首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Mast cells, IgE, and TNF, which have been implicated in human atopic asthma, contribute significantly to the allergic airway inflammation induced by ovalbumin (OVA) challenge in mice sensitized with OVA without alum. However, it is not clear to what extent mast cells represent a significant source of TNF in this mouse model. OBJECTIVE: We investigated the importance of mast cell-derived TNF in a mast cell-dependent model of OVA-induced airway hyperreactivity (AHR) and allergic airway inflammation. METHODS: Features of this model of airway inflammation were analyzed in C57BL/6J-wild-type mice, mast cell-deficient C57BL/6J-Kit(W-sh)(/W-sh) mice, and C57BL/6J Kit(W-sh/W-sh) mice that had been systemically engrafted with bone marrow-derived cultured mast cells from C57BL/6J-wild-type or C57BL/6J-TNF(-/-) mice. RESULTS: Ovalbumin-induced AHR and airway inflammation were significantly reduced in mast cell-deficient Kit(W-sh/W-sh) mice versus wild-type mice. By contrast, Kit(W-sh/W-sh) mice that had been engrafted with wild-type but not with TNF(-/-) bone marrow-derived cultured mast cells exhibited responses very similar to those observed in wild-type mice. Mast cells and mast cell-derived TNF were not required for induction of OVA-specific memory T cells in the sensitization phase, but significantly enhanced lymphocyte recruitment and T(H)2 cytokine production in the challenge phase. CONCLUSION: Mast cell-derived TNF contributes significantly to the pathogenesis of mast cell-dependent and IgE-dependent, OVA-induced allergic inflammation and AHR in mice, perhaps in part by enhancing lymphocyte recruitment and T(H)2 cytokine production. CLINICAL IMPLICATIONS: Our findings in mice support the hypothesis that mast cell-derived TNF can promote allergic inflammation and AHR in asthma.  相似文献   

2.
BACKGROUND: Recombinant allergen-specific immunoglobulin G (IgG) antibody therapy can reduce allergic asthma symptoms by inhibiting the immunoglobulin E (IgE)-mediated allergic response. This study investigated the effect of intranasally administered allergen-specific monoclonal (mAb) and polyclonal (pAb) antibody on airway inflammation and hyperresponsiveness (AHR) in a mouse model of human asthma. METHODS: Ovalbumin (OVA)-specific IgG2b antibodies were generated by phage display using spleens from OVA-immunized mice, and screening against OVA and finally expressed in CHO cells. Sensitized mice were treated intranasally with either a recombinant anti-OVA mAb (gc32) or a polyclonal preparation comprising seven selected antibodies (including gc32). Control mice received diluent only, OVA only, a control polymeric IgG or dexamethasone. Following challenge with nebulized OVA, investigators assessed airway inflammation by histology and cellular composition of the bronchoalveolar fluid, and methacholine-induced airway hyperresponsiveness (AHR). Serum levels of total and OVA-specific IgE were measured by ELISA. RESULTS: Sensitized mice developed airway inflammation and AHR in response to OVA challenge. Intranasally administered OVA-specific murine polyclonal or monoclonal IgG2b antibodies both reduced OVA-induced lung inflammation. Polyclonal, but not anti-OVA mAb, also reduced AHR and eosinophil influx into the airway lumen. Both anti-OVA antibody preparations reduced levels of specific IgE with no effect on total IgE levels. CONCLUSIONS: Intranasal treatment with allergen-specific pAb reduces pulmonary inflammation and AHR in a mouse model of allergic asthma, but allergen-specific mAb reduces inflammation only. Allergen-specific recombinant pAb offers a potentially valuable therapeutic approach to the management of allergic asthma.  相似文献   

