首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phosphatidylinositol 3-kinase (PI3K) signaling pathway is important for the regulation of a number of cellular responses. Serine/threonine kinase Akt (protein kinase B; PKB) is downstream of PI3K and activated by growth factors. This study found that erythropoietin (EPO) induced tyrosine phosphorylation of Akt in a time- and dose-dependent manner in EPO-dependent human leukemia cell line UT-7/EPO. In vitro kinase assay using histone H2B and glucose synthase kinase as substrates demonstrated that Akt was actually activated by EPO. EPO-induced phosphorylation of Akt was completely blocked by a PI3K-specific inhibitor, LY294002, at 10 micromol/L, indicating that activation of Akt by EPO is dependent on PI3K activity. In addition, overexpression of the constitutively active form of Akt on UT-7/EPO cells partially blocked apoptosis induced by withdrawal of EPO from the culture medium. This finding suggested that the PI3K-Akt activation pathway plays some role in the antiapoptotic effect of EPO. EPO induced phosphorylation of a member of the trancription factor Forkhead family, FKHRL1, at threonine 32 and serine 253 in a dose- and time-dependent manner in UT-7/EPO cells. Moreover, results showed that Akt kinase activated by EPO directly phosphorylated FKHRL1 protein and that FKHRL1 phosphorylation was completely dependent on PI3K activity as is the case for Akt. In conjunction with the evidence that FKHRL1 is expressed in normal human erythroid progenitor cells and erythroblasts, the results suggest that FKHRL1 plays an important role in erythropoiesis as one of the downstream target molecules of PI3K-Akt.  相似文献   

2.
Erythropoietin (EPO) is required for the survival and expansion of red blood cell progenitor cells and supports continued differentiation of these committed progenitors to mature red blood cells. After binding to its cognate receptor, EPO promotes receptor homodimerization, activation of receptor-associated JAK2, subsequent receptor tyrosine phosphorylation, and transduction of signal. EPO is also internalized and degraded in lysosomes. The contribution of EPO-induced receptor internalization to modulation of EPO signals has not been determined. To examine this question, we generated a panel of hematopoietic cell lines containing progressively truncated isoforms of the erythropoietin receptor (EPO-R) and determined the rate and extent of EPO internalization and receptor downregulation. We demonstrated that a membrane-proximal domain of the cytoplasmic tail of the EPO-R was the minimal region required for EPO-induced receptor internalization. This cytoplasmic domain is also the minimal domain required for activation of JAK2, a cytosolic tyrosine kinase essential for the function of the EPO-R. However, neither EPO activation of cytosolic JAK2 tyrosine kinase activity nor tyrosine phosphorylation of the EPO-R cytoplasmic tail was required for EPO-induced receptor downregulation. Both functional and nonfunctional cell surface receptor isoforms were internalized equally. These results suggest that, for downregulation of cell surface ligand occupied EPO-R and possibly for signaling receptors of the cytokine receptor superfamily in general, internalization of cell surface ligand occupied receptors may follow a pathway distinct from signaling receptors of the receptor tyrosine kinase (RTK) family.  相似文献   

3.
4.
Subcellular compartmentalization has become an important theme in cell signaling such as spatial regulation of Ras by RasGRP1 and MEK/ERK by Sef. Here, we report spatial regulation of Raf kinase by RKTG (Raf kinase trapping to Golgi). RKTG is a seven-transmembrane protein localized at the Golgi apparatus. RKTG expression inhibits EGF-stimulated ERK and RSK phosphorylation, blocks NGF-mediated PC12 cell differentiation, and antagonizes Ras- and Raf-1-stimulated Elk-1 transactivation. Through interaction with Raf-1, RKTG changes the localization of Raf-1 from cytoplasm to the Golgi apparatus, blocks EGF-stimulated Raf-1 membrane translocation, and reduces the interaction of Raf-1 with Ras and MEK1. In RKTG-null mice, the basal ERK phosphorylation level is increased in the brain and liver. In RKTG-deleted mouse embryonic fibroblasts, EGF-induced ERK phosphorylation is enhanced. Collectively, our results reveal a paradigm of spatial regulation of Raf kinase by RKTG via sequestrating Raf-1 to the Golgi apparatus and thereby inhibiting the ERK signaling pathway.  相似文献   

