首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: To compare high-resolution T2-weighted images of the liver with and without integrated parallel acquisition techniques (iPAT) using either breath-hold sequences in combination with prospective acquisition motion correction (PACE) or respiratory triggering. MATERIALS AND METHODS: Ten volunteers and 10 patients underwent each four different high-resolution fast spin echo (FSE) T2-weighted sequences with 5 mm slice thickness and a full 320 matrix: a multi-breath-hold FSE sequence with and without iPAT and PACE and a respiratory-triggered FSE sequence with and without iPAT. Image quality was rated with a five-point scale by two independent readers. Signal intensity measurements were performed on a water phantom. RESULTS: The sequences with iPAT required a substantially shorter acquisition time without loss of image quality. Overall image quality was rated equal for all sequences by both readers. Image time for nine slices with iPAT was 13 seconds (19 seconds without iPAT) with multi-breath-hold and on average 4:00 minutes (7:02 minutes without iPAT) with respiratory triggering. Imaging with the PACE technique resulted in more correct positioning of the image stacks. CONCLUSION: T2-weighted fast imaging with iPAT is feasible and results in high-quality images within a short acquisition time. Overall image quality is not negatively affected by iPAT.  相似文献   

2.
Respiratory motion and pulsatile blood flow can generate artifacts in morphological and functional lung imaging. Total acquisition time, and thus the achievable signal to noise ratio, is limited when performing breath‐hold and/or electrocardiogram‐triggered imaging. To overcome these limitations, imaging during free respiration can be performed using respiratory gating/triggering devices or navigator echoes. However, these techniques provide only poor gating resolution and can induce saturation bands and signal fluctuations into the lung volume. In this work, acquisition schemes for nonphase encoded navigator echoes were implemented into different sequences for morphological and functional lung imaging at 1.5 Tesla (T) and 0.2T. The navigator echoes allow monitoring of respiratory motion and provide an ECG‐trigger signal for correction of the heart cycle without influencing the imaged slices. Artifact free images acquired during free respiration using a 3D GE, 2D multislice TSE or multi‐Gradient Echo sequence for oxygen‐enhanced T quantification are presented. Magn Reson Med, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

3.
Respiratory-triggered MRCP applying parallel acquisition techniques   总被引:1,自引:0,他引:1  
PURPOSE: To evaluate the influence of parallel imaging on the image quality of respiratory triggered magnetic resonance cholangiopancreatography (MRCP). MATERIALS AND METHODS: A total of 30 consecutive patients underwent MRCP applying a respiratory triggered T2-weighted (T2w) turbo spin-echo (TSE) sequence without and with parallel imaging (acceleration factor of 2). Acquisition times of both sequences were recorded. Quantitative evaluation included measurement of a contour sharpness index of two segments of the pancreaticobiliary tree as well as calculation of the relative contrast between ductal structures and organ parenchyma at four different segments. The qualitative evaluation was performed by two independent radiologists who graded overall image quality, depiction of eight segments of the pancreaticobiliary tree, and the frequency of artifacts. RESULTS: The application of parallel imaging significantly (P<0.05) reduced the acquisition time of the respiratory triggered MRCP sequence by 37.7% (six minutes and two seconds+/-one minute and 26 seconds vs. three minutes and 46 seconds+/-58 seconds). The quantitative and qualitative evaluation revealed no statistically significant differences between the two sequences (P>0.05). The frequency of artifacts was at the same level for both sequences as well. CONCLUSION: The application of parallel imaging for respiratory triggered MRCP significantly reduces the acquisition time without relevant influence on image quality.  相似文献   

4.
PURPOSE: To reduce long examination times of black-blood vessel wall imaging by acquiring multiple slices simultaneously and by using parallel acquisition techniques. MATERIALS AND METHODS: DIR-rapid acquisition with relaxation enhancement (RARE) techniques imaging up to 10 simultaneous slices per acquisition with single and multiple 180 degrees -reinversion pulses were developed. A slab-selective reinversion multislice DIR-RARE sequence incorporating generalized autocalibrating partially parallel acquisitions (GRAPPA) imaging was implemented. Four-channel and eight-channel carotid coils were built to test these sequences. A total of 11 subjects were studied. Contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) efficiency factor (SEF, SNR/unit time/slice) were measured from aortic images of three healthy subjects to determine optimal MR parameters. The DIR-RARE-GRAPPA sequence was run on aortas and carotid arteries of the five remaining healthy subjects and three atherosclerotic patients with optimal parameters (acquisition times 12-21 seconds). RESULTS: SEFs of slab-selective protocols were significantly higher than those of slice-selective protocols, and SEFs of DIR-RARE-GRAPPA protocols were significantly higher than corresponding non-GRAPPA protocols (P < 0.05). CNR was not significantly different for all imaging protocols. The DIR-RARE-GRAPPA multislice sequence showed 8.35-fold time improvement vs. single-slice DIR-2RARE sequence. CONCLUSION: Future MRI atherosclerotic plaque studies can be performed in substantially shorter times using these methods.  相似文献   