3.
BACKGROUND: IL-1 is a pleotropic cytokine that has been shown to play a prominent role in asthma induced by large-molecular-weight proteins. Increased IL-1 immunostaining in the submucosa of patients with toluene diisocyanate (TDI)-induced asthma has also been observed, suggesting that this cytokine might also be important in asthma associated with low-molecular-weight chemicals. OBJECTIVE: We sought to determine the role of IL-1 signaling in airway reactivity and inflammation by using a murine model of TDI-induced asthma. METHODS: C57BL/6 mice were exposed to TDI by means of vapor inhalation (20 ppb; 4 hours per day, 5 days per week, for 6 weeks) and then challenged 2 weeks later by inhalation with 20 ppb TDI vapor for 1 hour. RESULTS: Sensitized-challenged mice showed increased airway hyperresponsiveness (AHR), increased levels of TDI-specific IgG1 antibodies, airway epithelial thickening, inflammation consisting of infiltrating lymphocytes and eosinophils, and increased mRNA expression of IL-4, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 in the lung. Prevention of IL-1 signaling through deletion of the IL-1 receptor type I or administration of neutralizing antibodies to both IL-1beta and IL-1alpha abrogated the development of TDI-induced asthma. A partial reduction in AHR and TDI-specific IgG1 levels was observed in mice administered anti-IL-1beta, whereas anti-IL-1alpha had no effect on either parameter. Antibodies to IL-1beta or IL-1alpha alone blocked airway inflammation and the expression of IL-4 and adhesion molecules in the lung. CONCLUSIONS: These results suggest that IL-1 signaling is critical for AHR and airway inflammation, with IL-1beta and IL-1alpha having unique and overlapping roles in TDI-induced occupational asthma.  相似文献   

4.
BACKGROUND: TNF is thought to contribute to airway hyperreactivity (AHR) and airway inflammation in asthma. However, studies with TNF-deficient or TNF receptor-deficient mice have not produced a clear picture of the role of TNF in the AHR associated with allergic inflammation in the mouse. OBJECTIVE: We used a genetic approach to investigate the contributions of TNF to antigen-induced AHR and airway inflammation in mice on the C57BL/6 background. METHODS: We analyzed features of airway allergic inflammation, including antigen-induced AHR, in C57BL/6 wild-type and TNF(-/-) mice, using 2 different methods for sensitizing the mice to ovalbumin (OVA). RESULTS: In mice sensitized to OVA administered with the adjuvant aluminum hydroxide (alum), which develop IgE-independent and mast cell-independent allergic inflammation and AHR, we found no significant differences in OVA-induced AHR in C57BL/6-TNF(-/-) versus wild-type mice. By contrast, in mice sensitized to OVA without alum, which develop allergic inflammation that is significantly mast cell-dependent, C57BL/6-TNF(-/-) mice exhibited significant reductions versus wild-type mice in OVA-induced AHR to methacholine; numbers of lymphocytes, neutrophils, and eosinophils in bronchoalveolar lavage fluid; levels of myeloperoxidase, eosinophil peroxidase, and the cytokines IL-4, IL-5, and IL-17 in lung tissue; and histologic evidence of pulmonary inflammation. CONCLUSION: In pulmonary allergic inflammation induced in mice immunized with OVA without alum, TNF significantly contributes to several features of the response, including antigen-induced inflammation and AHR. CLINICAL IMPLICATIONS: Our findings in mice support the hypothesis that TNF can promote the allergic inflammation and AHR associated with asthma.  相似文献   

5.
BACKGROUND: House dust mites (HDMs) are the major source of perennial allergens causing human allergic asthma. Animal models mimicking as closely as possible the allergic features observed in human asthma are therefore interesting tools for studying the immunological and pathophysiological mechanisms involved. Especially the role of eosinophils and allergen-specific immunoglobulin (Ig) E in the pathophysiology of airway hyperresponsiveness (AHR) remains a subject of intense debate. OBJECTIVE: To develop a mouse model of allergic airway inflammation and hyperresponsiveness based on the use of purified house dust mite allergen (Der p 1) as clinical relevant allergen. Furthermore, we studied the effects of low dose allergen exposure on the airway eosinophilia and AHR. METHODS: On day 0, C57Bl/6 mice were immunized with purified Der p 1 intraperitoneally. From day 14-20, the mice were exposed daily to a 30-min aerosol of different concentrations of house dust mite extract. RESULTS: Mice, actively immunized with Der p 1 and subsequently exposed to HDM aerosols, developed AHR, eosinophil infiltration of the airways and allergen-specific IgE. Moreover, lowering the concentration of the HDM aerosol also induced AHR and IgE without apparent eosinophil influx into the airways. Der p 1-sensitized mice exposed to PBS produced IgE, but did not show AHR or eosinophil influx. CONCLUSION: This in vivo model of HDM-induced allergic airway changes suggests that AHR is not related to either eosinophil influx or allergen-specific serum IgE, thereby reducing the importance of these factors as essential elements for allergic AHR.  相似文献   

