首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atrial natriuretic peptide (ANP) prevents hypertrophy of neonatal cardiomyocytes. However, whether this effect is retained in the adult phenotype or if other members of the natriuretic peptide family exhibit similar antihypertrophic properties, has not been elucidated. OBJECTIVE: Our objective was to examine whether the natriuretic peptides protect against adult cardiomyocyte hypertrophy in vitro. METHODS: Adult rat cardiomyocytes were incubated with angiotensin II (Ang II)+/-ANP, B-type (BNP) or C-type (CNP) natriuretic peptides for determination of [3H]phenylalanine incorporation, c-fos mRNA expression and cyclic GMP. The effects of 8-bromo-cyclic GMP (cyclic GMP analogue), HS-142-1 (particulate guanylyl cyclase inhibitor) and KT5823 (cyclic GMP-dependent protein kinase inhibitor) were also investigated. RESULTS: Ang II-stimulated increases in markers of hypertrophy, [3H]phenylalanine incorporation (to 136+/-3% of control, n=9) and c-fos mRNA expression (4.3+/-1.4-fold, n=5), were completely prevented by each of ANP, BNP or CNP. This protective action was accompanied by increased cardiomyocyte cyclic GMP. Inhibitory actions on [3H]phenylalanine incorporation were mimicked by 8-bromo-cyclic GMP, and were abolished by HS-142-1. KT5823 blocked the response to BNP and CNP, but not to ANP. CONCLUSION: ANP prevents hypertrophy of adult rat cardiomyocytes. This protective action is shared by BNP and CNP and involves activation of particulate guanylyl cyclase receptors. Antihypertrophic effects of BNP and CNP are mediated through cyclic GMP-dependent protein kinase, but ANP can activate additional pathways independent of cyclic GMP to prevent adult cardiomyocte hypertrophy. These novel findings are of interest particularly since BNP appears to exert antifibrotic rather than antihypertrophic actions in vivo, while CNP is thought to act at least in part via the endothelium.  相似文献   

2.
OBJECTIVE: Reactive oxygen species (ROS) such as superoxide have been linked to the hypertrophic response of the heart to stimuli including angiotensin II (AngII), mechanical stretch, and pressure overload. We have previously demonstrated that cGMP and protein kinase G mediate the antihypertrophic actions of the natriuretic peptides in rat cardiomyocytes and isolated whole hearts. The impact of natriuretic peptides on cardiac ROS generation, however, has not been investigated. We tested the hypothesis that reduced superoxide accumulation contributes to the antihypertrophic action of atrial natriuretic peptide (ANP). METHODS: Neonatal rat cardiomyocytes were cultured in serum-free medium with and without AngII (1 micromol/L) or endothelin-1 (ET(1), 60 nmol/L) in the presence and absence of ANP (1 micromol/L) or tempol (100 micromol/L). Hypertrophic responses, cardiomyocyte superoxide generation, and cardiomyocyte expression of NADPH oxidase were determined. RESULTS: AngII induced increases in cardiomyocyte size (to 176 +/- 9% n = 8 p < 0.001, at 48 h), beta-myosin heavy chain expression (to 4.0 +/- 1.6-fold n = 6 p < 0.05, at 48 h), c-fos expression (to 1.9 +/- 0.5-fold n = 7 p < 0.01, at 6 h), superoxide generation (to 181+/-21% n = 8 p < 0.005, at 24 h), and expression of the gp91phox subunit of NADPH oxidase (to 2.4 +/- 0.5-fold n = 7 p < 0.05, at 48 h). These effects were all significantly inhibited by ANP: cardiomyocyte size, beta-myosin heavy chain expression, c-fos expression, superoxide generation and gp91phox expression were reduced to 107 +/- 5% (n = 5 p < 0.05), 1.2 +/- 0.2-fold (n = 6 p < 0.05), 0.9 +/- 0.2-fold (n = 7 p < 0.05), 141 +/- 21% (n = 8 p < 0.05), and to 1.0 +/- 0.5-fold (n = 7 p < 0.05), respectively. These effects were mimicked by tempol. ANP and tempol also significantly inhibited ET1-induced increases in cardiomyocyte size and superoxide generation, but had no effect on markers of hypertrophy when studied alone. CONCLUSION: This data indicates that the antihypertrophic actions of ANP are accompanied by reduced levels of superoxide, suggesting an antioxidant action contributes to the antihypertrophic actions of ANP.  相似文献   