5.
The radial trajectory has found applications in cardiac imaging because of its resilience to undersampling and motion artifacts. Recent work has shown that interleaved and weighted radial imaging can produce images with multiple contrasts from a single data set. This feature was investigated for inversion recovery imaging of scar using a radial technique. The 2D radial imaging method was modified to acquire quadruply interleaved projection sets within each acquisition window of the cardiac cycle. These data were reconstructed using k-space weightings that used a smaller segment of the acquisition window for the central k-space data, the determinant of image contrast. This method generates four images with different T1 weightings. The novel approach was compared with noninterleaved radial imaging, interleaved radial without weightings, and Cartesian imaging in simulations, phantoms, and seven subjects with clinical myocardial infarction. The results show that during a typical acquisition window after an inversion pulse, magnetization changes rapidly. The interleaved acquisition provided better image quality than the noninterleaved radial acquisition. Interleaving with weighting provided better quality when the inversion time (TI) was shorter than optimal; otherwise, interleaving without weighting was superior. These methods enable a radial trajectory to be employed in conjunction with preparation pulses for viability imaging.  相似文献   

6.
Hyperpolarized (HP) gas imaging of the lungs is an ideal potential application for parallel imaging. This is due to the fact that there is limited scan time (breath hold of 20 s) and limited non-renewable polarization. Reduced phase encode parallel imaging is demanding on hardware in that it requires multiple receivers. In this work, simultaneous parallel acquisition of hyperpolarized (HP) 3He images from multiple slices was demonstrated in phantoms and in vivo using a simultaneous slice excitation method, at a field strength of 1.5 T. The pulse sequence allows simultaneous acquisition of n slices per RF excitation, thus reducing the number of RF pulses needed to fully cover a given volume with multi-slicing. Unlike conventional parallel imaging, this method does not require prior reference scan information, which would consume some of the finite longitudinal polarization in lung ventilation studies with HP gas.  相似文献   

7.
Assessment of regional lung perfusion and ventilation has significant clinical value for the diagnosis and follow‐up of pulmonary diseases. In this work a new method of non‐contrast‐enhanced functional lung MRI (not dependent on intravenous or inhalative contrast agents) is proposed. A two‐dimensional (2D) true fast imaging with steady precession (TrueFISP) pulse sequence (TR/TE = 1.9 ms/0.8 ms, acquisition time [TA] = 112 ms/image) was implemented on a 1.5T whole‐body MR scanner. The imaging protocol comprised sets of 198 lung images acquired with an imaging rate of 3.33 images/s in coronal and sagittal view. No electrocardiogram (ECG) or respiratory triggering was used. A nonrigid image registration algorithm was applied to compensate for respiratory motion. Rapid data acquisition allowed observing intensity changes in corresponding lung areas with respect to the cardiac and respiratory frequencies. After a Fourier analysis along the time domain, two spectral lines corresponding to both frequencies were used to calculate the perfusion‐ and ventilation‐weighted images. The described method was applied in preliminary studies on volunteers and patients showing clinical relevance to obtain non‐contrast‐enhanced perfusion and ventilation data. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Simultaneous multislice imaging (SMS) using parallel image reconstruction has rapidly advanced to become a major imaging technique. The primary benefit is an acceleration in data acquisition that is equal to the number of simultaneously excited slices. Unlike in‐plane parallel imaging this can have only a marginal intrinsic signal‐to‐noise ratio penalty, and the full acceleration is attainable at fixed echo time, as is required for many echo planar imaging applications. Furthermore, for some implementations SMS techniques can reduce radiofrequency (RF) power deposition. In this review the current state of the art of SMS imaging is presented. In the Introduction, a historical overview is given of the history of SMS excitation in MRI. The following section on RF pulses gives both the theoretical background and practical application. The section on encoding and reconstruction shows how the collapsed multislice images can be disentangled by means of the transmitter pulse phase, gradient pulses, and most importantly using multichannel receiver coils. The relationship between classic parallel imaging techniques and SMS reconstruction methods is explored. The subsequent section describes the practical implementation, including the acquisition of reference data, and slice cross‐talk. Published applications of SMS imaging are then reviewed, and the article concludes with an outlook and perspective of SMS imaging. Magn Reson Med 75:63–81, 2016. © 2015 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance.  相似文献   

