首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tanaka S  Koike T 《Glia》2002,40(3):360-371
The mrf-1 gene has been isolated from microglia exposed to cultured cerebellar granule neurons undergoing apoptosis. We have shown that mrf-1 is upregulated in response to neuronal death and degeneration both in vitro and in vivo. However, the exact role of MRF-1 remains unknown. Here we show that MRF-1 is released from cultured rat microglia, and its release is greatly enhanced under inflammatory conditions. When microglia were treated with ATP, the amount of MRF-1 that was released increased 10-fold compared to the basal level of release. Enhanced MRF-1 release was induced within 10 min and peaked within 1 h; after approximately 4 h, the MRF-1 release had returned to normal. MRF-1 release was stimulated by 2-methyl-thio-ATP (five-fold) and a P2X(7) selective agonist, 2'- and 3'-O-(4-benzoylbenzoyl)-ATP (ten-fold). Moreover, the ATP-stimulated MRF-1 release was inhibited by a P2X(7) selective antagonist, oxidized ATP (oATP), and also under a Ca(2+)-free condition. These results indicate that the effects of ATP are dependent on Ca(2+) influx through P2X(7) receptors. MRF-1 release was enhanced by Ca(2+)-ionophore A23187 (sixfold), thapsigargin (threefold); however, it was not enhanced by glutamate or lipopolysaccharide. Moreover, a platelet-activating factor enhanced microglial MRF-1 release in a dose-dependent manner. We also showed that a conditioned medium from cerebellar granule neurons undergoing apoptosis markedly increased MRF-1 release from microglia; that effect was significantly inhibited by oATP. These results indicate that selective inflammatory stimulations, including ATP and PAF, enhance MRF-1 release from microglia through a Ca(2+)-dependent mechanism and suggest that MRF-1 may play a role in cell-cell interactions under inflammatory conditions.  相似文献   

3.
In physiological and pathological events, extracellular ATP plays an important role by controlling several types of purinergic receptors and changing cytoskeleton dynamics. To know the process of ATP-dependent cytoskeleton remodeling, we focused on cofilin, a key regulator of actin cytoskeleton, and investigated the dynamics of cofilin in PC12 cells through fluorescent protein-labeled cofilin and actin, Ca(2+) imaging, and fluorescence resonance energy transfer (FRET) techniques. As a result, ATP induced intracellular Ca(2+) increase, following cofilin rods' formation. ATP-induced cofilin rods' formation was not observed in cells expressing unphosphorylatable variant of cofilin. A P2X receptor agonist, but not P2Y, induced the formation of cofilin rods, whereas calmodulin and calcineurin inhibitors suppressed it. These results indicate that Ca(2+) influx through P2X receptors induces the formation of cofilin rods via calcineurin-dependent dephosphorylation of cofilin. This pathway might be one candidate to explain the effects of ATP on neuronal development and injury.  相似文献   

4.
Activation of purinergic receptors by extracellular ATP (eATP) released from injured cells has been implicated in the pathogenesis of many neuronal disorders. The P2X7 receptor (P2X7R), an ion-selective purinergic receptor, is associated with microglial activation and paracrine signaling. However, whether ATP and P2X7R are involved in radiation-induced brain injury (RBI) remains to be determined. Here, we found that the eATP level was elevated in the cerebrospinal fluid (CSF) of RBI patients and was associated with the clinical severity of the disorder. In our experimental model, radiation treatment increased the level of eATP in the supernatant of primary cultures of neurons and glial cells and in the CSF of irradiated mice. In addition, ATP administration activated microglia, induced the release of the inflammatory mediators such as cyclooxygenase-2, tumor necrosis factor α and interleukin 6, and promoted neuronal apoptosis. Furthermore, blockade of ATP–P2X7R interaction using P2X7 antagonist Brilliant Blue G or P2X7 knockdown suppressed radiation-induced microglial activation and proliferation in the hippocampus, and restored the spatial memory of irradiated mice. Finally, we found that the PI3K/AKT and nuclear factor κB mediated pathways were downstream of ATP–P2X7R signaling in RBI. Taken together, our results unveiled the critical role of ATP–P2X7R in brain damage in RBI, suggesting that inhibition of ATP–P2X7R axis might be a potential strategy for the treatment of patients with RBI.  相似文献   