6.
7.
Allergic asthma is a multifaceted syndrome consisting of eosinophil-rich airway inflammation, bronchospasm, and airway hyper-responsiveness (AHR). Using a mouse model of allergic asthma, we previously reported that invariant NKT (iNKT) cells increase the severity of this disease. Herein, we demonstrate that a single i.v. injection of alpha-galactosylceramide (alpha-GalCer), 1 h before the first airway allergen challenge of OVA-sensitized mice, abrogates elicitation of AHR, airway eosinophilia, IL-4 and IL-5 production in bronchoalveolar lavage fluid, and specific anti-OVA IgE antibodies. Further, alpha-GalCer administered intranasally also strongly inhibited the major symptoms of asthma in sensitized and challenged mice. Alpha-GalCer treatment induces iNKT cell accumulation in the lungs, and shifts their cytokine profile from pro-asthmatic IL-4 to a protective IFN-gamma production. The role of IFN-gamma from iNKT cells in protection was shown by adoptive transfer of sorted iNKT cells from OVA-sensitized and alpha-GalCer-treated mice which protected immunized recipients from manifesting asthma by an IFN-gamma-dependent pathway. Our findings demonstrate for the first time that alpha-GalCer administered locally inhibits asthma symptoms, even in predisposed asthmatic mice, through an iNKT cell- and IFN-gamma-dependent pathway.  相似文献   

8.
BACKGROUND: The effect of ageing on several pathologic features of allergic asthma (pulmonary inflammation, eosinophilia, mucus hypersecretion), and their relationship with airway hyperresponsiveness (AHR) is not well characterized. OBJECTIVE: To evaluate lung inflammation, mucus metaplasia and AHR in relationship with age in murine models of allergic asthma comparing young and older mice. METHODS: Young (6 weeks) and older (6, 12, 18 months) BALB/c mice were sensitized and challenged with ovalbumin (OVA). AHR and bronchoalveolar fluid (BALF), total inflammatory cell count and differential were measured. To evaluate mucus metaplasia, quantitative PCR for the major airway mucin-associated gene, MUC-5AC, from lung tissue was measured, and lung tissue sections stained with periodic acid-Schiff (PAS) for goblet-cell enumeration. Lung tissue cytokine gene expression was determined by quantitative PCR, and systemic cytokine protein levels by ELISA from spleen-cell cultures. Antigen-specific serum IgE was determined by ELISA. RESULTS: AHR developed in both aged and young OVA-sensitized/challenged mice (OVA mice), and was more significantly increased in young OVA mice than in aged OVA mice. However, BALF eosinophil numbers were significantly higher, and lung histology showed greater inflammation in aged OVA mice than in young OVA mice. MUC-5AC expression and numbers of PAS+ staining bronchial epithelial cells were significantly increased in the aged OVA mice. All aged OVA mice had increased IL-5 and IFN-gamma mRNA expression in the lung and IL-5 and IFN-gamma protein levels from spleen cell cultures compared with young OVA mice. OVA-IgE was elevated to a greater extent in aged OVA mice. CONCLUSIONS: Although pulmonary inflammation and mucus metaplasia after antigen sensitization/challenge occurred to a greater degree in older mice, the increase in AHR was significantly less compared with younger OVA mice. Antigen treatment produced a unique cytokine profile in older mice (elevated IFN-gamma and IL-5) compared with young mice (elevated IL-4 and IL-13). Thus, the airway response to inflammation is lessened in ageing animals, and may represent age-associated events leading to different phenotypes in response to antigen provocation.  相似文献   

