首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The polycomb repressive complex 2 (PRC2) is the major methyltransferase for H3K27 methylation, a modification critical for maintaining repressed gene expression programs throughout development. It has been previously shown that PRC2 maintains histone methylation patterns during DNA replication in part through its ability to bind to H3K27me3. However, the mechanism by which PRC2 recognizes H3K27me3 is unclear. Here we show that the WD40 domain of EED, a PRC2 component, is a methyllysine histone-binding domain. The crystal structures of apo-EED and EED in complex respectively with five different trimethyllysine histone peptides reveal that EED binds these peptides via the top face of its β-propeller architecture. The ammonium group of the trimethyllysine is accommodated by an aromatic cage formed by three aromatic residues, while its aliphatic chain is flanked by a fourth aromatic residue. Our structural data provide an explanation for the preferential recognition of the Ala-Arg-Lys-Ser motif-containing trimethylated H3K27, H3K9, and H1K26 marks by EED over lower methylation states and other histone methyllysine marks. More importantly, we found that binding of different histone marks by EED differentially regulates the activity and specificity of PRC2. Whereas the H3K27me3 mark stimulates the histone methyltransferase activity of PRC2, the H1K26me3 mark inhibits PRC2 methyltransferase activity on the nucleosome. Moreover, H1K26me3 binding switches the specificity of PRC2 from methylating H3K27 to EED. In addition to determining the molecular basis of EED-methyllysine recognition, our work provides the biochemical characterization of how the activity of a histone methyltransferase is oppositely regulated by two histone marks.  相似文献   

5.
Diabetic patients continue to develop inflammation and vascular complications even after achieving glycemic control. This poorly understood "metabolic memory" phenomenon poses major challenges in treating diabetes. Recent studies demonstrate a link between epigenetic changes such as chromatin histone lysine methylation and gene expression. We hypothesized that H3 lysine-9 tri-methylation (H3K9me3), a key repressive and relatively stable epigenetic chromatin mark, may be involved in metabolic memory. This was tested in vascular smooth muscle cells (VSMC) derived from type 2 diabetic db/db mice. These cells exhibit a persistent atherogenic and inflammatory phenotype even after culture in vitro. ChIP assays showed that H3K9me3 levels were significantly decreased at the promoters of key inflammatory genes in cultured db/db VSMC relative to control db/+ cells. Immunoblotting demonstrated that protein levels of the H3K9me3 methyltransferase Suv39h1 were also reduced in db/db VSMC. Furthermore, db/db VSMC were hypersensitive to TNF-alpha inflammatory stimulus, which induced dramatic and sustained decreases in promoter H3K9me3 and Suv39h1 occupancy. Recruitment of corepressor HP1alpha was also reduced under these conditions in db/db cells. Overexpression of SUV39H1 in db/db VSMC reversed this diabetic phenotype. Conversely, gene silencing of SUV39H1 with shRNAs in normal human VSMC (HVSMC) increased inflammatory genes. HVSMC cultured in high glucose also showed increased inflammatory gene expression and decreased H3K9me3 at their promoters. These results demonstrate protective roles for H3K9me3 and Suv39h1 against the preactivated state of diabetic VSMC. Dysregulation of epigenetic histone modifications may be a major underlying mechanism for metabolic memory and sustained proinflammatory phenotype of diabetic cells.  相似文献   

6.
Epigenome profiling has led to the paradigm that promoters of active genes are decorated with H3K4me3 and H3K9ac marks. To explore the epigenome of Plasmodium falciparum asexual stages, we performed MS analysis of histone modifications and found a general preponderance of H3/H4 acetylation and H3K4me3. ChIP-on-chip profiling of H3, H3K4me3, H3K9me3, and H3K9ac from asynchronous parasites revealed an extensively euchromatic epigenome with heterochromatin restricted to variant surface antigen gene families (VSA) and a number of genes hitherto unlinked to VSA. Remarkably, the vast majority of the genome shows an unexpected pattern of enrichment of H3K4me3 and H3K9ac. Analysis of synchronized parasites revealed significant developmental stage specificity of the epigenome. In rings, H3K4me3 and H3K9ac are homogenous across the genes marking active and inactive genes equally, whereas in schizonts, they are enriched at the 5′ end of active genes. This study reveals an unforeseen and unique plasticity in the use of the epigenetic marks and implies the presence of distinct epigenetic pathways in gene silencing/activation throughout the erythrocytic cycle.  相似文献   

