首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficiency of industrial local exhaust ventilation is defined as the ratio of air contaminant quantity captured by the system per unit time to the total contaminant quantity produced by the process per unit time. To date, no direct method exists for this evaluation. This paper describes a tracer gas technique, using sulfur hexafluoride (SF6), which has been developed for the evaluation of local exhaust system efficiency. SF6 was discharged at a known rate into the industrial process generation area. Then, by comparing this quantity to that captured by the exhaust system, as measured in the exhaust duct, hood efficiency is determined. Major advantages of this technique are: The tracer gas technique is able to evaluate directly the hood efficiency. The tracer gas technique is not affected by cross-contamination from nearby industrial processes. The tracer gas technique can be conducted "on site" with minimal interruption of industrial process or interference with workers' duties. The tracer gas, using SF6 is non-toxic. Since SF6 is a gas, this technique may be limited to efficiency evaluation of hoods associated with gases, fumes, vapors, or fine particles.  相似文献   

2.
The most commonly reported control used to minimize workplace exposures to nanomaterials is the chemical fume hood. Studies have shown, however, that significant releases of nanoparticles can occur when materials are handled inside fume hoods. This study evaluated the performance of a new commercially available nano fume hood using three different test protocols. Tracer gas, tracer nanoparticle, and nanopowder handling protocols were used to evaluate the hood. A static test procedure using tracer gas (sulfur hexafluoride) and nanoparticles as well as an active test using an operator handling nanoalumina were conducted. A commercially available particle generator was used to produce sodium chloride tracer nanoparticles. Containment effectiveness was evaluated by sampling both in the breathing zone (BZ) of a mannequin and operator as well as across the hood opening. These containment tests were conducted across a range of hood face velocities (60, 80, and 100 ft/min) and with the room ventilation system turned off and on. For the tracer gas and tracer nanoparticle tests, leakage was much more prominent on the left side of the hood (closest to the room supply air diffuser) although some leakage was noted on the right side and in the BZ sample locations. During the tracer gas and tracer nanoparticle tests, leakage was primarily noted when the room air conditioner was on for both the low and medium hood exhaust airflows. When the room air conditioner was turned off, the static tracer gas tests showed good containment across most test conditions. The tracer gas and nanoparticle test results were well correlated showing hood leakage under the same conditions and at the same sample locations. The impact of a room air conditioner was demonstrated with containment being adversely impacted during the use of room air ventilation. The tracer nanoparticle approach is a simple method requiring minimal setup and instrumentation. However, the method requires the reduction in background concentrations to allow for increased sensitivity.  相似文献   

3.
A method to measure the emission rate of an airborne pollutant source using a tracer gas was tested in the case of an aerosol source. The influence of particle deposition on the walls of a test room of 72 m3 was studied. The deposition rate of an aerosol of MgCl2 was determined by means of two methods: one based on measuring the aerosol concentration decay inside the ventilated room, the other based on calculation of the material mass balance. The concentration decay was monitored by optical counting and the aerosol mass concentration determined by means of sampling on a filter and analysis of the mass deposited by atomic absorption spectrometry. Four series of measurements were carried out. The curve giving the deposition rate according to the particle aerodynamic diameter (d(ae)) was established and shows deposition rates higher than those predicted using the model of Corner. The decay method gives the best results. The study carried out has shown that the phenomenon of deposition has little effect on the measurement of the aerosol source emission rate using a tracer gas for particles of aerodynamic diameter < 5 microm (underestimation < 25%). For particles of a greater diameter, wall deposition is an extremely limiting factor for the method, the influence of which can, however, be limited by using a test booth of small volume and keeping the sampling duration as short as possible.  相似文献   

4.
Studies of the efectiveness of upper air ultra violet (UV) radiation against artificially generated bacterial aerosols were conducted in a laboratory test room with an 8 foot 6 Inch ceiling; the room was ventilated with six air changes per hour (ch/hr). At or below the five-foot level in the room, reflected UV radiation ranged from 0.02; to 2.6μw/sq cm, in the upper portion of the room, direct UV radiation ranged from about 10 to 150μw/sq cm. The test organism was late-log-phase Serratia marcescens in aerosols with single viable cells per particle; count median diameters (CMD) of 2.7μ and 5.2μ were generated With the 2.7μ and 5.2μ CMD aerosols, equivalent added! sanitary ventilation of 39 ch/hr and 18 ch/hr were produced, respectively; these values are meaningful improvements in sanitary ventilation.  相似文献   