5.
Khoo C  Helm J  Choi HB  Kim SU  McLarnon JG 《Glia》2001,36(1):22-30
The effects of extracellular acidification on Ca(2+)-dependent signaling pathways in human microglia were investigated using Ca(2+)-sensitive fluorescence microscopy. Adenosine triphosphate (ATP) was used to elicit Ca(2+) responses primarily dependent on the depletion of intracellular endoplasmic reticulum (ER) stores, while platelet-activating factor (PAF) was used to elicit responses primarily dependent on store-operated channel (SOC) influx of Ca(2+). The duration of transient responses induced by ATP was not significantly different in standard physiological pH 7.4 (mean duration 30.2 +/- 2.5 s) or acidified pH 6.2 (mean duration 31.7 +/- 2.8 s) extracellular solutions. However, the time course of the PAF response at pH 7.4 was significantly reduced by 87% with external pH at 6.2. These results suggest that acidification of extracellular solutions inhibits SOC entry of Ca(2+) with little or no effect on depletion of ER stores. Changes of extracellular pH over the range from 8.6 to 6.2 during the development of a sustained SOC influx induced by PAF resulted in instantaneous modulation of SOC amplitude indicating a rapidly reversible effect of pH on this Ca(2+) pathway. Whole-cell patch clamp recordings showed external acidification blocked depolarization-activated outward K(+) current indicating cellular depolarization may be involved in the acid pH inhibition. Since SOC mediated influx of Ca(2+) is strongly modulated by membrane potential, the electrophysiological data suggest that acidification may act to inhibit SOC by cellular depolarization. These results suggest that acidification observed during cerebral ischemia may alter microglial responses and functions.  相似文献   

6.
Oligodendrocytes are vulnerable to excitotoxic insults mediated by AMPA receptors and by low and high affinity kainate receptors, a feature that is dependent on Ca(2+) influx. In the current study, we have analyzed the intracellular concentration of calcium [Ca(2+)](i) as well as the entry routes of this cation, upon activation of these receptors. Selective activation of either receptor type resulted in a substantial increase (up to fivefold) of [Ca(2+)](i), an effect which was totally abolished by the non-NMDA receptor antagonist CNQX or by removing Ca(2+) from the culture medium. Blockade of voltage-gated Ca(2+) channels with La(3+) or nifedipine, reduced the amplitude of the Ca(2+) current triggered by AMPA receptor activation by approximately 65%, but not that initiated by low and high affinity kainate receptors. In contrast, KB-R7943, an inhibitor of the plasma membrane Na(+)-Ca(2+) exchanger, solely attenuated the rise in [Ca(2+)](i) by approximately 25% due to activation of low affinity kainate receptors. However, oligodendroglial death by glutamate receptor overactivation was largely unaffected in the presence of La(3+) or KB-R7943. These findings indicate that Ca(2+) influx via AMPA and kainate receptors alone is sufficient to initiate cell death in oligodendrocytes, which does not require the entry of calcium via other routes such as voltage-activated calcium channels or the plasma membrane Na(+)-Ca(2+) exchanger.  相似文献   

7.
Extracellular ATP, by acting on P2 purinergic receptors, is a potent mediator of cell-to-cell communication both within and between the nervous and the immune systems. We show here by patch-clamp recording, fluorescent dye uptake and immunocytochemistry that, in cultured mouse Schwann cells, ATP activates a P2X(7) receptor associated with three different ionic conductances. In control conditions, ATP activated an inward current (I(ATP)) with a low potency (EC(50), 7.2 mM). Replacing ATP either by the ATP analogue 2',3'-O-(4-benzoyl-4-benzoyl)-ATP (BzATP) or by the tetraacidic form ATP(4-) potentiated the inward current (ATP(4-) EC(50), 375 microM). ATP and BzATP currents were strongly reduced by periodate oxidized ATP (oATP), an antagonist of P2X(7) receptors. IATP was a mixed current composed of a nonselective cationic conductance, a cationic conductance selective for K(+) and an anionic conductance selective for Cl(-). The activation of the K(+) conductance was dependent on an influx of Ca(2+), and was blocked by charybdotoxin (ChTX) and tetraethylammonium (TEA), two potent antagonists of large conductance Ca(2+)-activated K(+) channels (BK channels). The activation of the Cl(-) conductance was insensitive to Ca(2+) but required the presence of K(+). Total removal of K(+) blocked both the Ca(2+)-activated K(+) conductance and the Cl(-) conductance, unveiling the P2X(7) nonselective cationic conductance. The P2X(7) receptor was localized by immunocytochemistry using a polyclonal antibody, anti-P2X(7), whilst its expression and functionality were both detected by the uptake of Lucifer Yellow. This receptor could regulate the synthesis and the release of cytokines by Schwann cells during pathophysiological events.  相似文献   

