首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
To develop a hyaluronic microsphere with the improved oral bioavailability of poorly water-soluble cyclosporin A (CsA), the microspheres were prepared with varying ratios of sodium hyaluronate (HA)/sodium lauryl sulfate (SLS)/CsA using a spray-drying technique. The effects of HA and SLS on the dissolution and solubility of CsA in microspheres were investigated. The CsA-microsphere prepared with HA/SLS/CsA at the ratio of 4/2/1 gave the highest solubility and dissolution rate of CsA among those formulae tested. As solubility and dissolution rate of CsA were increased about 17- and 2-fold compared to CsA powder, respectively, this CsA-microsphere was selected as an optimal formula for oral delivery in rats. The CsA-microsphere and Sandimmun neoral sol gave significantly higher blood levels compared with CsA powder alone. Moreover, the AUC, T(max) and C(max) values of CsA in CsA-microsphere were not significantly different from those in Sandimmun neoral sol in rats, indicating that CsA-microsphere was bioequivalent to the commercial product in rats. Our results demonstrated that the CsA-microsphere prepared with HA and SLS, with improved bioavailability of CsA, might have been useful to deliver a poorly water-soluble CsA.  相似文献   

2.
Microcapsules composed of ethanol, water and dextrin as a water-soluble polymer can be used to encapsulate poorly water-soluble drugs by spray drying technique. For the encapsulation of a high dose of poorly water-soluble drugs, large amounts of ethanol and consequently large quantities of dextrin are needed for the dissolution of drug and the encapsulation of ethanol, respectively. In order to increase the ethanol content with the decreased amount of dextrin, sodium lauryl sulfate (SLS) was employed in the preparation of microcapsules without drug by a spray drying method. Phase diagrams were prepared to determine the region of microcapsule formation with a three-component system of ethanol, dextrin and water. The homogeneous phase indicated in the phase diagram was used to prepare the alcoholic microcapsules since this phase was not separated rapidly and not too viscous to be spray-dried. Interestingly, SLS at concentrations below 2% remarkably increased both the ethanol content and the encapsulation efficiency of ethanol. The maximum ethanol content and encapsulation efficiency were observed with 0.5-1% of SLS (35.4 and 67.6%, respectively). Furthermore, the increase by SLS was more pronounced at the low dextrin/water ratios than at the high dextrin/water ratios. In particular, the ethanol content and the encapsulation efficiency with the dextrin/ethanol/water ratio of 0.4/1/1, which had relatively small amounts of dextrin, were about ten times higher in the presence of SLS than those without SLS. In conclusion, this study shows that small amounts of SLS can increase the ethanol content and the encapsulation efficiency of ethanol, and allow the reduction in the amount of dextrin required to encapsulate ethanol in the preparation of microcapsules. These findings suggest that the use of SLS may permit the effective encapsulation of high dose of water-insoluble drug into microcapsules.  相似文献   

3.
The objective of this study is to explore the influence of polyvinylpyrrolidone (PVP) quantity on the solubility, crystallinity and oral bioavailability of poorly water-soluble fenofibrate in solvent-evaporated microspheres. Numerous microspheres were prepared with fenofibrate, sodium lauryl sulphate (SLS) and PVP using the spray-drying technique. Their aqueous solubility, dissolution, physicochemical properties and pharmacokinetics in rats were assessed. The drug in the solvent-evaporated microspheres composed of fenofibrate, PVP and SLS at the weight ratio of 1:0.5:0.25 was not entirely changed to the amorphous form and partially in the microcrystalline state. However, the microspheres at the weight ratio of 1:4:0.25 provided the entire conversion to the amorphous form. The latter microspheres, with an improvement of about 115 000-fold in aqueous solubility and 5.6-fold improvement in oral bioavailability compared with the drug powder, gave higher aqueous solubility and oral bioavailability compared with the former. Thus, PVP quantity played an important role in these properties of fenofibrate in the solvent-evaporated microspheres.  相似文献   