9.
A method for simultaneous multislice (SMS) inversion contrast imaging is presented using a combination of the delays alternating with nutation for tailored excitation (DANTE) and the power independent of the number of slices (PINS) techniques. In SMS imaging, simultaneously excited slices result in an aliased image that is disentangled using parallel imaging reconstruction techniques. At high‐magnetic field strengths, the peak amplitude and specific absorption rate of conventional (summed) SMS radio frequency pulses can be prohibitively high. Using the PINS approach, specific absorption rate is independent of the number of slices allowing high SMS acceleration factors even at high fields. Using DANTE, adiabatic SMS radio frequency pulses can be created to be combined with PINS. This allows 2D imaging protocols that employ adiabatic pulses to also reap the benefits of low specific absorption rate SMS acceleration. As a proof‐of‐concept, simulations and measurements using hyperbolic secant inversion pulses are shown. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
PURPOSE: The purpose of the study presented here was to determine the improvement in image quality of oxygen-enhanced magnetic resonance (MR) subtraction imaging obtained with a centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence compared with that obtained with a conventional sequentially reordered inversion recovery single-shot HASTE (s-IR-HASTE) sequence for pulmonary imaging. MATERIALS AND METHODS: Oxygen-enhanced MR imaging using a 1.5 T whole body scanner was performed on 12 healthy, non-smoking volunteers. Oxygen-enhanced MR images were obtained with the coronal two-dimensional (2D) c-IR-HASTE sequence and 2D s-IR-HASTE sequence combined with respiratory triggering. For a 256x256 matrix, 132 phase-encoding steps were acquired including four steps for phase correction. Inter-echo spacing for each sequence was 4.0 ms. The effective echo time (TE) for c-IR-HASTE was 4.0 ms, and 16 ms for s-IR-HASTE. The inversion time (TI) was 900 ms. To determine the improvement in oxygen-enhanced MR subtraction imaging by c-IR-HASTE, CNRs of subtraction image, overall image quality, and image degradation of the c-IR-HASTE and s-IR-HASTE techniques were statistically compared. RESULTS: CNR, overall image quality, and image degradation of c-IR-HASTE images showed significant improvement compared to those s-IR-HASTE images (P<0.05). CONCLUSION: Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence enhanced the signal from the lung and improved the image quality of oxygen-enhanced MR subtraction imaging.  相似文献   

11.
This work introduces an MR-compatible active breathing control device (MR-ABC) that can be applied to lung imaging. An MR-ABC consists of a pneumotachograph for respiratory monitoring and an airway-sealing unit. Using an MR-ABC, the subjects were forced to suspend breathing for short time intervals, which were used in turn for data acquisition. While the breathing flow was stopped, data acquisition was triggered by ECG to achieve simultaneous cardiac and respiratory synchronization and thus avoid artifacts from blood flow or heart movement. The flow stoppage allowed a prolonged acquisition window of up to 1.5 sec. To evaluate the potential of an MR-ABC for segmented k-space acquisition, diaphragm displacement was investigated in five volunteers and compared with images acquired using breath-holding, a respiratory belt, and free breathing. Respiratory movement was comparatively low using the breath-hold approach, a respiratory belt or an MR-ABC. During free-breathing diaphragm displacement was comparatively large. To demonstrate the potential of an MR-ABC, lung MRI was performed using whole-chest 3D gradient-echo imaging, multislice turbo spin-echo (TSE) imaging, and short tau inversion recovery TSE (STIR-TSE). Cardiorespiratory synchronization was used for each sequence. None of the volunteers reported any discomfort or inconvenience when using an MR-ABC. Flow stoppage of up to 2.5 sec per breathing cycle was well tolerated, therefore allowing for a reduction of the total imaging time as compared to usage of a respiratory belt or MR navigator.  相似文献   