8.
Hahn J  Jung W  Kim N  Uhm DY  Chung S 《Glia》2000,31(2):118-124
We measured the activity of the Ca(2+) release-activated Ca(2+) (CRAC) channel present in cultured rat microglia, using the whole-cell mode of patch clamp technique. When the concentration of divalent cations in external solution was reduced to the micromolar range, and Ca(2+) chelating agent BAPTA was included in the pipette solution, we were able to record Na(+) current through CRAC channels in single-channel levels. The unitary Na(+) conductance through CRAC channel was 42.5 pS, which was similar to that of Jurkat cell. The Na(+) current activated slowly, reaching the maximal current level in about 10 min after whole-cell patches were made. The time required for the half-maximal activation of the current was 205 s (+/-31), while it was reduced to 84.3 s (+/-17.7) by including IP(3) in the pipette solution as well. The peak currents ranged from 320 to 985 pA, which corresponded to 64-197 channels per cell. We studied the regulation of the current by protein kinase A (PKA) and protein kinase C (PKC). The current was enhanced by the addition of membrane-permeant analogue of cAMP, dibutyryl cAMP. Pretreating cells with PKA inhibitor, H-89, prevented the effect of dibutyryl cAMP. By contrast, the addition of PKC activator, PDBu, reduced the current. Staurosporine, a PKC inhibitor, prevented the effect of PDBu. These results suggest that CRAC channel in rat microglia is under the regulation of PKA and PKC in opposite directions.  相似文献   

9.
The P2X(7) receptor has been implicated in the release of cytokines and in the induction of cell death, and is up-regulated in a transgenic mouse model of Alzheimer's disease. Using cocultures of rat cortical neurons and microglia, we show that ATP and the more potent P2X(7) agonist benzoylbenzoyl-ATP (BzATP) cause neuronal cell injury. The deleterious effects of BzATP-treated microglia were prevented by nonselective P2X antagonists (PPADS and oxidized ATP) and by the more selective P2X(7) antagonist Brilliant Blue G. Similar concentrations of BzATP caused release of superoxide and nitric oxide from isolated microglia, and neuronal cell injury was attenuated by a superoxide dismutase mimetic and by a peroxynitrite decomposition catalyst, suggesting a role for reactive oxide species. Cocultures composed of wild-type cortical neurons, and microglia from P2X(7) receptor-deficient mice failed to exhibit neuronal cell injury in the presence of BzATP, but retained sensitivity to injury when microglia were derived from genotypically matched normal (P2X(7) (+/+) mice), thereby establishing P2X(7) involvement in the injury process. P2X(7) receptor activation on microglia thus appears necessary for microglial-mediated injury of neurons, and proposes that targeting P2X(7) receptors may constitute a novel approach for the treatment of acute and chronic neurodegenerative disorders where a microglial component is evident.  相似文献   

10.
The ventromedial hypothalamus is involved in regulating feeding and satiety behavior, and its neurons interact with specialized ependymal-glial cells, termed tanycytes. The latter express glucose-sensing proteins, including glucose transporter 2, glucokinase, and ATP-sensitive K(+) (K(ATP) ) channels, suggesting their involvement in hypothalamic glucosensing. Here, the transduction mechanism involved in the glucose-induced rise of intracellular free Ca(2+) concentration ([Ca(2+) ](i) ) in cultured β-tanycytes was examined. Fura-2AM time-lapse fluorescence images revealed that glucose increases the intracellular Ca(2+) signal in a concentration-dependent manner. Glucose transportation, primarily via glucose transporters, and metabolism via anaerobic glycolysis increased connexin 43 (Cx43) hemichannel activity, evaluated by ethidium uptake and whole cell patch clamp recordings, through a K(ATP) channel-dependent pathway. Consequently, ATP export to the extracellular milieu was enhanced, resulting in activation of purinergic P2Y(1) receptors followed by inositol trisphosphate receptor activation and Ca(2+) release from intracellular stores. The present study identifies the mechanism by which glucose increases [Ca(2+) ](i) in tanycytes. It also establishes that Cx43 hemichannels can be rapidly activated under physiological conditions by the sequential activation of glucosensing proteins in normal tanycytes.  相似文献   