4.
The purpose of this work is to develop a bio-relevant dissolution method for formulation screening in order to select an enhanced bioavailable formulation for a poorly water-soluble drug. The methods used included a modified rotating disk apparatus for measuring intrinsic dissolution rate of the new chemical entity (NCE) and the USP dissolution method II for evaluating dissolution profiles of the drug in three different dosage forms. The in vitro dissolution results were compared with the in vivo bioavailability for selecting a bio-relevant medium. The results showed that the solubility of the NCE was proportional to the concentration of sodium lauryl sulfate (SLS) in the media. The apparent intrinsic dissolution rate of the NCE was linear to the rotational speed of the disk, which indicated that the dissolution of the drug is a diffusion-controlled mechanism. The apparent intrinsic dissolution rate was also linear to the surfactant concentration in the media, which was interpreted using the Noyes and Whitney Empirical Theory. Three formulations were studied in three different SLS media using the bulk drug as a reference. The dissolution results were compared with the corresponding bioavailability results in dogs. In the 1% SLS--sink conditions--the drug release from all the formulations was complete and the dissolution results were discriminative for the difference in particle size of the drug in the formulations. However, the data showed poor IVIV correlation. In the 0.5% SLS medium--non-sink conditions--the dissolution results showed the same rank order among the tested formulations as the bioavailability. The best IVIV correlation was obtained from the dissolution in 0.25% SLS medium, an over-saturated condition. The conclusions are: a surfactant medium increases the apparent intrinsic dissolution rate of the NCE linearly due to an increase in solubility. A low concentration of surfactant in the medium (0.25%) is more bio-relevant than higher concentrations of surfactant in the media for the poorly water-soluble drug. Creating sink conditions (based on bulk drug solubilities) by using a high concentration of a surfactant in the dissolution medium may not be a proper approach in developing a bio-relevant dissolution method for a poorly water-soluble drug.  相似文献   

5.
With the aim of developing a novel valsartan-loaded solid dispersion with enhanced bioavailability and no crystalline changes, various valsartan-loaded solid dispersions were prepared with water, hydroxypropyl methylcellulose (HPMC) and sodium lauryl sulphate (SLS). Effects of the weight ratios of SLS/HPMC and carrier/drug on both the aqueous solubility of valsartan and the drug-release profiles of solid dispersions were investigated. The physicochemical properties of solid dispersions were characterized using scanning electron microscope (SEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The bioavailability of the solid dispersions in rats was evaluated compared to valsartan powder and a commercial product (Diovan). Unlike the conventional solid dispersion system, the valsartan-loaded solid dispersion had a relatively rough surface and did not change the crystalline form of the drug. It was suggested that the solid dispersions were formed by attaching hydrophilic carriers to the surface of the drug, thus changing from a hydrophobic to a hydrophilic form without changing the crystalline form. The drug-loaded solid dispersion composed of valsartan/HPMC/SLS at a weight ratio of 3/1.5/0.75 improved the drug solubility by about 43-fold. It gave a higher AUC, C(max) and shorter T(max) compared to valsartan powder and the commercial product. The solid dispersion improved the bioavailability of the drug in rats by about 2.2 and 1.7-fold in comparison with valsartan powder and the commercial product, respectively. Thus, the valsartan-loaded solid dispersion would be useful for delivering poorly water-soluble valsartan with enhanced bioavailability and no crystalline changes.  相似文献   