5.
The ability of room air cleaners to remove gases and particles from air contaminated with tobacco smoke has been studied. Thirty-one air cleaners were tested. Various air-cleaning devices were used, ie, electrostatic precipitators, electret fiber filters, ionizers, activated carbon, impregnated alumina, ionizing lamps, and an electron generator. The airflow rates were in the range of 0-500 m3/h. The measurements covered particle sizes of 0.01-7.5 microns and the following gases: carbon monoxide, ammonia, formaldehyde, nitric oxide, nitrogen dioxide, hydrocarbons, and hydrogen cyanide. No formal standard procedure exists for testing room air cleaners; therefore the tests were made in the following way. Tobacco smoke was generated and mixed in a closed room. The room air cleaner was started, and the decay rates for the gases and particles were measured. The results were calculated as equivalent airflow rates, ie, the clean airflow rate causing the same decay rate for contaminant concentrations in a room. The equivalent airflow rates were 0-360 m3/h. The rate of ozone emission by electrostatic precipitators and ionizers was also measured. One general conclusion was that it is much more difficult to remove gases than particles.  相似文献   

6.
According to the Machinery Directive 2006/42/EC, one of the essential requirements relating to occupational safety and health hazards is to prevent dust pollution emitted by machinery during the implementation processes. Research on evaluation of emissions from machinery, according to the method of test bench using tracer gases, are currently being conducted in CIOP-PIB. This article presents some aspects of dust emission and efficiency of local exhaust ventilation (LEV) during metal grinding. Studies were performed with 10 sources of dust emissions during grinding. To evaluate the pollutants emission in the process of grinding metal products sulfur hexafluoride (SF(6)) was selected as a tracer gas. The results show that wherever dust is emitted, the LEV should be supported by the general ventilation. Ensure good interaction between all elements of modifying the air flow and the spread of pollutants in the surroundings of the LEV is essential to effective protection of human working zone against pollutants. We used five variants of ventilation: ventilation turned off, the LEV, one-way general ventilation, mixed general ventilation and displacement general ventilation. An increase in the efficiency of dust capture depending on the source of emission by 2.5-14% was observed. This confirms that characteristics of flow resulting from the operation of ventilation is important in the spread of pollutants in the room.  相似文献   

7.
目的 测定和分析某医院住院部病房楼空气流向及其与排风管道分布的关系并探讨和验证严重急性呼吸综合征(SARS)在医院感染可能的传播途径和影响因素。方法 在某医院住院部SARS输入病例所在病房卫生间燃放植物油熏香(示踪气体);为控制病房卫生间排风扇的开启、顶层抽风机的状态和病房新风系统等主要影响因素,共设计了6种实验状态。由4组实验员分别盲法到各楼层的4、5号病房采集、测量空气样本,并分别按10等分记分法评估其气味浓度。结果 在医院住院部8~13层的各病房均检测到示踪气体,在不同实验状态下,气体弥散的方向和浓度不尽相同。结论 医院目前的建筑结构和通风系统具备了病原体气溶胶自下而上经排风管道垂直传播的通道和空气动力学条件,示踪气体的分布与发病分布有一定的关联性。提示SARS存在气溶胶或其他载体形式长距离传播的可能性和证据,而在现有设施条件下,针对性的预防管理措施可在一定程度上阻断病原体经排风系统的传播。  相似文献   