3.
Hakam AC  Hussain T 《Hypertension》2006,47(6):1117-1124
We have reported recently that the renal angiotensin II type 2 (AT2) receptors are upregulated and involved in promoting natriuresis/diuresis in obese but not in lean Zucker rats. In the present study, we tested the hypothesis that there is an enhanced AT2 receptor signaling via NO/cGMP pathway leading to greater inhibition of the Na(+), K(+)-ATPase (NKA) activity in the proximal tubules (PT) of obese rather than lean Zucker rats. The AT2 agonist CGP42112 (0.1 to 100 nmol/L) inhibited (33% at 100 nmol/L) the NKA activity in the PTs of obese but not in lean Zucker rats. The AT2 antagonist PD123319 (1 micromol/L), not the angiotensin II type 1 antagonist losartan (1 micromol/L), significantly diminished the CGP42112-induced inhibition of the NKA activity in obese rats. The AT2 agonist (10 nmol/L)-induced NKA inhibition was abolished by the soluble guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo-[4,3-a] quinoxalin-1-one (10 micromol/L), the NO synthase inhibitor NG-nitro-L-arginine methyl ester (100 micromol/L), and the protein kinase G inhibitor K1388 (2 micromole/L). CGP42112 (10 nmol/L) caused an increase in serine phosphorylation of NKA alpha1-subunit in PT of obese rats. Measurement of cGMP and NO revealed that CGP42112 (0.1 to 100 nmol/L) increased cGMP and NO accumulation in the PTs of obese but not lean rats. The CGP42112-induced stimulation of NO and cGMP was blocked by PD123319 (1 micromol/L), NG-nitro-L-arginine methyl ester (100 micromol/L), and 1H-[1,2,4] oxadiazolo-[4,3-a] quinoxalin-1-one (10 micromol/L) but not by losartan (1 micromol/L). The data suggest that the AT2 receptor activation via stimulation of the NO/cGMP/protein kinase G pathway directly inhibits the tubular NKA activity that provides as a mechanism responsible for the AT2 receptor-mediated natriuresis in obese but not in lean Zucker rats.  相似文献   

4.
The mechanism of relaxation of the guinea-pig trachea induced by pituitary adenylate cyclase activating peptide (PACAP)-27 was investigated. We examined whether modulators of nitric oxide (NO) and carbon monoxide (CO) affect PACAP-induced response of tracheal strips in vitro. Pretreatment with N omega-nitro-L-arginine methyl ester hydrochloride (L-NAME) and L-arginine (L-arg) had no effect, while 1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), haemoglobin and zinc protoporphyrin IX (ZnPP-9) partially abolished the PACAP-induced relaxation. PACAP-27 elevated cyclic GMP level in airway smooth muscle tissue. These results indicate that PACAP-27 not only induces cyclic AMP-mediated responses, but also cyclic GMP-mediated responses in the airway. In addition, CO is related to the PACAP-induced elevation of cGMP level in the tracheal tissue.  相似文献   

5.
Angiotensin II (Ang II), acting through its G protein-coupled AT1 receptor (AT1), contributes to the precocious heart senescence typical of patients with hypertension, atherosclerosis, and diabetes. AT1 was suggested to transactivate an intracellular signaling controlled by growth factors and their tyrosin-kinase receptors. In cultured vascular smooth muscle cells, this downstream mechanism comprises the p66Shc adaptor protein, previously recognized to play a role in vascular cell senescence and death. The aim of the present study was 2-fold: (1) to characterize the cardiovascular phenotype of p66Shc knockout mice (p66Shc(-/-)), and (2) to test the novel hypothesis that disrupting the p66Shc might protect the heart from the damaging action of elevated Ang II levels. Compared with wild-type littermates (p66Shc(+/+)), p66Shc(-/-) showed similar blood pressure, heart rate, and left ventricular wall thickness. However, cardiomyocyte number was increased in mutant animals, indicating a condition of myocardial hyperplasia. In p66Shc(+/+), infusion of a sub-pressor dose of Ang II (300 nmol/kg body weight [BW] daily for 28 days) caused left ventricular hypertrophy and apoptotic death of cardiomyocytes and endothelial cells. In contrast, p66Shc(-/-) were resistant to the proapoptotic/hypertrophic action of Ang II. Consistently, in vitro experiments showed that Ang II causes apoptotic death of cardiomyocytes isolated from p66Shc(+/+) hearts to a greater extent as compared with p66Shc(-/-) cardiomyocytes. Our results indicate a fundamental role of p66Shc in Ang II-mediated myocardial remodeling. In perspective, p66Shc inhibition may be envisioned as a novel way to prevent the deleterious effects of Ang II on the heart.  相似文献   