6.
A poorly water-soluble ibuprofen and ethanol can be encapsulated in gelatin microcapsule by spray-drying technique. To develop a novel ibuprofen-loaded gelatin microcapsule with bioavailability enhancement, the effect of spray-drying conditions, gelatin, ibuprofen and sodium lauryl sulfate on the ibuprofen solubility and the amount of ethanol encapsulated in gelatin microcapsule were investigated. The ibuprofen solubility and amount of encapsulated ethanol increased as inlet temperature and amount of sodium lauryl sulfate increased, reached maximum at 105 degrees C and 0.6%, respectively and after that followed a rapid decrease. Furthermore, they abruptly increased as the amount of gelatin increased, reaching maximum at 4% then remaining almost stable, but the encapsulated ethanol content decreased noticeably. Likewise, the ibuprofen solubility increased as the amount of ibuprofen increased, reaching maximum at 0.5% and beyond that, there was no change in the solubility. However, the encapsulated ethanol content hardly changed irrespective of the amount of ibuprofen. Furthermore, the formula of ibuprofen-loaded gelatin microcapsule at the ratio of gelatin/ibuprofen/sodium lauryl sulfate/water/ethanol of 4/0.5/0.6/30/70 showed ibuprofen solubility of about 290microg/ml and ethanol content of about 160microg/mg. This gelatin microcapsule dramatically increased the initial dissolution rate of ibuprofen compared to ibuprofen powder in pH 1.2 simulated gastric fluid. Moreover, it gave significantly higher initial plasma concentrations, Cmax and AUC of ibuprofen in rats than did ibuprofen powder, indicating that the drug from gelatin microcapsule could be more orally absorbed in rats. Our results suggested that the enhanced oral bioavailability of ibuprofen in the gelatin microcapsule was contributed by the marked increase in the absorption rate of ibuprofen due to the crystallinity change to amorphous form and increase in dissolution rate of ibuprofen in the gelatin microcapsule in rats. Thus, the ibuprofen-loaded gelatin microcapsule developed using spray-drying technique with gelatin would be useful to deliver ibuprofen in a pattern that allows fast absorption in the initial phase, leading to better absorption.  相似文献   

7.
Atazanavir (ATV) is a low oral bioavailability (BA) compound and, clinically, is generally coadministrated with ritonavir (RTV), which boosts the oral BA of ATV by inhibiting cytochrome P450 (CYP) 3A, and P-glycoprotein (Pgp) via the same metabolic pathway. However, depending on pharmacokinetic interaction, RTV-boosted ATV has great potential for other comedication. In this study we demonstrated the pharmaceutical approach to BA improvement of ATV without RTV in rats, based on the solid dispersion system using sodium lauryl sulfate (SLS) as a carrier and Gelucire 50/13 as an absorption enhancer. ATV solid dispersions in SLS were prepared by a conventional solvent method and, at ratios of ATV to SLS of 1 : 2 and 1 : 3, were demonstrated to form an amorphous state in powder X-ray diffraction (PXRD) analysis and exhibited 2.26- and 2.36-fold improvement in a dissolution test in comparison to bulk ATV, respectively. After oral administration to rats, ATV solid dispersion in SLS at a ratio of 1 : 2 showed a 3.5-fold increase in BA compared with bulk ATV. Moreover, the addition of Gelucire 50/13 to ATV solid dispersion, at a total ratio of Gelucire 50/13, ATV and SLS 1 : 1 : 2 gave 7.0- and 4.7-fold increase in Cmax and BA compared with bulk ATV, respectively, when the relative BA to RTV-boosted ATV reached 93%. The results in this study proved that a pharmaceutical approach could improve the bioavailability of ATV without pharmacokinetic interaction with RTV.  相似文献   

8.
The aim of this study was to improve the dissolution and, therefore, bioavailability of the poorly water-soluble and highly permeable drug nimodipine (NMD). Present research involved the preparation of a solid dispersion (SD) consisting of NMD, Eudragit-E100 and Plasdone-S630 by hot-melt extrusion (HME). Compared with pure drug and physical mixture, the dissolution of NMD was enhanced dramatically (about 80% within 30min). Adding the nimodipine solid dispersion (NMD-SD) powder to a mixture of Plasdone-S630 and PEG400, and then transferring it to hard HPMC capsules, resulted in nimodipine semi-solid capsules (NMD-SSC). The dissolution from NMD-SSC was increased further (about 95% in 20min). In addition, the relative bioavailability of the NMD-SSC (test) and Nimotop (reference) was determined in beagle dogs after a single dose (120mg NMD) in a randomized crossover, own-control study. The results suggested that there was no significant difference in the areas under the plasma concentration-time curve and the mean peak concentration between NMD-SSC (AUC(0-infinity)=2488+/-433nghmL(-1), Cmax=321+/-78ngml(-1)) and Nimotop (AUC0-infinity=2272+/-398nghmL(-1), Cmax=293+/-73ngmL(-1)) (P>0.05). However, the apparent rate of absorption of NMD from NMD-SSC (tmax=1.3h) was markedly faster than that from Nimotop (tmax=3.1h) (P<0.05), which indicates that as a fast release preparation, NMD-SSC is well absorbed.  相似文献   

