channel gene. During neuronal differentiation of PC12 cells, the increment of PACAP mRNA exhibited the correlation with that of REST4 mRNA, which is a neuron-specific variant form of neural-restrictive silencer factor (NRSF). In undifferentiated PC12 cells, trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, which indirectly inhibits NRSF-mediated gene silencing, increased PACAP mRNA level and attenuated the repression of promoter activity of 5′ flanking region of mouse PACAP gene containing NRSLEs. These suggest that the NRSE–NRSF system implicates in the regulatory mechanism of neuron-specific expression of PACAP gene.  相似文献   

18.
19.
The platelet-derived growth factor (PDGF) family consists of three different dimeric forms, AA, BB, and AB, of the two consitituent polypeptide chains, A and B. These interact with two different cell surface receptors that, in part, mediate different cellular functions. The various forms of PDGF, as well as the receptors, are expressed at high frequency in glioblastoma multiforme, and it has been suggested that the growth of this tumor might be affected by autocrine loops involving PDGF and its receptors. The present paper focuses on recent discoveries regarding the family of PDGF ligands and receptors, as well as reviews results concerning PDGF-dependent autocrine growth in experimental and spontaneous glioblastoma.  相似文献   

20.
Pituitary adenylate cyclase activating polypeptide (PACAP) is an endogenous neuropeptide having a widespread distribution both in the nervous system and peripheral organs including the female reproductive system. Both the peptide and its receptors have been shown in the placenta but its role in placental growth, especially its human aspects, remains unknown. The aim of the present study was to investigate the effects of PACAP on invasion, proliferation, cell survival, and angiogenesis of trophoblast cells. Furthermore, cytokine production was investigated in human decidual and peripheral blood mononuclear cells. For in vitro studies, human invasive proliferative extravillous cytotrophoblast (HIPEC) cells and HTR-8/SVneo human trophoblast cells were used. Both cell types were used for testing the effects of PACAP on invasion and cell survival in order to investigate whether the effects of PACAP in trophoblasts depend on the examined cell type. Invasion was studied by standardized invasion assay. PACAP increased proliferation in HIPEC cells, but not in HTR-8 cells. Cell viability was examined using MTT test, WST-1 assay, and annexin V/propidium iodide flow cytometry assay. Survival of HTR-8/SVneo cells was studied under oxidative stress conditions induced by hydrogen peroxide. PACAP as pretreatment, but not as co-treatment, significantly increased the number of surviving HTR-8 cells. Viability of HIPEC cells was investigated using methotrexate (MTX) toxicity, but PACAP1-38 could not counteract its toxic effect. Angiogenic molecules were determined both in the supernatant and the cell lysate by angiogenesis array. In the supernatant, we found that PACAP decreased the secretion of various angiogenic markers, such as angiopoietin, angiogenin, activin, endoglin, ADAMTS-1, and VEGF. For the cytokine assay, human decidual and peripheral blood lymphocytes were separated and treated with PACAP1-38. Th1 and Th2 cytokines were analyzed with CBA assay and the results showed that there were no significant differences in control and PACAP-treated cells. In summary, PACAP seems to play various roles in human trophoblast cells, depending on the cell type and microenvironmental influences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号