首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesenchymal cell populations, referred to as mesenchymal stem cells or multipotent stromal cells (MSCs), which include bone marrow stromal cells (BMSCs), umbilical cord stromal cells and adipose stromal cells (ASCs), participate in tissue repair when transplanted into damaged or degenerating tissues. The trophic support and immunomodulation provided by MSCs can protect against tissue damage, and the differentiation potential of these cells may help to replace lost cells. MSCs are easily accessible and can be expanded on a large scale. In addition, BMSCs and ASCs can be harvested from the patient himself. Thus, MSCs are considered promising candidates for cell therapy. In this review, I will discuss recently discovered high-efficiency induction systems for deriving Schwann cells and neurons from MSCs. Other features of MSCs that are important for tissue repair include the self-renewing property of stem cells and their potential for differentiation. Thus, I will also discuss the stemness of MSCs and describe the discovery of a certain stem cell type among adult MSCs that can self-renew and differentiate into cells of all three germ layers. Furthermore, I will explore the prospects of using this cell population for cell therapy.  相似文献   

2.
Mesenchymal stem cells (MSCs) can be isolated from various tissues and represent an attractive cell population for tissue-engineering purposes. MSCs from bone marrow (bone marrow stromal cells [BMSCs]) are negative for immunologically relevant surface markers and inhibit proliferation of allogenic T cells in vitro. Therefore, BMSCs are said to be available for allogenic cell therapy. Although the immunological characteristics of BMSCs have been the subject of various investigations, those of stem cells isolated from adipose tissue (ASCs) have not been adequately described. In addition, the influence of osteogenic differentiation in vitro on the immunological characteristics of BMSCs and ASCs is the subject of this article. Before and after osteogenic induction, the influence of BMSCs and ASCs on the proliferative behavior of resting and activated allogenic peripheral blood mononuclear cells (PBMCs) was studied as a measure of the immune response (mixed lymphocyte culture). At the same points, the expression of immunologically relevant surface markers (e.g., major histocompatibility complex (MHC)-I, MHC-II, CD40, CD40L) was measured, and correlations between the different sets of results were sought. The pattern of surface antigen expression of BMSCs is the same as that of ASCs. Analogous to BMSCs, undifferentiated cells isolated from adipose tissue lack expression of MHC-II; this is not lost in the course of the osteogenic differentiation process. In co-culture with allogenic PBMCs, both cell types fail to lead to any significant stimulation, and they both retain these characteristics during the differentiation process. BMSCs and ASCs suppress proliferation on activated PBMCs before and after osteogenic differentiation. Our results confirm that MSCs are immune modulating cells. These properties are retained even after osteogenic induction in vitro and seem to be similar in BMSCs and ASCs. Our results suggest that allogenic transplantation of BMSCs and ASCs would be possible, for example, in the context of tissue engineering.  相似文献   

3.
Epigenetic programming of mesenchymal stem cells from human adipose tissue   总被引:2,自引:0,他引:2  
Stromal stem cells identified in various adult mesenchymal tissues (commonly called mesenchymal stem cells [MSCs]) have in past years received more attention as a result of their potential interest as replacement cells in regenerative medicine. An abundant and easily accessible source of adult human MSCs are stem cells harvested from liposuction material. Similarly to bone marrow-derived MSCs, human adipose tissue-derived stem cells (ASCs) can give rise to a variety of cell types in vitro and in vivo; however, they have a propensity to differentiate into primarily mesodermal lineages. Even so, their capacity to differentiate into nonadipogenic mesodermal pathways seems to be restricted. Emerging DNA methylation profiles at adipogenic and nonadipogenic gene promoters in freshly isolated, cultured, or differentiated ASCs aim to provide an epigenetic explanation for this restrictive differentiation potential. A review of these studies indicates that human ASCs are epigenetically marked by mosaic hypomethylation of adipogenic promoters, whereas nonadipogenic lineage-specific promoters are hypermethylated. Surprisingly, in vitro differentiation toward various pathways maintains the overall methylation profiles of undifferentiated cells, raising the hypothesis that ASCs are at least epigenetically preprogrammed for adipogenesis. Novel attempts at reprogramming the epigenome of MSCs have been initiated to enhance the differentiation capacity of these cells.  相似文献   