9.
To develop a novel tacrolimus-loaded solid dispersion with improved solubility, various solid dispersions were prepared with various ratios of water, sodium lauryl sulfate, citric acid and carboxylmethylcellulose-Na using spray drying technique. The physicochemical properties of solid dispersions were investigated using scanning electron microscopy, differential scanning calorimetery and powder X-ray diffraction. Furthermore, their solubility and dissolution were evaluated compared to drug powder. The solid dispersion at the tacrolimus/CMC-Na/sodium lauryl sulfate/citric acid ratio of 3/24/3/0.2 significantly improved the drug solubility and dissolution compared to powder. The scanning electron microscopy result suggested that carriers might be attached to the surface of drug in this solid dispersion. Unlike traditional solid dispersion systems, the crystal form of drug in this solid dispersion could not be converted to amorphous form, which was confirmed by the analysis of DSC and powder X-ray diffraction. Thus, the solid dispersion system with water, sodium lauryl sulfate, citric acid and CMC-Na should be a potential candidate for delivering a poorly water-soluble tacrolimus with enhanced solubility and no convertible crystalline.  相似文献   

10.
Sodium lauryl sulfate (SLS) is an anionic surfactant widely used in pharmaceutical research as a dissolution enhancer for poorly soluble drugs. When SLS was used in ritonavir (RTV) tablet formulation to improve wetting, dissolution of RTV was surprisingly deteriorated in acidic media. To understand this unexpected phenomenon, a systematic investigation, including solubility determination, intrinsic dissolution rate measurement, dissolution in an artificial stomach and duodenum apparatus, and solid-state characterization, revealed the formation of a poorly soluble salt, [RTV2+][LS?]2, in an acidic environment. Solubilization of the poorly soluble RTV salt was observed when the concentration of SLS exceeded the critical micelle concentration. Thus, precipitation of [RTV2+][LS?]2 at a low pH and in presence of a low SLS concentration can lead to deteriorated bioavailability. This unintended negative effect on dissolution should be carefully considered when using SLS in a tablet formulation of a basic drug that can be ionized in gastric fluid.  相似文献   

11.
A combination of solid dispersion and surface adsorption techniques was used to enhance the dissolution of a poorly water-soluble drug, BAY 12-9566. In addition to dissolution enhancement, this method allows compression of the granulated dispersion into tablets. Gelucire 50/13 (polyglycolized glycerides) was used as the solid dispersion carrier. Hot-melt granulation was performed to adsorb the melt of the drug and Gelucire 50/13 onto the surface of Neusilin US2 (magnesium alumino silicate), the surface adsorbent. Dispersion granules using various ratios of drug–Gelucire 50/13–Neusilin US2 were thus prepared. The dissolution profiles of BAY 12-9566 from the dispersion granules and corresponding physical mixtures were evaluated using USP Type II apparatus at 75 rpm. The dissolution medium consisted of 0.1 N hydrochloric acid (HCl) with 1% w/v sodium lauryl sulfate (SLS). Dissolution of BAY 12-9566 from the dispersion granules was enhanced compared to the physical mixture. The dissolution of BAY 12-9566 increased as a function of increased Gelucire 50/13 and Neusilin US2 loading and decreased with increased drug loading. In contrast to the usually observed decrease in dissolution on storage, an enhancement in dissolution was observed for the dispersion granules stored at 40°C/75% relative humidity (RH) for 2 and 4 weeks. Additionally, the flow and compressibility properties of dispersion granules were improved significantly when compared to the drug alone or the corresponding physical mixture. The ternary dispersion granules were compressed easily into tablets with up to 30% w/w drug loading. The extent of dissolution of drug from these tablets was greater than that from the uncompressed dispersion granules.  相似文献   