8.
To evaluate the efficacy of engineering controls in reducing worker exposure to metalworking fluids, an evaluation of an enclosure for a machining center during face milling was performed. The enclosure was built around a vertical metal machining center with an attached ventilation system consisting of a 25-cm diameter duct, a fan, and an air-cleaning filter. The evaluation method included using sulfur hexafluoride (SF6) tracer gas to determine the ventilation system's flow rate and capture efficiency, a respirable aerosol monitor (RAM) to identify aerosol leak locations around the enclosure, and smoke tubes and a velometer to evaluate air movement around the outside of the enclosure. Results of the tracer gas evaluation indicated that the control system was approximately 98% efficient at capturing tracer gas released near the spindle of the machining center. This result was not significantly different from 100% efficiency (p = 0.2). The measured SF6 concentration when released directly into the duct had a relative standard deviation of 2.2%; whereas, when releasing SF6 at the spindle, the concentration had a significantly higher relative standard deviation of 7.8% (p = 0.016). This increased variability could be due to a cyclic leakage at a small gap between the upper and lower portion of the enclosure or due to cyclic stagnation. Leakage also was observed with smoke tubes, a velometer, and an aerosol photometer. The tool and fluid motion combined to induce a periodic airflow in and out of the enclosure. These results suggest that tracer gas methods could be used to evaluate enclosure efficiency. However, smoke tubes and aerosol instrumentation such as optical particle counters or aerosol photometers also need to be used to locate leakage from enclosures.  相似文献   

9.
Nano-enabled construction products have entered into commerce. There are concerns about the safety of manufactured nanomaterials, and exposure assessments are needed for a more complete understanding of risk. This study assessed potential inhalation exposure to ZnO nanoparticles during spray application and power sanding of a commercially available wood sealant and evaluated the effectiveness of local exhaust ventilation in reducing exposure. A tradesperson performed the spraying and sanding inside an environmentally-controlled chamber. Dust control methods during sanding were compared. Filter-based sampling, electron microscopy, and real-time particle counters provided measures of exposure. Airborne nanoparticles above background levels were detected by particle counters for all exposure scenarios. Nanoparticle number concentrations and particle size distributions were similar for sanding of treated versus untreated wood. Very few unbound nanoparticles were detected in aerosol samples via electron microscopy, rather nano-sized ZnO was contained within, or on the surface of larger airborne particles. Whether the presence of nanoscale ZnO in these aerosols affects toxicity merits further investigation. Mass-based exposure measurements were below the NIOSH Recommended Exposure Limit for Zn, although there are no established exposure limits for nanoscale ZnO. Local exhaust ventilation was effective, reducing airborne nanoparticle number concentrations by up to 92% and reducing personal exposure to total dust by at least 80% in terms of mass. Given the discrepancies between the particle count data and electron microscopy observations, the chemical identity of the airborne nanoparticles detected by the particle counters remains uncertain. Prior studies attributed the main source of nanoparticle emissions during sanding to copper nanoparticles generated from electric sander motors. Potentially contrary results are presented suggesting the sander motor may not have been the primary source of nanoparticle emissions in this study. Further research is needed to understand potential risks faced by construction workers exposed to mixed aerosols containing manufactured nanomaterials. Until these risks are better understood, this study demonstrates that engineering controls can reduce exposure to manufactured nanomaterials; doing so may be prudent for protecting worker health.  相似文献   

10.
A numerical method is presented to estimate the concentration of occupant-generated CO(2) for the (time-varying) occupancy typically found in nonforced ventilated elementary school classrooms. Here, the governing mass balance was solved numerically and compared to experimental measurements in order to estimate the respiration and (time-varying) infiltration rates. For the cases studied, we estimate an average CO(2) generation rate per child as 404 mg/min(-1). This is similar to estimates found in the literature for the age and activity level of elementary students, the classroom occupants. The average estimated infiltration rates were found to be larger than those measured from the decay of the tracer gas SF(6) under closed-door static conditions. The in-use infiltration rates were increased by additional air exchange due to people entering and leaving the room. In addition, we show that the difference (or error) between the instantaneous concentration of CO(2) and the time-averaged value recorded by a data-logging CO(2) monitor varies depending on the infiltration rate and sampling time. Therefore, the time interval selected for averaging may increase the overall error of the apparent CO(2) concentration. We conclude that the methods used to measure air exchange rates in naturally ventilated rooms underestimate the actual ventilation rate of a room under "in-use" conditions. However, even with the addition of uncontrolled outdoor air, the concentration of CO(2) in the classrooms studied was higher than recommended to meet air quality objectives.  相似文献   