5.
Bile acids have been reported to activate several different cell signaling cascades in rat hepatocytes. However, the mechanism(s) of activation of these pathways have not been determined. This study aims to determine which bile acids activate the Raf-1/MEK/ERK cascade and the mechanism of activation of this pathway. Taurodeoxycholic acid (TDCA) stimulated (+235%) the phosphorylation of p(74) Raf-1 in a time (5 to 20 minutes) and concentration-dependent (10 to 100 micromol/L) manner. Raf-1 and ERK activities were both significantly increased by most bile acids tested. Deoxycholic acid (DCA) was the best activator of ERK (3.6-fold). A dominant negative Ras (N17) construct expressed in primary hepatocytes prevented the activation of ERK by DCA. The epidermal growth factor receptor (EGFR)-specific inhibitor (AG1478) significantly inhibited (approximately 81%) the activation of ERK by DCA. DCA rapidly (30 to 60 seconds) increased phosphorylation of the EGFR (approximately 2-fold) and Shc (approximately 4-fold). A dominant negative mutant of the EGFR (CD533) blocked the ability of DCA to activate ERK. In conclusion, these results show that DCA activates the Raf-1/MEK/ERK signaling cascade in primary hepatocytes primarily via an EGFR/Ras-dependent mechanism.  相似文献   

6.
The Gq protein-coupled receptor agonists phenylephrine (PE) and endothelin-1 (ET-1) induce cardiac hypertrophy and stimulate protein synthesis in cardiomyocytes. This study aims to investigate how they activate mRNA translation in adult cardiomyocytes. PE and ET-1 do not activate protein kinase B but stimulate Ras and Erk, and their ability to activate protein synthesis was blocked by inhibition of Ras or MEK and by rapamycin, which inhibits mTOR (mammalian target of rapamycin). These agonists activated ribosomal protein S6 kinase 1 (S6K1) and induced phosphorylation of eIF4E-binding protein-1 (4E-BP1) and its release from eIF4E. These effects were blocked by inhibitors of MEK. Furthermore, adenovirus-mediated expression of constitutively-active MEK1 caused activation of S6K1, phosphorylation of 4E-BP1, and activation of protein synthesis in a rapamycin-sensitive manner. Expression of N17Ras inhibited the regulation of S6K1 and protein synthesis by GqPCR agonists. These data point to a signaling pathway involving Ras and MEK that acts, with mTOR, to control regulatory translation factors and activate protein synthesis. This study provides new insights into the mechanisms underlying the stimulation of protein synthesis by hypertrophic agents in heart.  相似文献   

7.
Liang L  Jiang J  Frank SJ 《Endocrinology》2000,141(9):3328-3336
Interaction of GH with the cell-surface GH receptor (GHR) causes activation of the GHR-associated tyrosine kinase, JAK2, and consequent triggering of signaling cascades including the STAT, Ras/Raf/MEK1/MAP kinase, and insulin receptor substrate-1(IRS-1)/PI3kinase pathways. We previously showed that IRS- and GHR-deficient 32D cells that stably express the rabbit GHR and rat IRS-1 (32D-rbGHR-IRS-1) exhibited markedly enhanced GH-induced proliferation and MAP kinase (ERK1 and ERK2) activation compared with cells expressing only the GHR (32D-rbGHR). We now examine biochemical mechanism(s) by which IRS-1 augments GH-induced MAP kinase activation. Time-course experiments revealed a similarly transient (maximal at 15 min) GH-induced ERK1 and ERK2 activation in both 32D-rbGHR and 32D-rbGHR-IRS-1 cells, but, consistent with our prior findings, substantially greater activation was seen in the IRS-1-containing cells. In both cells, GH-induced MAP kinase activation was markedly blunted by the MEK1 inhibitor, PD98059, but not by the PKC inhibitor, GF109203X. Interestingly, pretreatment with the PI3K inhibitor, wortmannin (EC50 approximately 10 nM), significantly reduced GH-induced MAP kinase activation in both 32D-rbGHR and 32D-rbGHR-IRS-1 cells. This same pattern in both cells of IRS-1-dependent augmentation and IRS-1-independent wortmannin sensitivity was also observed for GH-induced activation of Akt and MEK1 (using state-specific antibody blotting for both), despite the lack of difference in GHR, JAK2, SHP-2, p85, Akt, Ras, Raf-1, MEK1, ERK1, or ERK2 abundance between the two cells. A different PI3K inhibitor, LY294002 (50 microM), substantially inhibited (roughly 72%) GH-induced MAP kinase activation in 32D-rbGHR-IRS-1 cells, but only marginally (and statistically insignificantly) inhibited GH-induced MAP kinase activation in 32D-rbGHR cells. Because GH-induced Akt activation was completely inhibited in both cells by the same concentration of LY294002, these findings indicate that the wortmannin sensitivity of both the IRS-1-independent and -dependent GH-induced MAP kinase activation may reflect the activity of another wortmannin-sensitive target(s) in addition to PI3K in mediation of GH-induced MAP kinase activation in these cells. Notably, GH-induced STAT5 tyrosine phosphorylation, unlike Akt or MAPK activation, did not differ between the cells. Finally, while GH promoted accumulation of activated Ras in both cells, both basal and GH-induced activated Ras levels were greater in cells expressing IRS-1 than in 32D-rbGHR cells. These data indicate that while GH induces tyrosine phosphorylation of STAT5 and activation of the Ras/Raf/MEK1/MAPK and PI3K pathways, IRS-1 expression augments the latter two more than the former.  相似文献   