6.
Studies were designed to determine the source of NO responsible for buffering of the angiotensin II (Ang II)-mediated decrease of blood flow in the renal medulla. Intracellular Ca2+ concentration ([Ca2+]i) and NO production ([NO]i) of pericytes and endothelium of the vasa recta were independently measured with the use of fura 2-AM and 4,5-diaminofluorescein diacetate (DAF-2DA), respectively, in microtissue strips of the vascular bundles of the outer medullary vasa recta. Disruption of the endothelium of the vasa recta by perfusion with latex microspheres enabled imaging of the pericytes. Ang II (1 micromol/L) produced an increase of [NO]i of 19+/-6 U in pericytes of the vasa recta when the vessels were adjacent to medullary thick ascending limbs (mTALs). Pericytes of isolated vasa recta without surrounding mTALs showed a rapid peak increase in [Ca2+]i of 248+/-107 nmol/L, with a sustained elevation of 107+/-75 nmol/L, but did not show an increase in [NO]i to either Ang II (1 micromol/L) or the Ca2+ ionophore 4-bromo-A23187 (5 micromol/L). These observations indicated the lack of Ang II and Ca2+-sensitive NO production in pericytes of the vasa recta. In isolated vasa recta with intact endothelium, Ang II reduced [Ca2+]i from 128+/-28 to 62+/-13 nmol/L and failed to increase [NO]i. However, the Ca2+ ionophore did increase [NO]i in the endothelium (47+/-8 U), indicating the presence of Ca2+-sensitive NO production. Significant increases of [NO]i were observed in single isolated mTALs in response to both Ang II (33+/-6 U) and the Ca2+ ionophore (51+/-18 U). We conclude that Ang II increases [Ca2+]i in pericytes of the descending vasa recta as part of its constrictor action and that this vasoconstriction is buffered by the NO from the surrounding tubular elements, such as mTALs.  相似文献   

7.
Angiotensin (Ang)-(1-7) elicits a facilitatory presynaptic effect on peripheral noradrenergic neurotransmission, and because biological responses to the heptapeptide on occasion are tissue specific, the present investigation was undertaken to study its action on noradrenergic neurotransmission at the central level. In rat hypothalamus labeled with [(3)H]-norepinephrine, 100 to 600 nmol/L Ang-(1-7) diminished norepinephrine released by 25 mmol/L KCl. This effect was blocked by the selective angiotensin type 2 receptor antagonist PD 123319 (1 micromol/L) and by the specific Ang-(1-7) receptor antagonist ([D-Ala(7)]Ang-(1-7) (1 micromol/L) but not by losartan (10 nmol/L to 1 micromol/L), a selective angiotensin type 1 receptor antagonist. The inhibitory effect on noradrenergic neurotransmission caused by Ang-(1-7) was prevented by 10 micromol/L N(omega)-nitro-L-arginine methylester, an inhibitor of nitric oxide synthase activity, and was restored by 100 micromol/L L-arginine, precursor of nitric oxide synthesis. Methylene blue (10 micromol/L), an inhibitor of guanylate cyclase considered as the target of nitric oxide action, as well as Hoe 140 (10 micromol/L), a bradykinin B(2)-receptor antagonist, prevented the inhibitory effect of the heptapeptide on neuronal norepinephrine release, whereas no modification was observed in the presence of 0.1 to 10 micromol/L indomethacin, a cyclooxygenase inhibitor. Our results indicate that Ang-(1-7) has a tissue-specific neuromodulatory effect on noradrenergic neurotransmission, being inhibitory at the central nervous system by a nitric oxide-dependent mechanism that involves angiotensin type 2 receptors and local bradykinin production.  相似文献   