11.
A year-long investigation of air change rates in an occupied house was undertaken to establish the effects of temperature, wind velocity, use of exhaust fans, and window-opening behavior. Air change rates were calculated by periodically injecting a tracer gas (SF(6)) into the return air duct and measuring the concentration in 10 indoor locations sequentially every minute by a gas chromatograph equipped with an electron capture detector. Temperatures were also measured outdoors and in the 10 indoor locations. Relative humidity (RH) was measured outdoors and in five indoor locations every 5 min. Wind speed and direction in the horizontal plane were measured using a portable meteorological station mounted on the rooftop. Use of the thermostat-controlled attic fan was recorded automatically. Indoor temperatures increased from 21 degrees C in winter to 27 degrees C in summer. Indoor RH increased from 20% to 70% in the same time period. Windows were open only a few percent of the time in winter but more than half the time in summer. About 4600 hour-long average air change rates were calculated from the measured tracer gas decay rates. The mean (SD) rate was 0.65 (0.56) h(-1). Tracer gas decay rates in different rooms were very similar, ranging only from 0.62 to 0.67 h(-1), suggesting that conditions were well mixed throughout the year. The strongest influence on air change rates was opening windows, which could increase the rate to as much as 2 h(-1) for extended periods, and up to 3 h(-1) for short periods of a few hours. The use of the attic fan also increased air change rates by amounts up to 1 h(-1). Use of the furnace fan had no effect on air change rates. Although a clear effect of indoor-outdoor temperature difference could be discerned, its magnitude was relatively small, with a very large temperature difference of 30 degrees C (54 degrees F) accounting for an increase in the air change rate of about 0.6 h(-1). Wind speed and direction were found to have very little influence on air change rates at this house.  相似文献   

12.
More than a dozen indoor air quality studies have reported a large discrepancy between concentrations measured by stationary indoor monitors (SIMs) and personal exposure monitors (PEMs). One possible cause of this discrepancy is a source proximity effect, in which pollutant sources close to the respondent cause elevated and highly variable exposures. This paper describes three sets of experiments in a home using real-time measurements to characterize and quantify the proximity effect relative to a fixed distant location analogous to a SIM. In the first set of experiments, using sulfur hexafluoride (SF6) as a continuously emitting tracer pollutant from a point source, measurements of pollutant concentrations were made at different distances from the source under different air exchange rates and source strengths. A second set of experiments used a continuous point source of carbon monoxide (CO) tracer pollutant and an array of high time resolution monitors to collect simultaneous concentration readings at different locations in the room. A third set of experiments measured particle count density and particle-bound polycyclic aromatic hydrocarbon (PAH) concentrations emitted from a continuous particle point source (an incense stick) using two particle counters and two PAH monitors, and included human activity periods both before and during the source emission period. Results from the SF6 and CO experiments show that while the source is emitting, a source proximity effect can be seen in the increases in the mean and median and in the variability of concentrations closest to the source, even at a distance of 2.0 m from the source under certain settings of air exchange rate and source strength. CO concentrations at locations near the source were found to be higher and more variable than the predictions of the mass balance model. For particles emitted from the incense source, a source proximity effect was evident for the fine particle sizes (0.3 to 2.5 microm) and particle-bound PAH up to at least 1.0 m from the source. Analysis of spatial and temporal patterns in the data for the three tracer pollutants reveal marked transient elevations of concentrations as seen by the monitor, referred to as "microplumes," particularly at locations close to the source. Mixing patterns in the room show complex patterns and directional effects, as evidenced by the variable intensity of the microplume activity at different locations. By characterizing the spatial and temporal variability of pollutant concentrations in the home, the proximity effect can be quantified, leading to improved indoor monitoring designs and models of human exposure to air pollutants.  相似文献   

13.
A measuring method of the emission rate of an atmospheric pollutant source, based on the use of a tracer gas (helium) and developed in the case of a gaseous source, was tested for an aerosol source. The influence of both particle sedimentation and wall depositions was studied. The transport coefficients of the tracer gas and of alumina particles of various particle sizes (MMAD from 8 to 36 microns) were measured on a vertical axis close to the source, in a 71 m3 room swept by a piston flow. The measurements clearly demonstrated the predominant influence of sedimentation in the case of particles with aerodynamic diameters greater than 10 microns. Particle wall deposition was determined by measuring the gas and particle concentration decay in the ventilated room. To do this, a new tracing method using a fluorescent aerosol was developed. The measured aerosol deposition rates are much higher than those calculated from the formula of Corner for a cubical volume. Aerosol sedimentation and wall deposition are two phenomena limiting the use of a tracer gas to measure the aerosol emission rate. The chemical substances and materials used in work premises are likely to be released into the atmosphere and lead to the formation of pollutants. These emissions stem from either physical or chemical processes (evaporation of a solvent) or from mechanical processes (dispersion of oil droplets at the source of mists).  相似文献   