8.
Human neutrophils respond to chemoattractants, resulting in their accumulation at an inflammatory site. Chemoattractants such as the C5a peptide, derived from the C5 complement factor, bind to inhibitory guanine nucleotide binding protein (Gi)-coupled seven membrane-spanning receptors expressed in neutrophils. C5a receptor activation results in the Gi-dependent activation of the mitogen-activated protein (MAP) kinase pathway in human neutrophils. C5a receptor ligation activates both B-Raf and Raf-1, with B-Raf activation overlapping but temporally distinct from that of Raf-1. B-Raf and Raf-1 both efficiently phosphorylate MAP kinase kinase (MEK-1). C5a also stimulates guanine nucleotide exchange and activation of Ras. Ras and Raf activation in response to C5a involves protein kinase C-dependent and -independent pathways. Activation of both Raf-1 and B-Raf was inhibited by protein kinase A stimulation, consistent with the inhibitory effects of increased cAMP levels on neutrophil function. The findings define a functional signal transduction pathway linking the neutrophil C5a chemoattractant receptor to the regulation of Ras, B-Raf, Raf-1, and MAP kinase.  相似文献   

9.
We recently demonstrated in an immortalized thyroid cell line that integrin stimulation by fibronectin (FN) simultaneously activates two signaling pathways: Ras/Raf/MAPK kinase (Mek)/Erk and calcium Ca2+/calcium calmodulin-dependent kinase II (CaMKII). Both signals are necessary to stimulate Erk phosphorylation because CaMKII modulates Ras-induced Raf-1 activity. In this study we present evidence that extends these findings to normal human thyroid cells in primary culture, demonstrating its biological significance in a more physiological cell model. In normal thyroid cells, immobilized FN-induced activation of p21Ras and Erk phosphorylation. This pathway was responsible for FN-induced cell proliferation. Concurrent increase of intracellular Ca2+ concentration and CaMKII activation was observed. Both induction of p21Ras activity and increase of intracellular Ca2+ concentration were mediated by FN binding to alphavbeta3 integrin. Inhibition of the Ca2+/CaMKII signal pathway by calmodulin or CaMKII inhibitors completely abolished the FN-induced Erk phosphorylation. Binding to FN induced Raf-1 and CaMKII to form a protein complex, indicating that intersection between Ras/Raf/Mek/Erk and Ca2+/CaMKII signaling pathways occurred at Raf-1 level. Interruption of the Ca2+/CaMKII signal pathway arrested cell proliferation induced by FN. We also analyzed thyroid tumor cell lines that displayed concomitant aberrant integrin expression and signal transduction. These data confirm that integrin activation by FN in normal thyroid cells generates Ras/Raf/Mek/Erk and Ca2+/CaMKII signaling pathways and that both are necessary to stimulate cell proliferation, whereas in thyroid tumors integrin signaling is altered.  相似文献   