9.
BACKGROUND: Histamine-1-receptor (H1R)-antagonists were shown to influence various immunological functions on different cell types and may thus be employed for immune-modulating strategies for the prevention of primary immune responses. OBJECTIVE: The aim of this study was to investigate the effects of an H1R-antagonist on allergen-induced sensitization, airway inflammation (AI) and airway hyper-reactivity (AHR) in a murine model. METHODS: BALB/c mice were systemically sensitized with ovalbumin (OVA) (six times, days 1-14) and challenged with aerosolized allergen (days 28-30). One day prior to the first and 2 h prior to every following sensitization, mice received either 1 or 0.01 microg of desloratadine (DL) or placebo per os. RESULTS: Sensitization with OVA significantly increased specific and total IgE and IgG1 serum levels, as well as in vitro IL-5 and IL-4 production by spleen and peribronchial lymph node (PBLN) cells. Sensitized and challenged mice showed a marked eosinophilic infiltration in broncho-alveolar lavage fluids and lung tissues, and developed in vivo AHR to inhaled methacholine. Oral treatment with DL prior to OVA sensitization significantly decreased production of OVA-specific IgG1, as well as in vitro Th2-cytokine production by spleen and PBLN cells, compared with OVA-sensitized mice. Moreover, eosinophilic inflammation and development of in vivo AHR were significantly reduced in DL-treated mice, compared with sensitized controls. CONCLUSION: Treatment with H1R-anatagonist prior to and during sensitization suppressed allergen-induced Th2 responses, as well as development of eosinophilic AI and AHR. This underscores an important immune modulating function of histamine, and implies a potential role of H1R-anatagonists in preventive strategies against allergic diseases.  相似文献   

10.
BACKGROUND: IL-10 affects dendritic cell (DC) function, but the effects on airway hyperresponsiveness (AHR) and inflammation are not defined. OBJECTIVE: We sought to determine the importance of IL-10 in regulating DC function in allergen-induced AHR and airway inflammation. METHODS: DCs were generated from bone marrow in the presence or absence of IL-10. In vivo IL-10-treated DCs from IL-10(+/+) and IL-10(-/-) donors pulsed with ovalbumin (OVA) were transferred to naive or sensitized mice before challenge. In recipient mice AHR, cytokine levels, cell composition of bronchoalveolar lavage (BAL) fluid, and lung histology were monitored. RESULTS: In vitro, IL-10-treated DCs expressed lower levels of CD11c, CD80, and CD86; expressed lower levels of IL-12; and suppressed T(H)2 cytokine production. In vivo, after transfer of OVA-pulsed IL-10-treated DCs, naive mice did not have AHR, airway eosinophilia, T(H)2 cytokine increase in BAL fluid, or goblet cell metaplasia when challenged, and in sensitized and challenged mice IL-10-treated DCs suppressed these responses. Levels of IL-10 in BAL fluid and numbers of lung CD4(+)IL-10(+) T cells were increased in mice that received OVA-pulsed IL-10-treated DCs. Transfer of IL-10-treated DCs from IL-10-deficient mice were ineffective in suppressing the responses in sensitized and challenged mice. CONCLUSIONS: These data demonstrate that IL-10-treated DCs are potent suppressors of the development of AHR, inflammation, and T(H)2 cytokine production; these regulatory functions are at least in part through the induction of endogenous (DC) production of IL-10. CLINICAL IMPLICATIONS: Modification of DC function by IL-10 can attenuate lung allergic responses, including the development of AHR.  相似文献   