14.
Certain respiratory tract infections are transmitted through air. Coughing and sneezing by an infected person can emit pathogen-containing particles with diameters less than 10 microm that can reach the alveolar region. Based on our analysis of the sparse literature on respiratory aerosols, we estimated that emitted particles quickly decrease in diameter due to water loss to one-half the initial values, and that in one cough the volume in particles with initial diameters less than 20 microm is 60 x 10(-8) mL. The pathogen emission rate from a source case depends on the frequency of expiratory events, the respirable particle volume, and the pathogen concentration in respiratory fluid. Viable airborne pathogens are removed by exhaust ventilation, particle settling, die-off, and air disinfection methods; each removal mechanism can be assigned a first-order rate constant. The pathogen concentration in well-mixed room air depends on the emission rate, the size distribution of respirable particles carrying pathogens, and the removal rate constants. The particle settling rate and the alveolar deposition fraction depend on particle size. Given these inputs plus a susceptible person's breathing rate and exposure duration to room air, an expected alveolar dosemicrois estimated. If the infectious dose is one organism, as appears to be true for tuberculosis, infection risk is estimated by the expression: R = 1-exp(-micro). Using published tuberculosis data concerning cough frequency, bacilli concentration in respiratory fluid, and die-off rate, we illustrate the model via a plausible scenario for a person visiting the room of a pulmonary tuberculosis case. We suggest that patients termed "superspreaders" or "dangerous disseminators" are those infrequently encountered persons with high values of cough and/or sneeze frequency, elevated pathogen concentration in respiratory fluid, and/or increased respirable aerosol volume per expiratory event such that their pathogen emission rate is much higher than average.  相似文献   

15.
The effect of ventilation on airborne contamination was studied in a new operating suite containing operating rooms with conventional ventilation (17-20 turnovers/h) and operating rooms with zonal ventilation, where the turnover in the central part of the room was ~ 80/h. The efficacy of the ventilation was first examined with gas tracer experiments and found satisfactory. Experiments using potassium iodide particles showed the transfer between adjacent rooms in the suite to be less than 10-3% with closed doors and from 1% to 2·5 × 10-2% when the doors were opened once a minute. The transfer between two adjacent operating rooms was calculated to be ~ 10-4%. There is thus little risk of spread of airborne infection between operating rooms.  相似文献   

16.
BACKGROUND AND OBJECTIVE: Despite the novelties in operating room ventilation, airborne bacteria remain an important source of surgical wound contamination. An ultraclean airflow from the ceiling downward may convey airborne particles from the surgical team into the wound, thus increasing the risk of infection. Therefore, similar ventilation from the wound upward should be considered. We investigated the effect of wound ventilation on the concentration of airborne particles in a wound model during simulated surgery. DESIGN: Randomized experimental study simulating surgery with a wound cavity model. SETTING: An operating room of a university hospital ventilated with ultraclean air directed downward. INTERVENTIONS: Particles 5 microm and larger were counted with and without a 5-cm deep cavity and with and without the insufflation of ultraclean air. RESULTS: With the surgeon standing upright, no airborne particles could be detected in the wound model. In contrast, during simulated operations, the median number of particles per 0.1 cu ft reached 18 (25th and 75th percentiles, 12 and 22.25) in the model with a cavity and 15.5 (25th and 75th percentiles, 14 and 21.5) without. With a cavity, wound ventilation markedly reduced the median number of particles to 1 (range, 0 to 1.25; P < .001). CONCLUSIONS: To protect a surgical wound against direct airborne contamination, air should be directed away from the wound rather than toward it. This study provides supportive evidence to earlier studies that operating room ventilation with ultraclean air is imperfect during surgical activity and that wound ventilation may be a simple complement. Further clinical trials are needed.  相似文献   