12.
Fast high-resolution T1 mapping of the human brain.   总被引:1,自引:0,他引:1  
A sequence for the acquisition of high-resolution T1 maps, based on magnetization-prepared multislice fast low-angle shot (FLASH) imaging, is presented. In contrast to similar methods, no saturation pulses are used, resulting in an increased dynamic range of the relaxation process. Furthermore, it is possible to acquire data during all relaxation delays because only slice-selective radiofrequency (RF) pulses are used for inversion and excitation. This allows for a reduction of the total acquisition time, or scanning with a reduced bandwidth, which improves the signal-to-noise ratio (SNR). The method generates quantitative T1 maps with an in-plane resolution of 1 mm, slice thickness of 4 mm, and whole-brain coverage in a clinically acceptable imaging time of about 19 s per slice. It is shown that the use of off-center RF pulses does not result in imperfect inversion or magnetization transfer (MT) effects. In addition, an improved fitting algorithm based on smoothed flip angle maps is presented and tested successfully.  相似文献   

13.
A method of acquiring slices in parallel is described which uses interleaved sets of pulsed B(0) field coils to generate discrete regions of uniform field within the main magnetic field known as interleaved MAMBA (multiple acquisition micro B(0) array). Simulations of a number of coil designs were performed using the Biot-Savart law. A six-step coil was built and interfaced to a 0.17 T Niche MRI system and the field steps measured using an imaging technique. Measured field steps were in good agreement with the values predicted by simulation. The coil design was then scaled up by a factor of three, interfaced to a 1.5 T whole-body MRI system, and scans of the hands and arms of volunteers were acquired from up to four field steps using standard spin and gradient echo sequences. Images were also acquired simultaneously from two field steps with no frequency encode aliasing and one excitation. The one-dimensional interleaved pulsed MAMBA step field technique shows great promise for enabling many slices to be acquired simultaneously along the axis of the coil for rapid volumetric studies without the need for multiple shot Hadamard encoding. Extension of interleaved coil design to two or three dimensions is feasible, which could provide full spatial coverage combined with ultra-rapid data acquisition.  相似文献   

14.
Fast magnetization preparation techniques acquire a series of echoes after a single magnetization preparation. If these echoes are acquired from different slices using a multislice technique the change in the preparation state of the echoes due to relaxation effects leads to different contrast modification for each slice. Encoding different preparation states along the phase-encoding direction of each slice instead of acquiring each slice in a different preparation state is introduced as a general concept to obtain images of identical contrast and point-spread function. This can be realized either by cycling the slice excitation order several times over the total number of repetitions or by moving the point of time at which the preparation is applied within each repetition. One possible application of this method is chemical shift selective fat saturation imaging. A homogeneous fat suppression across a multislice volume could be achieved using a FLASH sequence at a repetition time of TR = 145 ms, including a single fat saturation preparation. Conventional fat saturated spin-echo imaging at any TR can be accelerated significantly by reducing the number of applied preparations per repetition. A further application of the homogeneous preparation encoding (HoPE) method is described that encodes the spatial self-saturation of the multislice excitation order homogeneously in all slices. Only a reduced number of slices of the total volume are excited in each repetition and the slice excitation order is continuously moved along the imaging volume. This method is applied for time of flight (TOF) imaging. Using a TONE-like series of flip angles for the slice excitations of each repetition homogeneous TOF images can be obtained on the basis of a multislice acquisition.  相似文献   

15.
This work reports on the development of a pulse sequence to simultaneously acquire proton density, T(1), and T(2) weighted images in a single magnetization prepared fast spin echo acquisition. The technique is based upon the application of a magnetization preparation consisting of a global inversion followed by slice-selective 180 degrees and 90 degrees pulses to prepare the signal of specific slices. Slices are acquired in an interleaved manner with time delays appropriate for the desired image contrasts. Data acquisition is repeated for all combinations of slice interleaving covering the region of interest until images from all slice locations have been acquired with all desired image contrasts. The multiple image contrasts obtained with this technique should be useful in applications where discrimination between different types of tissue components is desired, such as in the analysis of plaque in cervical carotid artery disease.  相似文献   