11.
Shen H  Huang H  Wang J  Ye S  Li W  Wang K  Zhang G  Wang P 《Allergy》2008,63(5):555-563
Background:  Mycobacterium bovis Bacillus Calmette-Guérin (BCG) vaccination has been shown to inhibit allergic airway inflammation in animal models, associated with the regulation of allergen-specific T-cell immunity. However, little is known about whether neonatal BCG treatment could inhibit allergic inflammation by regulating allergen-specific T-cell response in aged mice. This study was aimed to investigate the impact of neonatal BCG treatment on allergic asthma and possible mechanism(s) underlying the action of BCG in different ages of mice.
Methods:  C57BL/6 neonates were vaccinated with BCG on days 1, 7 and 14, sensitized with ovalbumin (OVA) at 5 and 7 weeks of age, and then challenged with allergen at 9 or 45 weeks of age for early- or late-challenged asthma. Their airway inflammation and allergen-specific T-cell responses were characterized.
Results:  Following early-challenge, BCG vaccination inhibited airway hyper-responsiveness (AHR), infiltration of eosinophils and mucous overproduction ( P  <   0.05), and shifted OVA-specific predominant Th2- to Th1-type cytokine responses in both the bronchoalveolar lavage fluid and the splenocyte supernatants ( P  <   0.05). In late-challenged mice, neonatal BCG treatment attenuated AHR and eosinophilia ( P  <   0.05), but failed to modulate allergen-specific cytokine responses.
Conclusions:  Our data suggest that neonatal BCG vaccination has a long-term effect on inhibiting AHR and eosinophilia, which is associated with the modulation of Th1/Th2 cytokine production in early-, but not in late-challenged mice. Thus, different mechanisms may mediate the long-term protective effect of BCG neonatal vaccination differently in younger adult and aged mice.  相似文献   

12.
CD23-deficient and anti-CD23 monoclonal antibody-treated mice were used to investigate the role of the low-affinity receptor for IgE (CD23) in allergic airway inflammation and airway hyperresponsiveness (AHR). While there were no significant differences in ovalbumin (OVA)-specific IgE titers and tissue eosinophilia, evaluation of lung function demonstrated that CD23-/- mice showed an increased AHR to methacholine (MCh) when compared to wild-type mice but were completely resistant to the OVA challenge. Anti-CD23 Fab fragment treatment of wild-type mice did not affect the MCh-induced AHR but significantly reduced the OVA-induced airway constriction. These results imply a novel role for CD23 in lung inflammation and suggest that anti-CD23 Fab fragment treatment may be of therapeutic use in allergic asthma.  相似文献   

13.
Matrix metalloproteinases (MMPs) modulate development, inflammation, and repair in lungs. Tissue inhibitors of MMPs (TIMPs) interact with MMPs, controlling the intensity and nature of the response to injury. Absence of MMP-9, -2, and -8 activities is associated with altered lung inflammation during allergic sensitization. To test the hypothesis that the absence of TIMP-1 enhances allergic lung inflammation, airway hyperreactivity (AHR), and lung remodeling in asthma, we studied TIMP-1 null (TIMP-1 KO) mice and their WT controls using an ovalbumin (OVA) asthma model. TIMP-1 KO mice, compared to WT controls, developed an asthma phenotype characterized by AHR, pronounced cellular lung infiltrates, greater reduction in lung compliance, enhanced Th2 cytokine mRNA and protein expression, and altered collagen lung content associated with enhanced MMP-9 activity. Our findings support the hypothesis that TIMP-1 plays a protective role by preventing AHR and modulating inflammation, remodeling, and cytokine expression in an animal model of asthma.  相似文献   