4.
5.
Cell sheet technology has emerged as an important tissue engineering approach. Adipose-derived stem cells (ASCs) have valuable applications in regenerative medicine, but their stemness and differentiation capabilities in the cell sheet format have not been well investigated. In this study, we found that l-ascorbate 2-phosphate (A2-P), a stable form of ascorbic acid, significantly enhanced ASC proliferation and induced ASC sheet fabrication in 7 days with abundant extracellular matrix deposition. Importantly, A2-P treatment significantly enhanced expression of pluripotent markers Sox-2, Oct-4 and Nanog, but treating ASCs with antioxidants other than A2-P revealed no stemness enhancement. Moreover, ASC treatment with A2-P and a collagen synthesis inhibitor, L-2-azetidine carboxylic acid or cis-4-hydroxy-d-proline, significantly inhibited the A2-P-enhanced expression of stemness markers. These findings demonstrated that A2-P enhances stemness of ASCs through collagen synthesis and cell sheet formation. We also showed that A2-P-stimulated collagen synthesis in ASCs may be mediated through ERK1/2 pathway. By culturing the ASC sheets in proper induction media, ASC transdifferentiation capabilities into neuron and hepatocyte-like cells were significantly enhanced after cell sheet formation, while adipogenic and osteogenic differentiation capacities were still maintained. Using a murine model of healing-impaired cutaneous wound, faster wound healing was noted in the group that received ASC sheet treatment, and we observed significantly more engrafted ASCs with evidence of differentiation toward endothelial and epidermal lineages in the cutaneous wound tissue. Therefore, A2-P-mediated ASC sheet formation enhanced ASC stemness and transdifferentiation capabilities, thereby representing a promising approach for applications in regenerative medicine.  相似文献   

6.
Adipose-derived stem cells (ASCs) possess a multilineage differentiation potential, can be used from an autologous origin, and are, therefore, attractive candidates for clinical applications to repair or regenerate damaged tissues and organs. Adipose tissue as a stem cell source is ubiquitously available and has several advantages compared with other sources. It is easily accessible in large quantities with a minimal invasive harvesting procedure, and the isolation of ASCs yields a high amount of stem cells, which is essential for stem cell-based therapies and tissue engineering. Differentiation of ASCs into cell types of mesodermal origin has been shown in a variety of studies. The plasticity of ASCs toward cells of the mesodermal lineage has been shown by their differentiation into chondrocytes, osteoblasts, adipocytes, and myocytes. Their potential to differentiate into lineages with nonmesodermal origin is even more exciting: ASCs are also able to differentiate into cells of ecto- and endodermal origin. Various in vitro and in vivo studies documented the induced differentiation into neural cells, hepatocytes, pancreatic islet cells, endothelial cells, and epithelial cells. Epithelial cells can embryologically arise from each of the 3 germ layers. This article summarizes and discusses the current knowledge of the potential of ASCs to differentiate into the epithelial lineage. The differentiation of ASCs into different types of epithelial cells, including hepatocytes, pancreatic cells, and endothelial cells, is highlighted together with a view on current clinical trials and future options.  相似文献   

7.
Adult stem cells, including adipose tissue-derived mesenchymal stem cells (MSCs) or ectomesenchymal dental follicle cells (DFCs), attract considerable attention for their potential to differentiate into lineages, which are of major interest in the field of Regenerative Medicine. Purinergic receptors exert a wide range of biological actions in many cell and tissue types through extracellular nucleotides. Little is known about P2 receptors in adult stem cells and changes in their expression levels during differentiation. All known P2 receptors have been investigated, and a variety of P2X and P2Y receptor subtypes were detected in MSCs. Studies investigating intracellular calcium levels on receptor stimulation demonstrated that the found P2 receptors are metabolically active. Interestingly, up- or downregulation of several P2 receptor subtypes at gene and protein level was observed during adipogenic and osteogenic differentiation, and the effect on differentiation was directly influenced by both the application of agonists/antagonists and apyrase-induced nucleotide cleavage. Here, we show for the first time that the combination of several P2 receptors plays a role in the differentiation of adult stem cells. The expression pattern of the P2 receptors, as well as their fate in differentiation, varies in stem cells of mesenchymal origin if compared with stem cells of ectomesenchymal origin. The subtypes P2X6, P2Y4, and P2Y14 seem to be pivotal regulators in MSC commitment, as they are regulated in both adipogenic and osteogenic differentiation of adipose tissue-derived stem cells and DFCs. These findings provide new insights into the differentiation processes and might reveal novel options to influence stem cell fate in future applications.  相似文献   