8.
We have previously demonstrated that bradykinin blocks hypertrophy of isolated cardiomyocytes: this is dependent on the release of nitric oxide from endothelial cells. In the present study, we investigated the influence of endothelial dysfunction on the antihypertrophic action of bradykinin. Angiotensin II (1 microM) induced a 34 +/- 2% increase in [3H]phenylalanine incorporation (P<0.001), an in vitro marker of hypertrophy, in adult rat cardiomyocytes co-cultured with bovine aortic endothelial cells. This response was blocked by bradykinin (10 microM), but restored by the nitric oxide synthase inhibitor. N(omega)-monomethyl-L-arginine (100 microM). However, the antihypertrophic effect of bradykinin in co-culture was abolished by 24 h pretreatment of endothelial cells with high glucose (25 mM, to mimic hyperglycemia) and attenuated by hydrogen peroxide (100 microM, to mimic oxidative stress). Pretreatment with oxidized low-density lipoprotein (100 microg/ml for 24 h, to mimic hyperlipidemia) was without effect. The hypertrophic response to angiotensin II was not modified by endothelial cell pretreatment. Furthermore, the ability of bradykinin to elevate cGMP (a marker for nitric oxide) in cardiomyocytes co-cultured with endothelial cells was attenuated by pretreatment with either high glucose or hydrogen peroxide. In conclusion, loss of the cardioprotective action of bradykinin against angiotensin II-induced hypertrophy was associated with impaired nitric oxide release from dysfunctional endothelial cells.  相似文献   

9.
Oxygen-derived free radicals have been implicated in the pathogenesis of myocardial injury. We therefore investigated the pathophysiology of myocardial injury induced in isolated rat hearts by perfusion with superoxide radical generated by reacting 2.5 mmol/l purine, 0.03 U/ml xanthine oxidase and 300 U/ml catalase. Perfusion with superoxide significantly (P<0.05) increased left ventricular end-diastolic pressure within 15 to 20 min. During the same time period, heart rate and left-ventricular developed pressure significantly declined to 44.6+/-8.2% and 31.0+/-4.9% of control, respectively. Superoxide perfusion also significantly increased production of prostaglandins, nitric oxide (detected as nitrites) and peroxynitrite (detected immunohistochemically as nitrotyrosine). N(G)-nitro-l-arginine (100 micromol/l), a nitric oxide synthase inhibitor, attenuated superoxide-induced generation of peroxynitrite, increased synthesis of prostacyclin, and partially blocked myocardial dysfunction, as did 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (30 micromol/l), a selective inhibitor of soluble guanylate cyclase, and ONO-3708 (10 micromol/l), a selective thromboxane A(2)receptor antagonist. In contrast, nitroglycerin (4 micromol/l) and sodium nitroprusside (1 micromol/l) each exacerbated the superoxide-induced myocardial dysfunction. These results suggest that nitric oxide and related reactive species contribute to myocardial injury induced by superoxide. Moreover, they suggest that oxidative stress can be delayed or inhibited by reducing levels of nitric oxide, by inhibiting soluble guanylate cyclase, and by blocking thromboxane/prostaglandin receptors.  相似文献   

10.
We have previously suggested that the nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway protects both hepatocytes and endothelial cells against liver ischemia-reperfusion injury in rat. We study here the ability of NO to protect isolated hepatocytes against an in vitro oxidative stress induced with hypochlorite solution (ClO(-)). The severity of ClO(-)-induced stress was quantified by the measurement of total glutathione and membrane lipid peroxidation. Cell damage was assessed by morphologic (cell viability and bleb formation) and biologic (transaminase release) criteria. A 30-minute incubation of hepatocytes with 100 micromol/L ClO(-) maximally decreased cell viability (-40%) and increased bleb formation (+300%) and release of transaminases activities (aspartate transaminase [AST] = +60% and alanine transaminase [ALT] = +300%). A good correlation was observed between morphologic and biologic criteria. A preincubation of cells with 50 micromol/L 8-Br-cGMP, did not affect the adverse ClO(-) effects on the morphologic criteria. In the presence of 20 micromol/L spermineNONOate, an NO donor, ClO(-) did not decrease cell viability, whereas its deleterious effects on bleb formation was unchanged. A preincubation with a specific inhibitor of the soluble guanylate cyclase, the 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 1 micromol/L), did not affect the beneficial effect of NO on the cell viability. Our results suggest that NO protects hepatocytes against oxidative stress by a mechanism, which is cGMP-independent. However, taking into account the cytoprotective effects of cGMP in the liver, it is likely that the rapid effect of NO observed in vitro is relayed in vivo by a more long-lasting mechanism, which would be inhibited by ODQ and mimicked by 8-Br-cGMP.  相似文献   