14.
15.
BACKGROUND: 4-1 BB, a member of the tumour necrosis factor receptor superfamily, functions as a co-stimulatory molecule. Recently, stimulation of the 4-1 BB pathway was shown to suppress antigen-specific CD4(+) T cell and subsequent T cell-dependent humoral immune responses. OBJECTIVE: We examined the effect of agonistic anti-4-1 BB monoclonal antibody (mAb) treatment on allergic asthma, in which allergen-specific type 2 helper T cells (Th2) have been shown to play an important role. METHODS: BALB/c mice were systemically sensitized with intraperitoneal injections of ovalbumin (OVA) and alum on days 0 and 14, and then challenged with inhaled OVA on days 28, 29 and 30. In test groups, the agonistic anti-4-1 BB mAb was administered at the time of initial systemic sensitization with OVA. On day 31, mice were challenged with inhaled methacholine, and enhanced pause was measured as an index of airway hyper-responsiveness (AHR). Levels of OVA-specific IgE in serum, and levels of various cytokines in bronchoalveolar lavage (BAL) fluids were measured. The severity of airway inflammation was determined by differential cell counts in BAL fluids and histopathologic lung analysis. To evaluate local immunity, we cultured lymphocytes from draining perihilar lymph nodes and evaluated the proliferative response to OVA and the levels of IL-5 in the culture supernatant. In addition, the functional mechanism of 4-1 BB stimulation was evaluated in splenocytes obtained at day 7 after systemic OVA sensitization. RESULTS: We found that treatment with the anti-4-1 BB mAb significantly decreased AHR and the production of allergen-specific IgE. Bronchial inflammation, however, had only partially improved and the levels of IL-4 and IL-5 in BAL fluids showed only a small degree of reduction compared with the control Ig-treated mice. Thoracic lymphocytes from anti-4-1 BB-treated mice showed significant suppression of OVA-induced proliferation and IL-5 production. In anti-4-1 BB-treated mice, splenocytes exhibited poor proliferation and marked apoptosis 7 days after systemic OVA challenge. CONCLUSION: These results suggest that stimulation of the 4-1 BB pathway effectively suppresses some features of allergic asthma, including allergen-specific IgE production and AHR, through deletion of allergen-specific Th2 cells. However, we found that bronchial allergic inflammation was not strictly mediated by suppression of the Th2 immune response in this murine model of asthma. Despite these somewhat contradictory effects, intervention in the 4-1 BB pathway might provide a potential novel immunotherapeutic approach for treatment of allergic asthma.  相似文献   

16.
17.
BACKGROUND: Epidemiologic studies show that sudden surges in ambient particulate matter (PM) levels can trigger acute asthma exacerbations. Although diesel exhaust particles (DEPs) act as an adjuvant for allergic sensitization, this is a delayed response and does not explain acute PM effects on airway hyperreactivity (AHR). OBJECTIVE: Our aim was to determine the acute effects of DEPs on AHR using a mouse model. METHODS: Three protocols were developed, 2 of which require OVA sensitization, whereas the third was OVA independent. In the mild sensitization protocol BALB/c mice receive intraperitoneal OVA without alum and are then challenged with aerosolized OVA with or without DEPs. In the postchallenge model DEPs are delivered after OVA challenge to animals sensitized by intraperitoneal OVA plus alum. In the third protocol nebulizer DEPs were also delivered to IL-5-overexpressing mice that exhibit constitutive airway inflammation. Animals were subjected to whole-body plethysmography (WBP) and then killed for performance of bronchoalveolar lavage, histology, and serology. RESULTS: DEP delivery concomitant with OVA challenge or after the induction of airway inflammation with this allergen induced increased AHR in models 1 and 2, respectively. Although these animals showed DEP-induced inflammation and mucus production in the intermediary airways, there was no effect on OVA-specific IgE or T(H)2 cytokine production. In the IL-5 transgenic mice it was possible to induce similar effects with DEPs in the absence of an allergen. CONCLUSION: We demonstrate that DEPs induced AHR independent of their adjuvant effects, suggesting the use of these models to study the mechanism or mechanisms of acute asthma exacerbation by means of PM.  相似文献   

18.
BACKGROUND: IL-13 is a central mediator of allergen-induced airway hyperresponsiveness (AHR), but its role in respiratory syncytial virus (RSV)-induced AHR is not defined. The combination of allergen exposure and RSV infection is known to increase AHR and lung inflammation, but whether IL-13 regulates this increase is similarly not known. OBJECTIVE: Our objective was to determine the role of RSV infection and IL-13 on airway responsiveness and lung inflammation on sensitized and challenged mice. METHODS: Using a murine model of RSV infection and allergen exposure, we examined the role of IL-13 in the development of AHR and lung inflammation in IL-13 knockout mice, as well as using a potent IL-13 inhibitor (IL-13i). Mice were sensitized and challenged to allergen, and 6 days after the last challenge, they were infected with RSV. IL-13 was inhibited using an IL-13 receptor alpha(2)-human IgG fusion protein. AHR to inhaled methacholine was measured 6 days after infection, as was bronchoalveolar lavage fluid and lung inflammatory and cytokine responses. RESULTS: RSV-induced AHR was unaffected by the IL-13i, despite prevention of goblet cell hyperplasia. Similar results were seen in IL-13-deficient mice. In sensitized and challenged mice, RSV infection significantly increased AHR, and after IL-13i treatment, AHR was significantly reduced, but to the levels seen in RSV-infected mice alone. CONCLUSIONS: These results indicate that despite some similarities, the mechanisms leading to AHR induced by RSV are different from those that follow allergen sensitization and challenge. Because IL-13 inhibition is effective in preventing the increases in AHR and mucus production in sensitized and challenged mice infected with RSV, IL-13i could play an important role in preventing the consequences of viral infection in patients with allergic asthma.  相似文献   