11.
Activation of purinergic P2X7 receptors, principally by extracellular ATP, promotes the processing and release of the cytokine interleukin-1beta (IL-1beta) and induces cell death in activated microglia and macrophages. The objective of this study was to determine if IL-1beta release contributes directly to this cell death in microglia. Exposure of microglia to bacterial lipopolysaccharide (LPS) and ATP induced release of IL-1beta and IL-1alpha, as well as cell death. Neither cell death nor IL-1 release was observed in microglia lacking the P2X7 receptor. Microglia from mice lacking the IL-1beta gene demonstrated a profile of death identical to that of wild-type microglia in response to LPS and ATP. Thus, IL-1beta is not required for P2X7 receptor-stimulated microglial death.  相似文献   

12.
Protein kinase D (PKD) is a family of serine/threonine kinases that can be activated by many stimuli via protein kinase C in a variety of cells. This is the first report where PKD activation and localization is studied in glial cells. Herein, we demonstrate that P2Y2 and P2X7 receptor stimulation of primary rat cerebellar astrocytes rapidly increases PKD1/2 phosphorylation and activity. P2Y2 receptor response evokes a PKD1/2 activation that is dependent on a pertussis toxin‐insensitive G protein, phospholipase C (PLC)‐mediated generation of diacylglycerol, and protein kinase C. This mechanism is similar to the one described for other G‐protein coupled receptors. In contrast, the way the ionotropic P2X7 receptor activates PKD1/2 is significantly different. Importantly, this response is not dependent on calcium entry, but depends on the activity of several phospholipases, including phosphoinositide‐phospholipase C (PI‐PLC), phosphatidylcholine‐phospholipase C (PC‐PLC) and also phospholipase D (PLD). Immunoblot and confocal microscopy analysis show that PKD1/2 activation by nucleotides is transient. The active kinase first moves to and concentrates in certain plasma membrane domains. Then, phosphorylated‐PKD1/2 translocates to intracellular vesicles, where it remains active. All together, our results open the perspective of PKD1/2 being involved in many physiological functions where nucleotides play important roles not only in astrocytes but in other cell types bearing these receptors. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
P2X(7) receptors: properties and relevance to CNS function   总被引:1,自引:0,他引:1  
Duan S  Neary JT 《Glia》2006,54(7):738-746
Among seven members of P2X ionotropic receptors activated by extracellular ATP, the P2X(7) subtype is unique in that it can function as a cation channel, a nonselective pore, or even a signaling complex coupled with multiple downstream components. Several roles of P2X(7) receptors have been described in CNS cells in the past decade, including release of cytokines and transmitters, modulation of presynaptic transmitter release, and activation of multiple signaling pathways. The finding that P2X(7) pores may directly mediate efflux of cytosolic glutamate, GABA, and ATP in glial cells is particularly interesting, as it provides a novel mechanism of glial transmitter release that may play important roles not only in physiological intercellular communication but also in pathological neural injury.  相似文献   

14.
15.
Purpose:  Adenosine is considered an endogenous anticonvulsant. However, much less is known about the putative effects of its precursor, ATP, on epilepsy. Therefore, we tested whether ATP and its receptors are able to modulate epileptiform activity in the medial entorhinal cortex of the rat. Methods:  Recurrent epileptiform discharges (REDs) were induced by elevating extracellular potassium concentration combined with application of bicuculline in brain slices from naive and pilocarpine‐treated chronic epileptic rats. Field potentials were recorded from layer V/VI of the medial entorhinal cortex. Key Findings:  REDs in slices from naive animals had a higher incidence and a shorter duration than in slices from chronic epileptic animals. Exogenous application of ATP reversibly reduced the incidence of REDs in naive and chronic epileptic slices via activation of adenosine A1 receptors without discernible P2 receptor effects. This effect was stronger in slices from chronic epileptic rats. In slices from naive rats, the P2X7 receptor antagonist A 740003 slightly but significantly reduced the amplitude of slow field potentials of REDs. In slices from chronic epileptic rats, none of the P2 receptor antagonists affected the parameters of REDs. Significance:  Our results suggest that endogenously released ATP differentially modulates REDs by activation of A1 and P2X7 receptors. Although it has a minor proepileptic effect by direct activation of P2X7 receptors, its metabolite adenosine reduces the epileptiform activity via activation of A1 receptors. The exact effect of ATP on neural activity depends on the actual activity of ectonucleotidases and the expression level of the purinergic receptors, which both alter during epileptogenesis. In addition, our data suggest that P2X7 receptor antagonists have a minor antiepileptic effect.  相似文献   