8.
The purpose of this study was to compare murine mesenchymal stem cells (MSCs) isolated from bone marrow (BM) and adipose tissue (AT) for the selection of suitable MSCs in cell therapy of an airway allergic animal model. We compared MSCs of BALB/c mice derived from BM and AT with respect to proliferation potential, immunophenotype, and multilineage differentiation capacity. In proliferation potential, MSCs from AT (ASCs) showed higher fibroblastoid colony-forming units frequencies and colony-forming efficiency than MSCs from BM (BMSCs). The flow cytometry analysis showed that both ASCs and BMSCs expressed MSCs-related antigens (CD90 and CD105), whereas they did not express hematopoiesis-related antigens (CD45 and CD11b). There was no significant difference in adipogenic, osteogenic, and chondrogenic differentiation between the murine ASCs and BMSCs. In conclusion, the present study has shown that ASCs had higher CFU-F frequencies and colony-forming efficiency than BMSCs. ASCs and BMSCs presented a similar surface immunophenotype and multilineage differentiation capacity. Therefore, ASCs in BALB/c mice might be a more useful material for cell therapy of the airway allergic experiment due to the abundance, relatively easy harvesting and high proliferation potential.  相似文献   

9.
Adult mesenchymal stem cells (MSCs) have the capability to differentiate along several lineages including those of bone, cartilage, tendon and muscle, thus offering huge potential for the field of tissue engineering. The purpose of this study was to characterise the differentiation capacity of rat MSCs cultured on standard plastic coverslips in 2 dimensions and on a novel collagen glycosaminoglycan scaffold in the presence of a standard combination of osteoinductive factors. Cells were cultured for 3, 7, 14 and 21 days and several markers of osteogenesis were analysed. While the initial response of the cells in 3-D seemed to be faster than cells cultured in 2-D, as evidenced by collagen type I expression, later markers showed that osteogenic differentiation of MSCs took longer in the 3-D environment of the collagen GAG scaffold compared to standard 2-D culture conditions. Furthermore, it was shown that complete scaffold mineralisation could be evoked within a 6 week timeframe. This study further demonstrates the potential use of MSC-seeded collagen GAG scaffolds for bone tissue engineering applications.  相似文献   

10.
We assessed human mesenchymal stem cells (MSCs) harvested from breast and abdominal adipose tissues enriched in embryonic stage-specific antigen (SSEA-4) expression for osteogenic and adipogenic differentiation in comparison to a mixed cell population. Human adipose was obtained from abdominal and breast tissues of females undergoing gastric bypass and breast reduction, respectively. SSEA-4-expressing cells were enriched from the mixed cell population by magnetic cell sorting and expanded in culture. The results showed that freshly isolated cells from breast and abdominal tissues based on adipose from 3 patients comprised 12 and 10% SSEA-4+ cells, respectively. At passage 0, 48% of the cells from breast adipose tissue were positive for SSEA-4 while 12% of the cells from abdominal adipose tissue were positive for this antigen. The level of SSEA-4-expressing cells remained relatively constant with passaging; SSEA-4-expressing cells from breast tissue comprised 45% of the total while 27% of the cells from abdominal adipose tissue expressed SSEA-4 at passage 5. Cells sorted for SSEA-4 expression exhibited a higher potential for differentiation toward osteogenic and adipogenc cell lineages in vitro when compared to a mixed population. Interestingly, SSEA-4 expression was lost upon differentiation, suggesting that the antigen marks a subpopulation of MSCs. Taken together, the data demonstrate that breast adipose tissue is highly enriched in a subpopulation of MSCs expressing SSEA-4 and suggest that SSEA-4 may be a marker of a subpopulation of MSCs with high potential for osteogenic and adipogenic differentiation.  相似文献   