7.
8.
Trimethylation of histone H3 on lysine 27 (H3K27me3) is a repressive posttranslational modification mediated by the histone methyltransferase EZH2. EZH2 is a component of the polycomb repressive complex 2 and is overexpressed in many cancers. In B-cell lymphomas, its substrate preference is frequently altered through somatic mutation of the EZH2 Y641 residue. Herein, we identify mutation of EZH2 A677 to a glycine (A677G) among lymphoma cell lines and primary tumor specimens. Similar to Y641 mutant cell lines, an A677G mutant cell line revealed aberrantly elevated H3K27me3 and decreased monomethylated H3K27 (H3K27me1) and dimethylated H3K27 (H3K27me2). A677G EZH2 possessed catalytic activity with a substrate specificity that was distinct from those of both WT EZH2 and Y641 mutants. Whereas WT EZH2 displayed a preference for substrates with less methylation [unmethylated H3K27 (H3K27me0):me1:me2 k(cat)/K(m) ratio = 9:6:1] and Y641 mutants preferred substrates with greater methylation (H3K27me0:me1:me2 k(cat)/K(m) ratio = 1:2:13), the A677G EZH2 demonstrated nearly equal efficiency for all three substrates (H3K27me0:me1:me2 k(cat)/K(m) ratio = 1.1:0.6:1). When transiently expressed in cells, A677G EZH2, but not WT EZH2, increased global H3K27me3 and decreased H3K27me2. Structural modeling of WT and mutant EZH2 suggested that the A677G mutation acquires the ability to methylate H3K27me2 through enlargement of the lysine tunnel while preserving activity with H3K27me0/me1 substrates through retention of the Y641 residue that is crucial for orientation of these smaller substrates. This mutation highlights the interplay between Y641 and A677 residues in the substrate specificity of EZH2 and identifies another lymphoma patient population that harbors an activating mutation of EZH2.  相似文献   

9.
Functionally distinct chromatin domains are delineated by distinct posttranslational modifications of histones, and in some organisms by differences in DNA methylation. Proper establishment and maintenance of chromatin domains is critical but not well understood. We previously demonstrated that heterochromatin in the filamentous fungus Neurospora crassa is marked by cytosine methylation directed by trimethylated Lysine 9 on histone H3 (H3K9me3). H3K9me3 is the product of the DIM-5 Lysine methyltransferase and is recognized by a protein complex containing heterochromatin protein-1 and the DIM-2 DNA methyltransferase. To identify additional components that control the establishment and function of DNA methylation and heterochromatin, we built a strain harboring two selectable reporter genes that are silenced by DNA methylation and employed this strain to select for mutants that are defective in DNA methylation (dim). We report a previously unidentified gene (dim-7) that is essential for H3K9me3 and DNA methylation. DIM-7 homologs are found only in fungi and are highly divergent. We found that DIM-7 interacts with DIM-5 in vivo and demonstrated that a conserved domain near the N terminus of DIM-7 is required for its stability. In addition, we found that DIM-7 is essential for recruitment of DIM-5 to form heterochromatin.  相似文献   

10.
Posttranslational modifications of histones play important roles in modulating chromatin structure and regulating gene expression. We have previously shown that more than two thirds of Arabidopsis genes contain histone H3 methylation at lysine 4 (H3K4me) and that trimethylation of H3K4 (H3K4me3) is preferentially located at actively transcribed genes. In addition, several Arabidopsis mutants with locus-specific loss of H3K4me have been found to display various developmental abnormalities. These findings suggest that H3K4me3 may play important roles in maintaining the normal expression of a large number of genes. However, the major enzyme(s) responsible for H3K4me3 has yet to be identified in plants, making it difficult to address questions regarding the mechanisms and functions of H3K4me3. Here we described the characterization of SET DOMAIN GROUP 2 (SDG2), a large Arabidopsis protein containing a histone lysine methyltransferase domain. We found that SDG2 homologs are highly conserved in plants and that the Arabidopsis SDG2 gene is broadly expressed during development. In addition, the loss of SDG2 leads to severe and pleiotropic phenotypes, as well as the misregulation of a large number of genes. Consistent with our finding that SDG2 is a robust and specific H3K4 methyltransferase in vitro, the loss of SDG2 leads to a drastic decrease in H3K4me3 in vivo. Taken together, these results suggest that SDG2 is the major enzyme responsible for H3K4me3 in Arabidopsis and that SDG2-dependent H3K4m3 is critical for regulating gene expression and plant development.  相似文献   