11.
In studies on human platelets, nitroprusside (NP) alone at 1-10 micromol/l increased platelet cyclic AMP (cAMP) by 40-70%, whereas increases in cyclic GMP (cGMP) were much larger in percentage though not in concentration terms. Collagen enhanced these increases in cAMP up to fourfold, without affecting cGMP. This effect was partly prevented by indomethacin or aspirin, indicating that platelet cyclo-oxygenase products acted synergistically with NP to increase cAMP. ADP released from the platelets by collagen tended to restrict this cAMP accumulation. Addition of 2',5'-dideoxyadenosine (DDA), an inhibitor of adenylyl cyclase, decreased both the inhibition of collagen-induced platelet aggregation by NP and the associated accumulation of cAMP without affecting cGMP, indicating that cAMP mediates part of the inhibitory effect of NP. Unlike DDA, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of guanylyl cyclase, blocked all increases in both cGMP and cAMP caused by NP, as well as the inhibition of platelet aggregation, suggesting that cAMP accumulation was secondary to that of cGMP. Human platelet cGMP-dependent protein kinase (PKG) coelectrophoresed with the purified bovine type Ibeta isoenzyme. An inhibitor of this enzyme (Rp)-beta-phenyl-1,N2-etheno-8-bromoguanosine 3',5'-cyclic-monophosphorothioate, diminished the inhibition of collagen-induced platelet aggregation by NP, but had little additional effect when DDA was present. This showed that both PKG and cAMP participate in the inhibition of collagen-induced platelet aggregation by NP. Moreover, selective activators of PKG and cAMP-dependent protein kinases had supra-additive inhibitory effects, suggesting that an optimal inhibitory effect of NP requires simultaneous activation of both enzymes.  相似文献   

12.
Background AngiotensinⅡ(AngⅡ) plays a critical role in the pathophysiology of cardiovascular diseases. Recently,studies have shown that Endoplasmic Reticulum (ER) stress was activated in failure hearts.This study was designed to examine whether ER stress participates in the pathologic process of AngⅡ-induced cardiomyocytes apoptosis. Methods Neonatal rat cardiomyocytes were incubated with concentrations of AngⅡ(0,1,10,100 nmol/L) for 24 hours.Confocal fluorescence microscopy with double staining of TUNEL and CHOP detected the percentage of apoptotic cells.Levels of GRP78,JNK,p-JNK,CHOP and caspase-12 were analyzed by western blot.Telmisartan(10- ~6mol/L) was used to test the effects of ATI receptor on AngⅡ- induced cell apoptosis,ER stress chaperones and signaling molecules.Results Treatment with AngⅡat 1,10, and 100 nmol/L for 24 hours stimulated GRP78,JNK,p-JNK and CHOP protein production,and increased apoptosis of myocytes.The protein expression and the number of apoptotic cells were depedent on AngⅡconcentration.About 60%of apoptotic cells were CHOP positive at 10 and 100nmol/L AngⅡtreatment,while no CHOP positive apoptotic cells were found at myocytes under physiological condition and 1 nmo/L AngⅡtreatment.Telmisartan decreased signaling molecules expression and abolished ER stress-mediated apoptosis induced by 100 nmol/L AngⅡ.Conclusions These results indicate that ER stress may be involved in the mechanisms of AngⅡ-induced cardiomyocytes apoptosis.JNK, caspase12 and CHOP all participate in the pathologic process.  相似文献   