11.
Recently adipose tissue has become a research topic also for the searching for an alternative stem cells source to use in cell based therapies such as tissue engineer. In fact Adipose Stem Cells (ASCs) exhibit an important differentiation potential for several cell lineages such as chondrogenic, osteogenic, myogenic, adipogenic and endothelial cells. ASCs populations isolated using standard methodologies (i.e., based on their adherence ability) are very heterogeneous but very few studies have analysed this aspect. Consequently, several questions are still pending, as for example, on what regard the existence/ or not of distinct ASCs subpopulations. The present study is originally aimed at isolating selected ASCs subpopulations, and to analyse their behaviour towards the heterogeneous population regarding the expression of stem cell markers and also regarding their osteogenic and chondrogenic differentiation potential. Human Adipose derived Stem Cells (hASCs) subpopulations were isolated using immunomagnetic beads coated with several different antibodies (CD29, CD44, CD49d, CD73, CD90, CD 105, Stro-1 and p75) and were characterized by Real Time RT-PCR in order to assess the expression of mesenchymal stem cells markers (CD44, CD73, Stro-1, CD105 and CD90) as well as known markers of the chondrogenic (Sox 9, Collagen II) and osteogenic lineage (Osteopontin, Osteocalcin). The obtained results underline the complexity of the ASCs population demonstrating that it is composed of several subpopulations, which express different levels of ASCs markers and exhibit distinctive differentiation potentials. Furthermore, the results obtained clearly evidence of the advantages of using selected populations in cell-based therapies, such as bone and cartilage regenerative medicine approaches.  相似文献   

12.
Bone marrow-derived mesenchymal stem cells (MSCs) can differentiate into different cell lineages with the appropriate stimulation in vitro. Transplantation of MSCs in human and other animal models was found to repair tissues through the fusion of transplanted MSCs with indigenous cells. We have generated mouseamouse hybrid cell lines in vitro by polyethylene glycol-mediated fusion of primary mouse MSCs with mouse fibroblasts to investigate the characteristics of hybrid cells, including their potentials for proliferation and differentiation. Similar to the parental MSCs, hybrid cells are positive for the cell-surface markers CD29, CD44, CD49e, and Sca-1, and negative for Gr-1, CD11b, CD13, CD18, CD31, CD43, CD45, CD49d, CD90.2, CD445R/B220, and CD117 markers. The hybrid cells also produce a high level of tissue nonspecific alkaline phosphatase compared to the parental cells. Conditioned medium of hybrid cells contain biologically active factors that are capable of stimulating proliferation of other cells. Although the parental MSCs can differentiate into adipogenic and osteogenic lineages, hybrid cells held disparate differentiation capacity. Hybrid cell lines in general have increased proliferative capacity than the primary MSCs. Our study demonstrates that proliferative hybrid cell lines can be generated in vitro by induced fusion of both immortal and primary somatic cells with primary MSCs.  相似文献   

13.
Bone marrow-derived mesenchymal stem cells (MSCs) are adherent cells that differentiate into chondroblasts, osteoblasts and adipocytes. In this short review, we summarize the molecular mechanisms that are known to control osteoblast differentiation and osteogenic potential of MSCs in vitro. We discuss the advances made in gene-based therapy to promote osteogenic differentiation of MSCs and the perspectives for an optimal use of MSCs for bone tissue regeneration or repair. One important challenge at the present time is to identify factors and pathways that promote osteogenic commitment of MSCs in order to use MSCs with functional potential for optimal bone repair in humans. In this context, genomic and proteomic analyses may help to identify molecules that could be used to promote osteogenic differentiation of human MSCs. In the future this may lead to selective therapeutic strategies for tissue engineering application in bone regeneration and repair in humans.  相似文献   