12.
A combination of solid dispersion and surface adsorption techniques was used to enhance the dissolution of a poorly water-soluble drug, BAY 12-9566. In addition to dissolution enhancement, this method allows compression of the granulated dispersion into tablets. Gelucire 50/13 (polyglycolized glycerides) was used as the solid dispersion carrier. Hot-melt granulation was performed to adsorb the melt of the drug and Gelucire 50/13 onto the surface of Neusilin US2 (magnesium alumino silicate), the surface adsorbent. Dispersion granules using various ratios of drug-Gelucire 50/13-Neusilin US2 were thus prepared. The dissolution profiles of BAY 12-9566 from the dispersion granules and corresponding physical mixtures were evaluated using USP Type II apparatus at 75 rpm. The dissolution medium consisted of 0.1 N hydrochloric acid (HCl) with 1% w/v sodium lauryl sulfate (SLS). Dissolution of BAY 12-9566 from the dispersion granules was enhanced compared to the physical mixture. The dissolution of BAY 12-9566 increased as a function of increased Gelucire 50/13 and Neusilin US2 loading and decreased with increased drug loading. In contrast to the usually observed decrease in dissolution on storage, an enhancement in dissolution was observed for the dispersion granules stored at 40 degrees C/75% relative humidity (RH) for 2 and 4 weeks. Additionally, the flow and compressibility properties of dispersion granules were improved significantly when compared to the drug alone or the corresponding physical mixture. The ternary dispersion granules were compressed easily into tablets with up to 30% w/w drug loading. The extent of dissolution of drug from these tablets was greater than that from the uncompressed dispersion granules.  相似文献   

13.
To develop a piroxicam-loaded gelatin microcapsule with enhanced bioavailability, a gelatin microcapsule encapsulated ethanol and piroxicam has been formulated by using gelatin as a water-soluble polymer shell. The aqueous solubility and bioavailability of piroxicam in piroxicam-loaded microcapsule in rats were then evaluated compared to piroxicam powder. The piroxicam-loaded gelatin microcapsule spherical in shape with smooth surface showed the geometric mean diameter of about 19 microm. It had the piroxicam solubility of about 1.87 mg/ml and the amount of ethanol of about 4.37 microg/mg. Furthermore, it gave significantly higher total plasma concentrations, Cmax and area under the blood concentration-time curve (AUC) of piroxicam in rats than did piroxicam powder, indicating that the drug from gelatin microcapsule could be more orally absorbed in rats. In particular, the AUC of piroxicam in gelatin microcapsule was significantly about 2 fold increased compared to piroxicam powder. This enhanced oral relative bioavailability of piroxicam in gelatin microcapsule was contributed by the marked increase in the absorption rate of piroxicam due to the improved solubility of piroxicam. Thus, the piroxicam-loaded gelatin microcapsule developed using spray-drying technique with gelatin, sodium lauryl sulfate and ethanol would be useful to deliver piroxicam in a pattern that allows fast absorption in the initial phase, leading to better absorption.  相似文献   