13.
Nitric oxide (NO) donors were recently shown to produce biphasic contractile effects in cardiac tissue, with augmentation at low NO levels and depression at high NO levels. We examined the subcellular mechanisms involved in the opposing effects of NO on cardiac contraction and investigated whether NO modulates contraction exclusively via guanylyl cyclase (GC) activation or whether some contribution occurs via cGMP/PKG-independent mechanisms, in indo 1-loaded adult cardiac myocytes. Whereas a high concentration of the NO donor S-nitroso-N-acetylpenicillamine (SNAP, 100 micromol/L) significantly attenuated contraction amplitude by 24.4+/-4.5% (without changing the Ca2+ transient or total cAMP), a low concentration of SNAP (1 micromol/L) significantly increased contraction amplitude (38+/-10%), Ca2+ transient (26+/-10%), and cAMP levels (from 6.2 to 8.5 pmol/mg of protein). The negative contractile response of 100 micromol/L SNAP was completely abolished in the presence of the specific blocker of PKG KT 5823 (1 micromol/L); the positive contractile response of 1 micromol/L SNAP persisted, despite the presence of the selective inhibitor of GC 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 micromol/L) alone, but was completely abolished in the presence of ODQ plus the specific inhibitory cAMP analog Rp-8-CPT-cAMPS (100 micromol/L), as well as by the NO scavenger oxyhemoglobin. Parallel experiments in cell suspensions showed significant increases in adenylyl cyclase (AC) activity at low concentrations (0.1 to 1 micromol/L) of SNAP (AC, 18% to 20% above basal activity). We conclude that NO can regulate both AC and GC in cardiac myocytes. High levels of NO induce large increases in cGMP and a negative inotropic effect mediated by a PKG-dependent reduction in myofilament responsiveness to Ca2+. Low levels of NO increase cAMP, at least in part, by a novel cGMP-independent activation of AC and induce a positive contractile response.  相似文献   

14.
We addressed the hypothesis that noncholinergic parasympathetic nerves modulate airway smooth-muscle (ASM) tone in guinea pigs. The NO synthase inhibitor L-N(G)-nitro-arginine (L-NNA) and the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) potentiated cholinergic contractions and partly inhibited noncholinergic relaxations of the trachealis evoked by nerve stimulation in vitro or in situ. When delivered selectively to the trachea in situ, L-NNA and ODQ also increased baseline cholinergic tone of the trachealis, and L-NNA potentiated histamine-induced contractions of the trachealis in situ. L-Arginine prevented the effects of L-NNA. Vagotomy or selective nerve blockade with tetrodotoxin (TTX) mimicked the effects of L-NNA on histamine responses. The effects of TTX and L-NNA were not additive, however, suggesting that the two agents have common mechanisms of action, and indicating that other nonadrenergic, noncholinergic relaxant neurotransmitters lack influence under baseline conditions. When reflexly activated by bradykinin, noncholinergic parasympathetic nerves partly reversed histamine-induced contractions of the trachealis. L-NNA failed to inhibit this response, however, and did not potentiate the reflex tracheal cholinergic contractions produced by bradykinin. These results show that noncholinergic parasympathetic nerves modulate ASM tone. The NO-dependent component of this response is most effective at baseline levels of nerve activity.  相似文献   

15.
异丙肾上腺素对去势雌性大鼠心脏功能的影响   总被引:1,自引:0,他引:1  
目的探讨不同剂量异丙肾上腺素(ISO)对双侧卵巢切除大鼠心脏功能的影响。方法健康雌性SD大鼠90只,随机分为对照组、假手术组和双侧卵巢切除组(切除组),每组30只。术后4周3组大鼠进行心脏体外灌流,酶法分离得单个心肌细胞。分别测定各组单个心肌细胞基本收缩幅度和不同浓度ISO刺激心肌细胞收缩幅度;ISO 5 mg/(kg·d)腹腔注射28 d后,测定各组大鼠存活率。结果与对照组和假手术组比较,切除组大鼠心肌细胞基本收缩幅度和不同浓度ISO刺激心肌细胞收缩幅度均显著升高,且呈浓度依赖性升高(P0.05);切除组大鼠心肌细胞的存活率下降,大鼠28 d的存活率明显降低,差异有统计学意义(P0.05)。假手术组上述指标与对照组比较,差异无统计学意义(P0.05)。结论不同剂量ISO对双侧卵巢切除大鼠心脏功能的影响不同。双侧卵巢切除大鼠心脏抗ISO损伤能力减弱。  相似文献   