19.
BACKGROUND: Invariant T-cell receptor-positive natural killer (iNKT) cells have been shown to be essential for the development of allergen-induced airway hyperreactivity (AHR). OBJECTIVE: We examined the role of iNKT cells in allergic skin inflammation using a murine model of atopic dermatitis (AD) elicited by epicutaneous sensitization with ovalbumin (OVA). METHODS: Wild-type (WT) and natural killer T-cell-deficient CD1d-/- mice were epicutaneously sensitized with OVA or normal saline and challenged with aerosolized OVA. iNKT cells in skin and bronchoalveolar lavage fluid were analyzed by fluorescence-activated cell sorting, and cytokine mRNA levels were measured by quantitative RT-PCR. AHR to methacholine was measured after OVA inhalation. RESULTS: Skin infiltration by eosinophils and CD4+ cells and expression of mRNA encoding IL-4 and IL-13 in OVA-sensitized skin were similar in WT and CD1d-/- mice. No significant increase in iNKT cells was detectable in epicutaneously sensitized skin. In contrast, iNKT cells were found in the bronchoalveolar lavage fluid from OVA-challenged epicutaneously sensitized WT mice, but not CD1d-/- mice. Epicutaneously sensitized CD1d-/- mice had an impaired expression of IL-4, IL-5, and IL-13 mRNA in the lung and failed to develop AHR in response to airway challenge with OVA. CONCLUSION: These results demonstrate that iNKT cells are not required for allergic skin inflammation in a murine model of AD, in contrast with airway inflammation, in which iNKT cells are essential. CLINICAL IMPLICATIONS: Understanding the potential role of iNKT cells in AD will allow us to have a more specific target for therapeutic use.  相似文献   

20.
BACKGROUND: Chronic airway inflammation is a fundamental feature of bronchial asthma, which is characterized by the accumulation and activation of inflammatory cells, such as mast cells and eosinophils, that are tightly regulated by TH2 cytokines and chemokines. Recently, we demonstrated, in a murine model of asthma with immunosuppressed mice reconstituted with antigen-specific IgE or IgG1 antibodies, that IgE, but not IgG1, participates in potentiation of airway inflammation and induction of airway hyperreactivity (AHR). The IgG1 antibody, however, did not elicit passive cutaneous anaphylactic reactions, which was in contrast to IgE. OBJECTIVES: Because 2 types of murine IgG1 have been demonstrated with regard to anaphylactic activity, the present experiments were undertaken to determine the role of anaphylactic and nonanaphylactic IgG1 antibodies in the development of antigen-induced eosinophilia and AHR in this model. METHODS: Dinitrophenyl-conjugated, heat-coagulated hen's egg white was implanted in immunosuppressed mice reconstituted with anaphylactic or nonanaphylactic IgG1. Intratracheal challenge with aggregated dinitrophenyl-ovalbumin was performed on day 14, and lung inflammatory and mechanical parameters were evaluated after 48 hours. RESULTS: Our results demonstrated that reconstitution of immunosuppressed mice with anaphylactic IgG1 antibodies in contrast to nonanaphylactic IgG1 antibodies potentiates their ability to have pulmonary eosinophilic inflammation and AHR. IL-5 and eotaxin levels in bronchoalveolar lavage fluid from anaphylactic IgG1-reconstituted mice were also higher than those in nonanaphylactic IgG1-reconstituted mice. CONCLUSIONS: These results indicate that the anaphylactic property of murine IgG1 molecules is essential for their capacity to enhance lung eosinophilic inflammation and to induce AHR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号