16.
Flow‐sensitive alternating inversion recovery arterial spin labeling with parallel imaging acquisition is used to acquire single‐shot, multislice perfusion maps of the kidney. A considerable problem for arterial spin labeling methods, which are based on sequential subtraction, is the movement of the kidneys due to respiratory motion between acquisitions. The effects of breathing strategy (free, respiratory‐triggered and breath hold) are studied and the use of background suppression is investigated. The application of movement correction by image registration is assessed and perfusion rates are measured. Postacquisition image realignment is shown to improve visual quality and subsequent perfusion quantification. Using such correction, data can be collected from free breathing alone, without the need for a good respiratory trace and in the shortest overall acquisition time, advantageous for patient comfort. The addition of background suppression to arterial spin labeling data is shown to reduce the perfusion signal‐to‐noise ratio and underestimate perfusion. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
We present a method of multislice magnetic resonance imaging that utilizes simultaneous binary-encoded excitation. Signals are acquired from all slices at once, and the images are separated in the reconstruction process. This simultaneous multislice acquisition method has been implemented for multislice spin-echo imaging, and the results are compared with those for a standard interleaved multislice method. Advantages include improved signal-to-noise ratios and flexible slice placement. Phantom and volunteer studies are presented and evaluated in comparison with competing methods.  相似文献   

18.
PURPOSE: To develop a technique for time-efficient multislice double inversion-recovery (DIR) black-blood imaging and to test its applicability and limitations for high-resolution imaging of carotid arteries. MATERIALS AND METHODS: A multislice DIR pulse sequence with fast spin-echo (FSE) readout was implemented on a 1.5 T magnetic resonance (MR) scanner. The principle of the method is that a slice-selective inversion in a DIR preparation reinverts an entire slice pack, and all slices are imaged within repetition time (TR). The number of slices acquired per TR (N) controls the inversion time (TI) to execute the readout for each slice at the zero-crossing point of blood. Multislice DIR images (TR/TE = 2500/9 msec) of carotid arteries were obtained with variable N = 2-8 from four subjects. The method was compared with the standard single-slice DIR and inflow saturation techniques. RESULTS: Multislice DIR with N = 2-6 provided similar flow suppression in carotid arteries as single-slice DIR. At all N = 1-8, blood suppression by DIR was significantly better than by inflow saturation. An additional limitation of multislice DIR was saturation of the signal from stationary tissues that worsened visualization of the vessel wall at N >or= 6. CONCLUSION: Multislice DIR provides up to eight-fold improvement of time-efficiency relative to single-slice DIR and high-quality blood suppression.  相似文献   

19.
The optimal use of turbo continuous arterial spin labeling (Turbo-CASL) for functional imaging in the presence of activation-induced transit time (TT) changes was investigated. Functional imaging of a bilateral finger-tapping task showed improved sensitivity for Turbo-CASL as compared to traditional CASL techniques for four of six subjects when scanned at an appropriate repetition time (TR). Both experimental and simulation results suggest that for optimal functional sensitivity with Turbo-CASL, the pulse TR should be set to a value that is 100-200 ms less than the resting-state TT. Simulations were also run to demonstrate the differences in TT sensitivity of different slices within a multislice acquisition, and the signal loss that is expected as the number of slices is increased. Despite the lower baseline ASL signal provided by the Turbo-CASL acquisition, one can achieve equal or improved functional sensitivity due in part to the signal enhancement that accompanies the decrease in TT upon activation. Turbo-CASL is thus a promising technique for functional ASL at higher temporal resolution.  相似文献   

20.
In all current parallel imaging techniques, aliasing artifacts resulting from an undersampled acquisition are removed by means of a specialized image reconstruction algorithm. In this study a new approach termed "controlled aliasing in parallel imaging results in higher acceleration" (CAIPIRINHA) is presented. This technique modifies the appearance of aliasing artifacts during the acquisition to improve the subsequent parallel image reconstruction procedure. This new parallel multi-slice technique is more efficient compared to other multi-slice parallel imaging concepts that use only a pure postprocessing approach. In this new approach, multiple slices of arbitrary thickness and distance are excited simultaneously with the use of multi-band radiofrequency (RF) pulses similar to Hadamard pulses. These data are then undersampled, yielding superimposed slices that appear shifted with respect to each other. The shift of the aliased slices is controlled by modulating the phase of the individual slices in the multi-band excitation pulse from echo to echo. We show that the reconstruction quality of the aliased slices is better using this shift. This may potentially allow one to use higher acceleration factors than are used in techniques without this excitation scheme. Additionally, slices that have essentially the same coil sensitivity profiles can be separated with this technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号