16.
Recently there has been growing evidence suggesting that beneficial effects of angiotensin-(1-7) [Ang-(1-7)] in the heart are mediated by its receptor Mas. However, the signaling pathways involved in these effects in cardiomyocytes are unknown. Here, we investigated the involvement of the Ang-(1-7)/Mas axis in NO generation and Ca(2+) handling in adult ventricular myocytes using a combination of molecular biology, intracellular Ca(2+) imaging, and confocal microscopy. Acute Ang-(1-7) treatment (10 nmol/L) leads to NO production and activates endothelial NO synthase and Akt in cardiomyocytes. Ang-(1-7)-dependent NO raise was abolished by pretreatment with A-779 (1 micromol/L). To confirm that Ang-(1-7) action is mediated by Mas, we used cardiomyocytes isolated from Mas-deficient mice. In Mas-deficient cardiomyocytes, Ang-(1-7) failed to increase NO levels. Moreover, Mas-ablation was accompanied by significant alterations in the proteins involved in the regulation of endothelial NO synthase activity, indicating that endothelial NO synthase and its binding partners are important effectors of the Mas-mediated pathway in cardiomyocytes. We then investigated the role of the Ang-(1-7)/Mas axis on Ca(2+) signaling. Cardiomyocytes treated with 10 nmol/L of Ang-(1-7) did not show changes in Ca(2+)-transient parameters such as peak Ca(2+) transients and kinetics of decay. Nevertheless, cardiomyocytes from Mas-deficient mice presented reduced peak and slower [Ca(2+)](i) transients when compared with wild-type cardiomyocytes. Lower Ca(2+) ATPase of the sarcoplasmic reticulum expression levels accompanied the reduced Ca(2+) transient in Mas-deficient cardiomyocytes. Therefore, chronic Mas-deficiency leads to impaired Ca(2+) handling in cardiomyocytes. Collectively, these observations reveal a key role for the Ang-(1-7)/Mas axis as a modulator of cardiomyocyte function.  相似文献   

17.
Enhancement of bradykinin and resensitization of its B2 receptor   总被引:11,自引:0,他引:11  
We studied the enhancement of the effects of bradykinin B2 receptor agonists by agents that react with active centers of angiotensin-converting enzyme (ACE) independent of enzymatic inactivation. The potentiation and the desensitization and resensitization of B2 receptor were assessed by measuring [3H]arachidonic acid release and [Ca2+]i mobilization in Chinese hamster ovary cells transfected to express human ACE and B2 receptor, or in endothelial cells with constitutively expressed ACE and receptor. Administration of bradykinin or its ACE-resistant analogue desensitized the receptor, but it was resensitized (arachidonic acid release or [Ca2+]i mobilization) by agents such as enalaprilat (1 micromol/L). Enalaprilat was inactive in the absence of ACE expression. La3+ (100 micromol/L) inhibited the apparent resensitization, probably by blocking the entry of extracellular calcium. Enalaprilat resensitized the receptor via ACE to release arachidonic acid by bradykinin at a lower concentration (5 nmol/L) than required to mobilize [Ca2+]i (1 micromol/L). Monoclonal antibodies inhibiting the ACE N-domain active center and polyclonal antiserum potentiated bradykinin. The snake venom peptide BPP5a and metabolites of angiotensin and bradykinin (angiotensin-[1-9], angiotensin-[1-7], bradykinin-[1-8]; 1 micromol/L) enhanced arachidonic acid release by bradykinin. Angiotensin-(1-9) and -(1-7) also resensitized the receptor. Enalaprilat potentiated the bradykinin effect in cells expressing a mutant ACE with a single N-domain active site. Agents that reacted with a single active site, on the N-domain or on the C-domain, potentiated bradykinin not by blocking its inactivation but by inducing crosstalk between ACE and the receptor. Enalaprilat enhanced signaling via ACE by Galphai in lower concentration than by Galphaq-coupled receptor.  相似文献   