14.
To develop a novel ibuprofen-loaded solid dispersion with enhanced bioavailability, various ibuprofen-loaded solid dispersions were prepared with water, HPMC and poloxamer. The effect of HPMC and poloxamer on aqueous solubility of ibuprofen was investigated. The dissolution and bioavailability of solid dispersion in rats were then evaluated compared to ibuprofen powder. When the amount of carrier increased with a decreased in HPMC/poloxamer ratio, the aqueous solubility of ibuprofen was elevated. The solid dispersion composed of ibuprofen/HPMC/poloxamer at the weight ratio of 10:3:2 improved the drug solubility approximately 4 fold. It gave significantly higher initial plasma concentration, AUC and Cmax of drug than did ibuprofen powder in rats. The solid dispersion improved the bioavailability of drug about 4-fold compared to ibuprofen powder. Thus, this ibuprofen-loaded solid dispersion with water, HPMC and poloxamer was a more effective oral dosage form for improving the bioavailability of poor water-soluble ibuprofen.  相似文献   

15.
A discriminating dissolution method using a USP apparatus 2 dissolution tester was developed for a nitric oxide donating selective COX-2 inhibitor to support phase I and II formulation development, clinical supplies release and stability testing of an immediate release oral tablet. The BCS class II compound showed very low aqueous solubility and required the use of surfactant-containing (sodium lauryl sulfate (SLS)) dissolution medium in order to achieve an appropriate release profile. The dissolution method utilized 900 mL of 2% SLS (w/v). Samples were withdrawn at five specified time-points over 60 min, at a paddle speed of 75 rpm. Analysis of samples was performed using a validated HPLC method. Despite the use of high levels of SLS, the ability to discriminate variations in physical properties such as drug particle size, granule particle size and tablet compression force was demonstrated. In order to confirm the relationship between these physical parameters and the tablet in vivo release profile, oral dosing of the formulations in fasted beagle dogs was performed to determine if the changes observed in the dissolution profiles were biorelevant. The results of the dissolution and corresponding in vivo experiments helped identify the critical processing parameters likely to influence product bioavailability.  相似文献   

16.
This study investigated the effect of diltiazem on the bioavailability of oral and intravenous cyclosporine (CsA) in rats. While control rats received normal saline, experimental groups received 60 or 90 mg/kg diltiazem orally for 3 days. Each group divided into 2 equal groups that received a single oral dose or i.v. injection of CsA. Pharmacokinetic parameters were analyzed by nonparametric analysis of variance. Pretreatment with 60 or 90 mg/kg diltiazem decreased the area under the blood CsA concentration-time curve (AUC) of oral CsA compared to control group (54.5% and 65.5% for AUC(0-24), 57.6% and 62.2% for AUC(0-infinity), respectively, p<0.05). Mean CsA maximum concentration (Cmax) decreased from 0.4 +/- 0.1 microg/ml to 0.1 +/- 0.0 microg/mL in rats pretreated with 90 mg/kg diltiazem (p<0.05). The absolute bioavailability after oral administration (F(p.o.)) in the 60 or 90 mg/kg diltiazem groups were lower than the control group (9.6% and 8.5% versus 22.6%). Pretreatment with 90 mg/kg but not 60 mg/kg of diltiazem increased the AUC(0-infinity), elimination half-life (t1/2) of intravenous CsA (116.0%, 219.2%, respectively, p<0.05) and decreased the intravenous CsA clearence (CL(i.v.)) (62.9%, p<0.05). Diltiazem decreased the bioavailability of oral CsA, while it increased the bioavailability of intravenous CsA. One must consider this interaction when administering oral or intravenous CsA concomitantly with diltiazem.  相似文献   

17.
尼群地平缓释微球的制备及其体内外相关性的研究   总被引:2,自引:1,他引:2  
目的制备具有固体分散体结构的尼群地平缓释微球 ,并筛选具有良好体内外相关性的释放介质。方法采用球晶造粒法制备尼群地平缓释微球 ,考察微球的粒径、载药量、包封率及释放行为 ,并根据 6只试验犬体内药物动力学试验结果 ,将不同时间的吸收分数与不同释放介质的相应时间点的体外累积释放百分数作线性回归 ,筛选具有良好体内外相关性的释放介质。结果制备的微球的粒径随搅拌速度的增加而减少 ,包封率均在 96 80 %以上 ,药物从微球中的释放速度随处方中固体分散体载体量的增加而增加 ,随阻滞剂量的增加而减小。以 1 7 4mmol L十二烷基硫酸钠为释放介质时 ,体外累积释放百分数与体内吸收分数相关系数较好 (r =0 985 1 ) ,方程为Fa =1 64 5 8ft-2 7 64 2。结论该方法较适用于难溶性药物制备缓释微球。以 1 7 4mmol L十二烷基硫酸钠水溶液为释放介质可作为控制微球内在质量的标准  相似文献   