14.
目的:探讨垂体腺苷酸环化酶激活肽Ⅰ型受体(PAC1受体)特异激动剂maxadilan对人脂肪干细胞(adipose-derived stem cells,ASCs)的增殖、凋亡和分化潜能的作用。方法:取人脂肪组织通过酶消化法分离培养ASCs。流式细胞术鉴定ASCs表面标志物,并进行ASCs向成骨成脂定向诱导。CCK-8法和流式细胞术检测maxadilan对ASCs活性的影响。采用波长为254 nm的紫外线(ultraviolet C,UVC)照射ASCs,CCK-8法测定不同剂量的UVC诱导ASCs凋亡后的吸光度。选择剂量为702 J/m2的UVC照射ASCs 24 h后,用流式细胞术和caspase 3和caspase 9试剂盒检测maxadilan对ASCs凋亡的影响。结果:流式细胞术检测表明细胞CD29、CD44、CD59和CD105表面抗原阳性,证实所提取的细胞是ASCs。CCK-8法检测发现80 nmol/L浓度的maxadilan对ASCs促增殖作用最强,流式细胞术分析也证实80 nmol/L maxadilan处理显著促进ASCs的增殖,与对照组比较差异有统计学意义(P0.05)。与仅被702 J/m2UVC照射的ASCs比较,80 nmol/L maxadilan显著抑制同等剂量UVC照射ASCs所诱导的、与caspase 3和caspase 9活性相关的细胞凋亡,2组比较差异有统计学意义(P0.05)。同时,2组细胞成骨和成脂的诱导分化均为阳性。结论:Maxadilan促进ASCs增殖,抑制ASCs凋亡,且不改变细胞向成骨和成脂诱导分化的潜能。Maxadilan有利于ASCs的体外生长与扩增。  相似文献   

15.
Future cell-based therapies such as tissue engineering will benefit from a source of autologous pluripotent stem cells. For mesodermal tissue engineering, one such source of cells is the bone marrow stroma. The bone marrow compartment contains several cell populations, including mesenchymal stem cells (MSCs) that are capable of differentiating into adipogenic, osteogenic, chondrogenic, and myogenic cells. However, autologous bone marrow procurement has potential limitations. An alternate source of autologous adult stem cells that is obtainable in large quantities, under local anesthesia, with minimal discomfort would be advantageous. In this study, we determined if a population of stem cells could be isolated from human adipose tissue. Human adipose tissue, obtained by suction-assisted lipectomy (i.e., liposuction), was processed to obtain a fibroblast-like population of cells or a processed lipoaspirate (PLA). These PLA cells can be maintained in vitro for extended periods with stable population doubling and low levels of senescence. Immunofluorescence and flow cytometry show that the majority of PLA cells are of mesodermal or mesenchymal origin with low levels of contaminating pericytes, endothelial cells, and smooth muscle cells. Finally, PLA cells differentiate in vitro into adipogenic, chondrogenic, myogenic, and osteogenic cells in the presence of lineage-specific induction factors. In conclusion, the data support the hypothesis that a human lipoaspirate contains multipotent cells and may represent an alternative stem cell source to bone marrow-derived MSCs.  相似文献   

16.
Mesenchymal stem cells (MSCs) represent an attractive cell source for tissue engineering applications, since they are readily isolated from adult bone marrow and have the ability to differentiate along multiple mesenchymal lineages, including osteogenic. Currently, utilization of MSCs for bone tissue engineering is limited because of the attenuation of their osteogenic differentiation potential and in vivo bone-forming capacity following ex vivo expansion on conventional tissue culture plastic (TCP). Previously, we demonstrated that a denatured type I collagen (DC) matrix promotes the maintenance of MSC in vitro osteogenic differentiation potential during ex vivo expansion in contrast to TCP. In this study, we further demonstrate that the maintenance of MSC osteogenic differentiation potential is primarily due to the ability of DC matrix to influence the retention of early passage osteogenic functions in late passage (LP) cells during ex vivo expansion, in contrast to solely enhancing attenuated LP cellular functions during osteogenic differentiation. Serum-associated factors played a significant role in influencing the retention of MSC osteogenic differentiation potential during expansion on the DC matrix. Significantly, the results show that although LP cells expanded ex vivo on TCP highly attentuate their in vivo bone-forming capacity, the expansion of MSCs on DC matrix preserves this ability as determined by histological, histomorphometric, and bone mineral density evaluations of MSC-seeded hydroxyapatite/tricalcium phosphate scaffolds following an 8-week implantation period within a heterotopic muscle pouch model. These findings provide further insight into the importance of matrix-mediated effects on MSC function and selective factors important in this process.  相似文献   