11.
12.
13.
14.
15.
Multipotent progenitor cells of the cerebral cortex balance self-renewal and differentiation to produce complex neural lineages in a fixed temporal order in a cell-autonomous manner. We studied the role of the polycomb epigenetic system, a chromatin-based repressive mechanism, in controlling cortical progenitor cell self-renewal and differentiation. We found that the histone methyltransferase of polycomb repressive complex 2 (PCR2), enhancer of Zeste homolog 2 (Ezh2), is essential for controlling the rate at which development progresses within cortical progenitor cell lineages. Loss of function of Ezh2 removes the repressive mark of trimethylated histone H3 at lysine 27 (H3K27me3) in cortical progenitor cells and also prevents its establishment in postmitotic neurons. Removal of this repressive chromatin modification results in marked up-regulation in gene expression, the consequence of which is a shift in the balance between self-renewal and differentiation toward differentiation, both directly to neurons and indirectly via basal progenitor cell genesis. Although the temporal order of neurogenesis and gliogenesis are broadly conserved under these conditions, the timing of neurogenesis, the relative numbers of different cell types, and the switch to gliogenesis are all altered, narrowing the neurogenic period for progenitor cells and reducing their neuronal output. As a consequence, the timing of cortical development is altered significantly after loss of PRC2 function.  相似文献   

16.
17.
The replication timing of some genes is developmentally regulated, but the significance of replication timing to cellular differentiation has been difficult to substantiate. Studies have largely been restricted to the comparison of a few genes in established cell lines derived from different tissues, and most of these genes do not change replication timing. Hence, it has not been possible to predict how many or what types of genes might be subject to such control. Here, we have evaluated the replication timing of 54 tissue-specific genes in mouse embryonic stem cells before and after differentiation to neural precursors. Strikingly, genes residing within isochores rich in GC and poor in long interspersed nuclear elements (LINEs) did not change their replication timing, whereas half of genes within isochores rich in AT and long interspersed nuclear elements displayed programmed changes in replication timing that accompanied changes in gene expression. Our results provide direct evidence that differentiation-induced autosomal replication-timing changes are a significant part of mammalian development, provide a means to predict genes subject to such regulation, and suggest that replication timing may be more related to the evolution of metazoan genomes than to gene function or expression pattern.  相似文献   

18.
19.
Lee HA  Cho HM  Lee DY  Kim KC  Han HS  Kim IK 《Hypertension》2012,59(3):621-626
The renin-angiotensin system has been implicated in the development of hypertension and damages several organs. The expressions of the components of a local renin-angiotensin system (RAS) in the hypertensive rats differ from those of the normotensive rats. We hypothesized that local tissue-specific upregulation of angiotensin-converting enzyme 1 (ACE1) in hypertension is caused by epigenetic changes. Adrenal gland, aorta, heart, kidney, liver, and lung tissues were excised from normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs). Ace1 mRNA and protein expressions were measured by real-time PCR and Western blot, respectively. Promoter methylation was revealed by bisulfite sequencing. Histone modifications, such as histone 3 acetylation (H3Ac), fourth lysine trimethylation (H3K4me3), and ninth lysine dimethylation (H3K9me2), were quantified by chromatin immunoprecipitation (ChIP), followed by real-time PCR. The expressions and associations of chromatin remodeling genes were analyzed by real-time PCR and ChIP, respectively. Local tissues from SHRs showed higher expressions of Ace1 mRNA and protein than those from the WKY rats. Ace1 promoter was mostly unmethylated in all of the tissues from both strains. The Ace1 promoter regions of SHR tissues were more enriched with H3Ac and H3K4me3, except in the lungs. The adrenal glands, hearts, and kidneys of SHRs showed less enrichment with H3K9me2. Valsartan treatment in SHRs decreased local Ace1 mRNA and protein expressions, which were accompanied by higher H3K9me2, as well as less H3Ac and H3K4me3. In conclusion, ACE1 is upregulated in local tissues of SHRs via histone code modifications.  相似文献   

20.
To understand the molecular basis that supports the dynamic gene expression programs unique to T cells, we investigated the genomic landscape of activating histone modifications, including histone H3 K9/K14 diacetylation (H3K9acK14ac), H3 K4 trimethylation (H3K4me3), and the repressive histone modification H3 K27 trimethylation (H3K27me3) in primary human T cells. We show that H3K9acK14ac and H3K4me3 are associated with active genes required for T cell function and development, whereas H3K27me3 is associated with silent genes that are involved in development in other cell types. Unexpectedly, we find that 3,330 gene promoters are associated with all of these histone modifications. The gene expression levels are correlated with both the absolute and relative levels of the activating H3K4me3 and the repressive H3K27me3 modifications. Our data reveal that rapidly inducible genes are associated with the H3 acetylation and H3K4me3 modifications, suggesting they assume a chromatin structure poised for activation. In addition, we identified a subpopulation of chromatin regions that are associated with high levels of H3K4me3 and H3K27me3 but low levels of H3K9acK14ac. Therefore, these regions have a distinctive chromatin modification pattern and thus may represent a distinct class of chromatin domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号