10.
11.
In light of the emerging concept of a protective function of the mitogen-activated protein kinase (MAPK) pathway under stress conditions, we investigated the influence of the anthracycline daunorubicin (DNR) on MAPK signaling and its possible contribution to DNR-induced cytotoxicity. We show that DNR increased phosphorylation of extracellular-regulated kinases (ERKs) and stimulated activities of both Raf-1 and extracellular-regulated kinase 1 (ERK1) within 10 to 30 minutes in U937 cells. ERK1 stimulation was completely blocked by either the mitogen-induced extracellular kinase (MEK) inhibitor PD98059 or the Raf-1 inhibitor 8-bromo-cAMP (cyclic adenosine monophosphate). However, only partial inhibition of Raf-1 and ERK1 stimulation was observed with the antioxidant N-acetylcysteine (N-Ac). Moreover, the xanthogenate compound D609 that inhibits DNR-induced phosphatidylcholine (PC) hydrolysis and subsequent diacylglycerol (DAG) production, as well as wortmannin that blocks phosphoinositide-3 kinase (PI3K) stimulation, only partially inhibited Raf-1 and ERK1 stimulation. We also observed that DNR stimulated protein kinase C zeta (PKCzeta), an atypical PKC isoform, and that both D609 and wortmannin significantly inhibited DNR-triggered PKCzeta activation. Finally, we found that the expression of PKCzeta kinase-defective mutant resulted in the abrogation of DNR-induced ERK phosphorylation. Altogether, these results demonstrate that DNR activates the classical Raf-1/MEK/ERK pathway and that Raf-1 activation is mediated through complex signaling pathways that involve at least 2 contributors: PC-derived DAG and PI3K products that converge toward PKCzeta. Moreover, we show that both Raf-1 and MEK inhibitors, as well as PKCzeta inhibition, sensitized cells to DNR-induced cytotoxicity.  相似文献   

12.
The Ras --> Raf --> MEK1/2 --> extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway couples mitogenic signals to cell proliferation. B-Raf and Raf-1 function within an oligomer wherein they are regulated in part by mutual transactivation. The MAPK kinase kinase (MAP3K) mixed-lineage kinase 3 (MLK3) is required for mitogen activation of B-Raf and cell proliferation. Here we show that the kinase activity of MLK3 is not required for support of B-Raf activation. Instead, MLK3 is a component of the B-Raf/Raf-1 complex and is required for maintenance of the integrity of this complex. We show that the activation of ERK and the proliferation of human schwannoma cells bearing a loss-of-function mutation in the neurofibromatosis 2 (NF2) gene require MLK3. We find that merlin, the product of NF2, blunts the activation of both ERK and c-Jun N-terminal kinase (JNK). Finally, we demonstrate that merlin and MLK3 can interact in situ and that merlin can disrupt the interactions between B-Raf and Raf-1 or those between MLK3 and either B-Raf or Raf-1. Thus, MLK3 is part of a multiprotein complex and is required for ERK activation. The levels of this complex may be negatively regulated by merlin.  相似文献   

13.
We have examined the phosphorylation and the serine/threonine-specific kinase activity of the protooncogene product Raf-1 (formerly c-raf) in response to oncogenic transformation or growth-factor treatment of mouse 3T3 cells. Expression of the membrane-bound oncogene products encoded by v-fms, v-src, v-sis, polyoma virus middle-sized tumor antigen, and Ha-ras increased the apparent molecular weight and phosphorylation of the Raf-1 protein, while expression of the nuclear oncogene and protooncogene products encoded by v-fos and c-myc did not. Changes in electrophoretic mobility and phosphorylation occurred rapidly in response to treatment of cells with platelet-derived growth factor, acidic fibroblast growth factor, epidermal growth factor, and the protein kinase C activator phorbol 12-myristate 13-acetate, but not insulin. The phosphorylation of the Raf-1 protein occurred primarily on serine and threonine residues. However, a subpopulation of Raf-1 molecules was phosphorylated on tyrosine residues in cells transformed by v-src or stimulated with platelet-derived growth factor. Transformation by v-src, or treatment with platelet-derived growth factor or phorbol 12-myristate 13-acetate, activated the Raf-1-associated serine/kinase activity as measured in immune-complex kinase assays. These findings suggest that proliferative signals generated at the membrane result in the phosphorylation of the Raf-1 protein and the activation of its serine/threonine kinase activity. Raf-1 activation may thus serve to transduce signals from the membrane to the cytoplasm and perhaps on to the nucleus.  相似文献   