17.
Knowledge of dispersion rates and patterns of radioactive aerosols and gases through workrooms is critical for understanding human exposure and for developing strategies for worker protection. The dispersion within rooms can be influenced by complex interactions between numerous variables, but especially ventilation design and room furnishings. For this study, dependence of airflow and aerosol dispersion on workroom geometry (furnishings) and ventilation rate were studied in an experimental room that was designed to approximate a plutonium laboratory. Three different configurations of simulated gloveboxes and two ventilation rates (approximately 6 and 12 air exchanges per hour) were studied. A sonic anemometer was used to measure airflow parameters including all three components of air velocity vectors and turbulence intensity distributions at multiple locations and heights. Aerosol dispersion rates and patterns were measured by releasing aerosols multiple times from six different locations. Aerosol particle concentrations resolved in time and space were measured using 16 multiplexed laser particle counters. Comparisons were made of air velocities, turbulence, and aerosol transport across different ventilation rates and room configurations. A strong influence of ventilation rate on aerosol dispersion rates and air velocity was found, and changes in room geometry had significant effects on aerosol dispersion rates and patterns. These results are important with regards to constant evaluation of placement of air sampling equipment, benchmarking numerical models of room airflow, and design of ventilation and room layouts with consideration of worker safety.  相似文献   

18.
目的 在粉尘发生源处设置适用的局部吸气罩,可以有效地控制粉尘向周围扩散,是预防尘肺病发生的有效措施。为了提供适宜吸气罩的设计,使用了示踪气体法评价吸气罩的效率,对吸气罩的设计进行优选,以提高捕集效率和降低能耗。方法 建立示踪气体评价吸气罩效率的实验风道和方法,采用人工煤气作为示踪气体。结果 实验了长方形和无延伸挡板及有特殊延伸挡板的条缝形吸气罩在不同罩口风速下对示踪气体的捕集效率。导出了捕集效率和距离的关系方程式。实验结果表明:(1)吸气罩与污染源的距离和罩口风速对捕集效率有明显的影响。当罩口风速一定时。吸气罩越靠近污染源,捕集效率越高;而在同一距离上,罩口风速越大,捕集效率就越高。(2)有延伸挡板的条缝形吸气罩的捕集效率高于无延伸挡板条缝形吸气罩,前者采用较低的罩口风速(抽风量)可以得到相应的高捕集效率。结论 使用示踪气体对吸气罩进行优选的结果表明,通过改进吸气罩的形式可以降低所需风量并达到要求的效率,从而为减少通风设施的费用提供了一种重要途径。  相似文献   

19.
A method is described for quantifying the reentrainment of exhaust air contaminants into a building's fresh-air supply system. The method relies on the "tracer" gas, sulfur hexafluoride (SF6), which Is detected by infrared (IR) absorption analysis. This method of analysis differs from the conventional gas chromatography, electron capture detection method due to the MIRAN-1 A's portability, direct-reading capabilities, ease of operation and modest cost. Specific instrument settings for the MIRAN-1 A are given such that detection of SF6 will be optimized without interference. Calculations for quantifying reentrainment are presented and discussed for the "worst case" reentrainment observed.  相似文献   

20.
Studies in a newly built hospital furnished with complete air conditioning where most of the patients are nursed in 6-bed rooms showed that the transfer of air from one patient room to another was very small, especially when there was substantial flow of air in a consistent direction between the patient rooms and the corridor, and that the direct transfer of airborne particles was even less. There was, however, no evidence of any reduction in the rates of nasal acquisition of Staphylococcus aureus compared with those to be found in naturally ventilated hospitals. The numbers of Staph. aureus found in the air of a given room that appeared to have originated from patient carriers in other rooms were many times greater than could be accounted for by direct airborne transfer. Although there was evidence that many carriers were not detected, detailed study showed that this excess transfer to the air of other rooms was genuine. It seems probable on the basis of investigations in this hospital and elsewhere that this excess transfer occurs indirectly, through dispersal from the clothing of the nursing and medical staff into the air of another room of strains with which their outer clothes have become contaminated while dealing with patients. Reduction in direct airborne transfer of micro-organisms from one room to another, whether by ventilation or other means, can only be of clinical advantage if transfer by other routes is, or can be made, less than that by the direct airborne route.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号