16.
P2X7 receptor is an important member of ATP-sensitive ionotropic P2X receptors family, which includes seven receptor subtypes (P2X1-P2X7). Recent evidence indicates that P2X7R participates in the onset and persistence of neuropathic pain. In tetanic stimulation of the sciatic nerve model, P2X7R was involved in the activation of microglia, but whether this happens in other neuropathic pain models remains unclear. In this study we used immunohistochemistry and Western blot to explore the relationship of P2X7R expression with microglia activation, and with mechanical allodynia and thermal hypersensitivity in the chronic constriction of the sciatic nerve (CCI) rat model. The results show that following nerve ligature, mechanical allodynia and thermal hypersensitivity were developed within 3 days (d), peaked at 14 d and persisted for 21 d on the injured side. P2X7R levels in the ipsilateral L4-6 spinal cord were increased markedly after injury and the highest levels were observed on day 14, significant difference was observed at I-IV layers of the dorsal horn. The change in P2X7R levels in the spinal cord was consistent with the development of mechanical allodynia and thermal hypersensitivity. Intrathecal administration of the P2X7R antagonist Brilliant Blue G (BBG) reversed CCI-induced mechanical allodynia and thermal hypersensitivity. Double-labeled immunofluorescence showed that P2X7R expression were restricted to microglia, spinal microglia were activated after nerve injury, which was inhibited by BBG. These results indicated that spinal P2X7R mediate microglia activation, this process may play an important role in development of mechanical allodynia and thermal hypersensitivity in CCI model.  相似文献   

17.
ATP is an important signaling molecule in the nervous system and it's signaling is mediated through the metabotropic P2Y and ionotropic P2X receptors. ATP is known to stimulate Ca(2+) influx and phospholipase D (PLD) activity in the type-2 astrocyte cell line, RBA-2; in this study, we show that the release of preloaded [(3)H]GABA from RBA-2 cells is mediated through the P2X(7) receptors. ATP and the ATP analogue 3'-O-(4-benoylbenoyl)-adenosine-5'-triphosphate (BzATP) both stimulated [(3)H]GABA release in a concentration dependent manner, while the nonselective P2 receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), the P2X(7)-sensitive antagonist oxidized ATP (oATP), and high extracellular Mg(2+) all inhibited the ATP-stimulated [(3)H]GABA release. The ATP-stimulated [(3)H]GABA release was not affected neither by removing extracellular Na(+) nor by changes in the intracellular or extracellular Ca(2+) concentration. The GABA transporter inhibitors nipecotic acid and beta-alanine also had no effect. The ATP-stimulated [(3)H]GABA release was blocked, however, when media Cl(-) was replaced with gluconate and when extracellular HCO(3)(-) was removed. The Cl(-) channel/exchanger blockers 4,4'-diisothiocyanatostilbene-2',2'-disulfonic acid (DIDS) and 4-acetamido-4'- isothiocyanatostilbene-2',2'-disulfonic acids (SITS), but not diphenylamine-2-carboxylic acid (DPC) and furosemide, blocked the ATP-stimulated [(3)H]GABA release. The anionic selectivity of the process was F(-) > Cl(-) > Br(-) which is the same as that reported for volume-sensitive Cl(-) conductance. Treating cells with phorbol-12-myristate 13-acetate (PMA), forskolin, dibutyryl-cAMP, PD98059, neomycin, and D609 all inhibited the ATP-stimulated [(3)H]GABA release. We concluded that in RBA-2 cells, ATP stimulates [(3)H]GABA release through the P2X(7) receptors via a Cl(-)/HCO(3)(-)-dependent mechanism that is regulated by PKC, PKA, MEK/ERK, and PLD.  相似文献   