17.
Mesenchymal stem cells (MSCs) are ideal seed cells for bone tissue engineering. However, intrinsic deficiencies exist for the autologous transplantation strategy of constructing artificial bone with MSCs derived from bone marrow of patients. In this study, MSCs-like cells were isolated from human umbilical cords and were expanded in vitro. Flow cytometric analysis revealed that cells from the fourth passage were positive for CD29, CD44, CD71, CD73, CD90, and CD105 whereas they were negative for CD14, CD34, CD45, and CD117. Furthermore, these cells expressed HLA-A, B, C (MHC-I), but not HLA-DP, DQ, DR (MHC-II), or costimulatory molecules such as CD80 and CD86. Following incubation in specific inductive media for 3 weeks, cultured cells were shown to possess potential to differentiate into adipogenic, osteogenic or chondrogenic lineages in vitro. The umbilical cord-derived MSCs (UC-MSCs) were loaded with a biomimetic artificial bone scaffold material before being implanted subcutaneously in the back of Balb/c nude mice for four to twelve weeks. Our results revealed that UC-MSCs loaded with the scaffold displayed capacity of osteogenic differentiation leading to osteogenesis with human origin in vivo. As a readily available source of seed cells for bone tissue engineering, UC-MSCs should have broad application prospects.  相似文献   

18.
Stem cell-based bone tissue regeneration in the maxillofacial complex is a clinical necessity. Genetic engineering of mesenchymal stem cells (MSCs) to follow specific differentiation pathways may enhance the ability of these cells to regenerate and increase their clinical relevance. MSCs isolated from maxillofacial bone marrow (BM) are good candidates for tissue regeneration at sites of damage to the maxillofacial complex. In this study, we hypothesized that MSCs isolated from the maxillofacial complex can be engineered to overexpress the bone morphogenetic protein-2 gene and induce bone tissue regeneration in vivo. To demonstrate that the cells isolated from the maxillofacial complex were indeed MSCs, we performed a flow cytometry analysis, which revealed a high expression of mesenchyme-related markers and an absence of non-mesenchyme-related markers. In vitro, the MSCs were able to differentiate into osteogenic, chondrogenic, and adipogenic lineages. Gene delivery of the osteogenic gene BMP2 via an adenoviral vector revealed high expression levels of BMP2 protein that induced osteogenic differentiation of these cells in vitro and induced bone formation in an ectopic site in vivo. In addition, implantation of genetically engineered maxillofacial BM-derived MSCs into a mandibular defect led to regeneration of tissue at the site of the defect; this was confirmed by performing micro-computed tomography analysis. Histological analysis of the mandibles revealed osteogenic differentiation of implanted cells as well as bone tissue regeneration. We conclude that maxillofacial BM-derived MSCs can be genetically engineered to induce bone tissue regeneration in the maxillofacial complex and that this finding may be clinically relevant.  相似文献   

19.
Having advantageous biocompatibility and osteoconductive properties known to enhance the osteogenic differentiation of mesenchymal stem cells (MSCs), hydroxyapatite (HA) is a commonly used material for bone tissue engineering. What remains unclear, however, is whether HA holds a similar potential for stimulating the osteogenic differentiation of MSCs to that of a more frequently used osteogenic-inducing medium (OIM). To that end, we used PHBV electrospun nanofibrous scaffolds to directly compare the osteogenic capacities of HA with OIM over MSCs. Through the observation of cellular morphology, the staining of osteogenic markers, and the quantitative measuring of osteogenic-related genes, as well as microRNA analyses, we not only found that HA was as capable as OIM for differentiating MSCs down an osteogenic lineage; albeit, at a significantly slower rate, but also that numerous microRNAs are involved in the osteogenic differentiation of MSCs through multiple pathways involving the inhibition of cellular proliferation and stemness, chondrogenesis and adipogenesis, and the active promotion of osteogenesis. Taken together, we have shown for the first time that PHBV electrospun nanofibrous scaffolds combined with HA have a similar osteogenic-inducing potential as OIM and may therefore be used as a viable replacement for OIM for alternative in vivo-mimicking bone tissue engineering applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号