18.
We have examined whether exogenous human tissue kallikrein exerts pharmacological actions via the bradykinin B2 receptor; specifically, whether the protease can bind to, cleave, internalize, and/or activate a fusion protein composed of the rabbit B2 receptor conjugated to the green fluorescent protein (B2R-GFP). The enzyme partially digested the fusion protein at 1 micromol/L, but not 100 nmol/L, and promoted B2R-GFP endocytosis in HEK 293 cells (> or =50 nmol/L). Trypsin and endoproteinase Lys-C, but not plasma kallikrein, also cleaved B2R-GFP. Phospholipase A2 was activated by 50 nmol/L tissue kallikrein in HEK 293 cells expressing B2R-GFP, and this was mediated by the receptor, as shown by the effect of a B2 receptor antagonist and by the lack of response in untransfected cells. However, 500 nmol/L kallikrein elicited a strong receptor-independent activation of phospholipase A2. Tissue kallikrein competed for [3H]bradykinin binding to B2R-GFP only at 1 micromol/L. A simulation involving kallikrein treatment of HEK 293 cells, pretreated or not with human plasma, evidenced the formation of immunoreactive bradykinin. The enzyme (50 nmol/L) contracted the rabbit isolated jugular vein via its endogenous B2 receptors, but the effect was tachyphylactic, and there was no cross-desensitization with bradykinin effects. Aprotinin prevented all pharmacological responses to tissue kallikrein, indicating that the enzyme activity is required for its effect. The local generation of kinins is a plausible mechanism for the pharmacological effects of lower concentrations of tissue kallikrein (50 to 100 nmol/L); higher levels (0.5 to 1 micromol/L) can not only initiate the degradation of rabbit B2 receptors but also exert nonreceptor-mediated effects.  相似文献   

19.
Chen Z  Tan F  Erdös EG  Deddish PA 《Hypertension》2005,46(6):1368-1373
We measured the cleavage of angiotensin I (Ang I) metabolites by angiotensin I-converting enzyme (ACE) in cultured cells and examined how they augment actions of bradykinin B2 receptor agonists. Monolayers of Chinese hamster ovary cells transfected to stably express human ACE and bradykinin B2 receptors coupled to green fluorescent protein (B2GFP) or to express only coupled B2GFP receptors. We used 2 ACE-resistant bradykinin analogues to activate the B2 receptors. We used high-performance liquid chromatography to analyze the peptides cleaved by ACE on cell monolayers and found that Ang 1-9 was hydrolyzed 18x slower than Ang I and &30% slower than Ang 1-7. Ang 1-7 was cleaved to Ang 1-5. Although micromol/L concentrations of slowly cleaved substrates Ang 1-7 and Ang 1-9 inhibit ACE, they resensitize the desensitized B2GFP receptors in nmol/L concentration, independent of ACE inhibition. This is reflected by release of arachidonic acid through a mechanism involving cross-talk between ACE and B2 receptors. When ACE was not expressed, the Ang 1-9, Ang 1-7 peptides were inactive. Inhibitors of protein kinase C-alpha, phosphatases and Tyr-kinase blocked this resensitization activity, but not basal B2 activation by bradykinin. Ang 1-9 and Ang 1-7 enhance bradykinin activity, probably by acting as endogenous allosteric modifiers of the ACE and B2 receptor complex. Consequently, when ACE inhibitors block conversion of Ang I, other enzymes can still release Ang I metabolites to enhance the efficacy of ACE inhibitors.  相似文献   

20.
The goal of the present study was to test the hypothesis that the CuZn isoform of superoxide dismutase (CuZnSOD) protects against angiotensin II (Ang II)-induced endothelial dysfunction. Vascular responses of carotid arteries from control, CuZnSOD-deficient (CuZnSOD(+/-)), and CuZnSOD transgenic mice were examined in vitro after overnight incubation with either vehicle or Ang II (1 or 10 nmol/L). In control mice, acetylcholine produced concentration-dependent relaxation that was not affected by 1 nmol/L Ang II. In contrast, relaxation to acetylcholine in arteries from CuZnSOD+/- mice was markedly and selectively attenuated after incubation with 1 nmol/L Ang II (eg, 100 micromol/L acetylcholine produced 93+/-6% and 44+/-15% relaxation in vehicle- and Ang II-treated arteries, respectively). A higher concentration of Ang II (10 nmol/L) selectively impaired relaxation to acetylcholine in arteries from control mice (eg, 100 micromol/L acetylcholine produced 96+/-4% and 45+/-7% relaxation in vehicle- and Ang II-treated vessels, respectively). In contrast, 10 nmol/L Ang II had no effect on responses to acetylcholine in carotid arteries from CuZnSOD transgenic mice (or in control mice treated with the superoxide scavenger Tiron [1 mmol/L]). Superoxide levels in control mice were higher in aorta treated with Ang II than with vehicle and were markedly reduced in CuZnSOD transgenic mice. These findings provide the first direct evidence that CuZnSOD limits Ang II-mediated impairment of endothelial function and that loss of 1 copy of the CuZnSOD gene is sufficient to enhance Ang II-induced vascular dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号