18.
The P2X(7) purinergic receptor subtype has been cloned and emphasized as a prototypic P2Z receptor involved in neurotransmission in the central nervous system and ATP-mediated lysis of macrophages in the immune system. Less is known about the neurobiology of P2X(7) receptors in the enteric nervous system (ENS). We studied the distribution of the receptor with indirect immunofluorescence and used selective agonists and antagonists to analyze pharmacologic aspects of its electrophysiologic behavior as determined with intracellular "sharp" microelectrodes and patch-clamp recording methods in neurons identified morphologically by biocytin injection in the ENS. Application of ATP or 2'- (or-3'-) O-(4-benzoylbenzoyl) adenosine 5'-triphosphate (BzBzATP) activated an inward current in myenteric neurons. Brilliant blue G, a selective P2X(7) antagonist, suppressed the responses to both agonists. Potency of the antagonist was greatest (smaller IC(50)) for the current evoked by BzBzATP. The P2X(7) antagonists 1-[N,O-bis (1,5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-piperazine (KN-62) and oxidized ATP also suppressed the BzBzATP-activated current. Micropressure application of BzBzATP evoked rapidly activating depolarizing responses in intracellular studies with "sharp" microelectrodes. Oxidized-ATP suppressed these responses in both myenteric and submucosal neurons. Rapidly activating depolarizing responses evoked by application of nicotinic, serotonergic 5-HT(3), or gamma-aminobutyric acid A (GABA(A)) receptor agonists were unaffected by brilliant blue G. Immunoreactivity for the P2X(7) receptor was widely distributed surrounding ganglion cell bodies and associated with nerve fibers in both myenteric and submucous plexuses. P2X(7) immunoreactivity was colocalized with synapsin and synaptophysin and surrounded ganglion cells that contained either calbindin, calretinin, neuropeptide Y, substance P, or nitric oxide synthase. The mucosa, submucosal blood vessels, and the circular muscle coat also showed P2X(7) receptor immunoreactivity.  相似文献   

19.
Objective: Chronic restraint stress exacerbates pain and inflammation. The present study was designed to evaluate the effect of chronic restraint stress on inflammatory pain induced by subcutaneous injection of bee venom (BV).

Methods: First, we investigated: (1) the effect of two-week restraint stress with daily 2 or 8 h on the baseline paw withdrawal mechanical threshold (PWMT), paw withdrawal thermal latency (PWTL) and paw circumference (PC); (2) the effect of chronic stress on the spontaneous paw-flinching reflex (SPFR), decrease in PWM, PWTL and increase in PC of the injected paw induced by BV.

Results: The results showed that (1) chronic restraint decreased significantly the PWMT and inhibited significantly the increase in PC, but had no effect on PWTL, compared with control group; (2) chronic restraint enhanced significantly BV-induced SPFR and inflammatory swelling of the injected paw. In a second series of experiments, the role of P2X7 receptor (P2X7R) in the enhancement of BV-induced inflammatory pain produced by chronic restraint stress was determined. Systemic pretreatment with P2X7R antagonist completely reversed the decrease in PWMT produced by chronic restraint, inhibited significantly the enhancement of BV-induced inflammatory pain produced by chronic restraint stress.

Conclusion: Taken together, our data indicate that chronic restraint stress-enhanced nociception and inflammation in the BV pain model, possibly involving the P2X7R.  相似文献   

20.
In previous papers, we reported that ATP calcium responses in cerebellar astrocytes were strongly potentiated by preincubation with nanomolar concentrations of the diadenosine pentaphosphate Ap(5)A. However, the intracellular signaling pathway mediating this effect was not defined. We also showed that stimulation of astrocytes with the dinucleotide led to the activation of extracellular regulated kinases (ERKs). Here, we examined whether ERKs are involved in the potentiating mechanism and intracellular mechanism leading to their activation. Epidermal growth factor (EGF) exactly reproduced the potentiation displayed by the dinucleotide. Moreover, the potentiation of ATP responses by Ap(5)A and EGF was completely abolished by the MAP kinase (MEK) inhibitor U-0126, indicating that ERK activation is a required step for the potentiation event. Our data also indicated that ERK activation and the potentiation of ATP calcium responses were sensitive to the src-like kinase inhibitor herbimycin A, p21(ras) farnesyltransferase inhibitor peptide, and some PKC inhibitors. Taken together, our findings reveal that Ap(5)A triggers the potentiation of ATP calcium responses through an intracellular mechanism that is insensitive to pertussis toxin and that this potentiation requires src protein-mediated ERK activation and the participation of an atypical protein kinase C isoform activated downstream from ERK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号