18.
OBJECTIVE: The aim of the present study was to investigate the effect of grapefruit juice on the pharmacokinetics of cyclosporin A (CsA), as Sandimmun Neoral, and its main metabolites, M1, M9 and M4N, in renal transplant recipients. METHODS: Ten renal transplant recipients, on CsA-based immunosuppressive therapy, were included in this open, randomized crossover study. Patients were given their individualized morning dose of CsA, administered with either 250 ml water or 250 ml grapefruit juice and 12-hour CsA pharmacokinetic investigations were performed. The 2 investigation days were separated by at least 7 days. RESULTS: Administration of CsA with grapefruit juice compared with water significantly increased the area under the whole blood concentration versus time curve in the interval from 0-12 hours (AUC(0-12)) of CsA, by an average of 25 +/- 19% (p = 0.002). Intake of grapefruit juice did not have any significant influence on maximum whole blood concentration (Cmax) or time to Cmax (tmax) of CsA. AUC(0-12) and Cmax of M9 decreased significantly with intake of grapefruit juice, on average 22 +/- 11% (p = 0.0007) and 36 +/- 6% (p = 0.0001), respectively. AUC(0-12) of M1, however, was on average 13 +/- 14% (p = 0.02) higher upon co-administration of CsA with grapefruit juice as compared with water. The level of M4N was below the limit of quantification in most samples, and an effect of co-administration of CsA with grapefruit juice could not be determined for this metabolite. CONCLUSION: The present study shows that co-administration of grapefruit juice with CsA compared with water affects the formation and/or elimination of the 2 metabolites M1 and M9 differently. In addition, administration of CsA with grapefruit juice compared with water induced a moderate, but significant increase in systemic exposure of CsA in renal transplant recipients.  相似文献   

19.
Sun N  Zhang X  Lu Y  Wu W 《Planta medica》2008,74(2):126-132
The solid dispersion of a poorly water-soluble Silybum marianum extract (SME) was prepared by a one-step fluid-bed coating technique depositing onto non-pareil pellets. In vitro evaluation indicated that this technique was highly efficient and reproducible producing pellets with acceptable appearance, flowability, friability, uniformity of drug content and enhanced dissolution. Physical characterization by DSC, powder X-ray diffractometry and FT-IR suggested the formation of a solid dispersion and possible interaction between PVP and the flavonolignans. Stress testing showed that the drug content and dissolution profiles of the SME solid dispersion pellets were sensitive to heat and humidity, while they are not affected under accelerated and long-term testing conditions. The relative bioavailability of solid dispersion pellets in dogs based on quantification of silibinin was about five-fold that of the SME suspension confirming enhanced oral bioavailability. It was concluded that the solid dispersion pellets prepared by fluid-bed coating showed favorable in vitro characteristics and enhanced oral bioavailability.  相似文献   

20.
The bioavailability of a novel water-soluble inclusion complex of CoQ10, prepared in our laboratory was determined and compared with the bioavailability of commercially available oil-based form of CoQ10. Experimental work consisted of single dose comparative bioavailability study on seven beagle dogs, with a 14-day washout period between treatments. Identification and quantification of CoQ10 was done with HPLC-MS method using positive APCI ionization and SIM mode, M+ m/z 863.4. The bioavailability results confirm that the water-soluble formulation has nearly three times higher AUC(0-48 h), two times higher Cmax, and Tmax is shortened from 6 to 4 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号