14.
Peroxynitrite is a potent oxidant and nitrating species proposed as a direct effector of myocardial damage in a wide range of cardiac diseases. Whether peroxynitrite also acts indirectly, by modulating cell signal transduction pathways in the myocardium, has not been investigated. Here, we examined the ability of peroxynitrite to activate extracellular signal-related kinase (ERK), a MAP kinase which has been linked with hypertrophic and anti-apoptotic responses in the heart, in cultured H9C2 cardiomyocytes. Peroxynitrite elicited a concentration- and time-dependent activation of ERK, secondary to the upstream activation of MEK 1 (ERK kinase). Activation of MEK-ERK by peroxynitrite was related to the upstream activation of Raf-1 kinase, as ERK and MEK phosphorylation were prevented by the Raf-1 inhibitor BAY43-9006. These effects of peroxynitrite were not associated with the activation of p21(Ras), known as a common signaling target of cellular oxidative stress. In contrast to ERK activation mediated by the epidermal growth factor (EGF), ERK activation by peroxynitrite was not prevented by AG1478 (EGF receptor inhibitor). Peroxynitrite acted through oxidative, but not nitrative chemistry, as ERK remained activated while nitration was prevented by the flavanol epicatechin. In addition to ERK, peroxynitrite also potently activated two additional members of the MAP kinase family of signaling proteins, JNK and p38. Thus, peroxynitrite activates ERK in cardiomyocytes through an unusual signaling cascade involving Raf-1 and MEK 1, independently from EGFR and P21(Ras), and also acts as a potent activator of JNK and p38. These results provide the novel concept that peroxynitrite may represent a previously unrecognized signaling molecule in various cardiac pathologies.  相似文献   

15.
16.
Recently we found that post-infarct remodeling disrupts PI3KAkt signaling triggered by erythropoietin (EPO) but an unknown compensatory mechanism preserves EPO-induced protection against infarction in those hearts. In this study, we examined the possibility that ERK-mediated signaling is the compensatory mechanism affording protection in post-infarct remodeled hearts. Four weeks after coronary ligation in situ (post-MI group, post-MI) or a sham operation (sham group, Sham), hearts were isolated, perfused and subjected to 25-min global ischemia/2-h reperfusion. Infarct size was expressed as a percentage of risk area size (%I/R), from which scarred infarct by coronary ligation was excluded. EPO infusion (5 U/ml) before ischemia reduced %I/R similarly in Sham and post-MI (from 62.0 ± 5.1 to 39.4 ± 4.8 in Sham and from 58.6 ± 6.6 to 36.3 ± 3.8 in post-MI). PD98059, a MEK1/2 inhibitor, abolished this EPO-induced protection in post-MI (%I/R = 60.7 ± 4.9) but not in Sham (%I/R = 35.1 ± 5.4). EPO induced PI3Kdependent phosphorylation of Akt in Sham but not in post-MI. EPO increased phosphorylation levels of ERK1/2 both in Sham and post-MI, but this phosphorylation was diminished by a PI3K inhibitor in Sham but not in post-MI. These results suggest that PI3K-independent activation of ERK compensates the lack of signal input from the PI3K-Akt pathway to achieve EPO-induced protection in the remodeled myocardium.  相似文献   

17.
Elevated levels of mitogen-activated protein kinase/extracellular regulatory kinase (MAPK/ERK) activity are frequently found in some cancer cells. In efforts to reduce tumor growth, attempts have been made to develop cancer therapeutic agents targeting the MAPK. Here, by use of biologic, biochemical, and gene manipulation methods in human polymorphonuclear neutrophils (PMNs), we have identified a key pathway important in normal cell function involving MAPK/ERK in PMNs for growth inhibition of Candida albicans. Contact with C albicans triggered MAPK/ERK activation in PMNs within 5 minutes, and blocking of MAPK/ERK activation, either by the pharmacologic reagent PD098059 or by dominant-negative MAPK kinase (MEK) expression via vaccinia viral delivery, suppressed antimicrobial activity. Rac and Cdc42, but not Ras or Rho, were responsible for this MAPK/ERK activation. Expression of dominant-negative Rac (N17Rac) or Cdc42 (N17Cdc42) eliminated not only C albicans- mediated ERK phosphorylation but also phagocytosis and granule migration toward the ingested microbes, whereas dominant-negative Ras (N17Ras) and Rho (N19Rho) did not. PAK1 (p21-activated kinase 1) activation is induced by C albicans, suggesting that PAK1 may also be involved in the Rac1 activation of MAPK/ERK. We conclude from these data that Rac/Cdc42-dependent activation of MAPK/ERK is a critical event in the immediate phagocytic response of PMNs to microbial challenge. Therefore, use of MAPK pharmacologic inhibitors for the treatment of cancer may result in the interruption of normal neutrophil function. A balance between therapeutic outcome and undesirable side effects must be attained to achieve successful and safe anticancer therapy.  相似文献   

18.
Smith RD  Baukal AJ  Dent P  Catt KJ 《Endocrinology》1999,140(3):1385-1391
Little is known of the mechanisms leading to mitogen-activated protein kinase (MAPK) activation via Gq-coupled receptors. We therefore examined the pathways by which angiotensin II (Ang II) activates Raf-1 kinase, an upstream intermediate in the pathway to MAPK, via the Gq-coupled AT1 angiotensin receptor in bovine adrenal glomerulosa (BAG) cells. Ang II caused a rapid and transient activation of Raf-1 that reached a peak at 5-10 min. Ang II was a potent stimulus of Raf-1 activation with an ED50 of 10 pM and a maximal response at 1 nM, although higher Ang II concentrations elicited a submaximal response. Ang II-stimulated Raf-1 activity was unaffected by down-regulation of protein kinase C and intracellular Ca2+ chelation (using BAPTA) but was partially inhibited by pertussis toxin, and was abolished by manumycin A. Removal of extracellular Ca2+ (by EGTA) or blockade of L type Ca2+ channels (by nifedipine), as well as inhibition of MEK-1 kinase (by PD98059), enhanced Raf-1 activity, whereas wortmannin (100 nM) inhibited approximately one half of Ang II-stimulated Raf-1 activity. Hence, Raf-1 kinase activation by Ang II in BAG cells is dependent on Ras, is mediated in part via Gi and phosphatidylinositol 3-kinase, and is negatively regulated via Ca2+ influx and a downstream signaling element(s).  相似文献   

19.
We prepared a stable cell line expressing the glucagon receptor to characterize the effect of G(s)-coupled receptor stimulation on extracellular signal-regulated protein kinase 1/2 (ERK1/2) activity. Glucagon treatment of the cell line caused a dose-dependent increase in cAMP concentration, activation of cAMP-dependent protein kinase (PKA), and transient release of intracellular calcium. Glucagon treatment also caused rapid dose-dependent phosphorylation and activation of mitogen-activated protein kinase kinase/ERK kinase (MEK1/2) and ERK1/2. Inhibition of either PKA or MEK1/2 blocked ERK1/2 activation by glucagon. However, no significant activation of several upstream activators of MEK, including Ras, Rap1, and Raf, was observed in response to glucagon treatment. In addition, chelation of intracellular calcium reduced glucagon-mediated ERK1/2 activation. In transient transfection experiments, glucagon receptor mutants that bound glucagon but failed to increase intracellular cAMP and calcium concentrations showed no glucagon-stimulated ERK1/2 phosphorylation. We conclude that glucagon-induced MEK1/2 and ERK1/2 activation is mediated by PKA and that an increase in intracellular calcium concentration is required for maximal ERK activation.  相似文献   

20.
Tetrahydrobiopterin (BH(4)) is an essential cofactor required for enzymatic activity of endothelial NO synthase. Recently, it has been shown that vascular protective effects of erythropoietin (EPO) are dependent on activation of endothelial NO synthase. Therefore, our objective was to characterize the effect of EPO on the biosynthesis of BH(4) in the vascular wall. Incubation of isolated C57BL/6J mouse aortas for 18 hours with recombinant human EPO (1 to 50 U/mL) caused a concentration-dependent increase in intracellular BH(4) levels and activity of GTP-cyclohydrolase I. Maximal biosynthesis of BH(4) was detected at therapeutic concentrations of 5 U/mL. Removal of the endothelium abolished EPO-induced biosynthesis of BH(4) demonstrating that the vascular endothelium is a major source of BH(4). Treatment with a selective phosphatidylinositol 3-kinase inhibitor wortmannin significantly reduced BH(4) biosynthesis stimulated by EPO. The stimulatory effect of EPO on vascular GTP-cyclohydrolase I activity, BH(4) production, and phosphorylation of endothelial NO synthase was also detected in vivo in mice treated with recombinant human EPO. These effects of EPO were abolished in protein kinase Balpha/Akt1-deficient mice. In addition, EPO significantly increased systolic blood pressure and the number of circulating platelets in Akt1-deficient mice. Our results demonstrate that EPO stimulates biosynthesis of BH(4) in vascular endothelium and that the increase in BH(4) levels is caused by de novo biosynthesis of BH(4) via the phosphatidylinositol 3-kinase/Akt1 pathway. This effect is most likely designed to provide optimal intracellular concentration of the cofactor necessary for EPO-induced elevation of endothelial NO synthase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号