首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Because of the association of beta-sheet formation with the initiation and propagation of amyloid diseases, model systems have been sought to further our understanding of this process. WW domains have been proposed as one such model system. Whereas the folding of the WW domains from human Yes-associated protein (YAP) and Pin have been shown to obey single-exponential kinetics, the folding of the WW domain from formin-binding protein (FBP) 28 has been shown to proceed via biphasic kinetics. From an analysis of free-energy landscapes from atomic-level molecular dynamics simulations, the biphasic folding kinetics observed in the FBP WW domain may be traced to the ability of this WW domain to adopt two slightly different forms of packing in its hydrophobic core. This conformational change is propagated along the peptide backbone and affects the position of a tryptophan residue shown in other WW domains to play a key role in binding. The WW domains of Pin and YAP do not support more than one type of packing each, leading to monophasic folding kinetics. The ability of the FBP WW domain to assume two different types of packing may, in turn, explain the capacity of this WW domain to bind two classes of ligand, a property that is not shared by other WW domains. These findings lead to the hypothesis that lability with respect to conformations separated by an observable barrier as a requirement for function is incompatible with the ability of a protein to fold via single-exponential kinetics.  相似文献   

2.
3.
A peptide-based hydrogelation strategy has been developed that allows homogenous encapsulation and subsequent delivery of C3H10t1/2 mesenchymal stem cells. Structure-based peptide design afforded MAX8, a 20-residue peptide that folds and self-assembles in response to DMEM resulting in mechanically rigid hydrogels. The folding and self-assembly kinetics of MAX8 have been tuned so that when hydrogelation is triggered in the presence of cells, the cells become homogeneously impregnated within the gel. A unique characteristic of these gel-cell constructs is that when an appropriate shear stress is applied, the hydrogel will shear-thin resulting in a low-viscosity gel. However, after the application of shear has stopped, the gel quickly resets and recovers its initial mechanical rigidity in a near quantitative fashion. This property allows gel/cell constructs to be delivered via syringe with precision to target sites. Homogenous cellular distribution and cell viability are unaffected by the shear thinning process and gel/cell constructs stay fixed at the point of introduction, suggesting that these gels may be useful for the delivery of cells to target biological sites in tissue regeneration efforts.  相似文献   

4.
Recent studies on peptide hydrogels have shown that ultrashort peptides (<8 amino acids) can self-assemble into hydrogels. Ultrashort peptides can be designed to incorporate antimicrobial motifs, such as positively charged lysine residues, so that the peptides have inherent antimicrobial characteristics. Antimicrobial hydrogels represent a step change in tissue engineering and merit further investigation, particularly in applications where microbial infection could compromise healing. Herein, we studied the biocompatibility of dental pulp stem/stromal cells (DPSCs) with an ultrashort peptide hydrogel, (naphthalene-2-ly)-acetyl-diphenylalanine-dilysine-OH (NapFFεKεK-OH), where the epsilon (ε) amino group forms part of the peptide bond rather than the standard amino grouping. We tested the antimicrobial properties of NapFFεKεK-OH in both solution and hydrogel form against Staphylococcus aureus, Enterococcus faecalis and Fusobacterium nucleatum and investigated the DPSC secretome in hydrogel culture. Our results showed NapFFεKεK-OH hydrogels were biocompatible with DPSCs. Peptides in solution form were efficacious against biofilms of S. aureus and E. faecalis, whereas hydrogels demonstrated antimicrobial activity against E. faecalis and F. nucleatum. Using an angiogenic array we showed that DPSCs encapsulated within NapFFεKεK-OH hydrogels produced an angiogenic secretome. These results suggest that NapFFεKεK-OH hydrogels have potential to serve as novel hydrogels in tissue engineering for cell-based pulp regeneration.  相似文献   

5.
Smad ubiquitination regulatory factor 2 (Smurf2) is an E3 ubiquitin ligase that participates in degradation of TGF-β receptors and other targets. Smurf2 WW domains recognize PPXY (PY) motifs on ubiquitin ligase target proteins or on adapters, such as Smad7, that bind to E3 target proteins. We previously demonstrated that the isolated WW3 domain of Smurf2, but not the WW2 domain, can directly bind to a Smad7 PY motif. We show here that the WW2 augments this interaction by binding to the WW3 and making auxiliary contacts with the PY motif and a novel E/D-S/T-P motif, which is N-terminal to all Smad PY motifs. The WW2 likely enhances the selectivity of Smurf2 for the Smad proteins. NMR titrations confirm that Smad1 and Smad2 are bound by Smurf2 with the same coupled WW domain arrangement used to bind Smad7. The analogous WW domains in the short isoform of Smurf1 recognize the Smad7 PY peptide using the same coupled mechanism. However, a longer Smurf1 isoform, which has an additional 26 residues in the inter-WW domain linker, is only partially able to use the coupled WW domain binding mechanism. The longer linker results in a decrease in affinity for the Smad7 peptide. Interdomain coupling of WW domains enhances selectivity and enables the tuning of interactions by isoform switching.  相似文献   

6.
Cardiomyocyte progenitor cells (CMPCs) are a candidate cell source for cardiac regenerative therapy. However, like other stem cells, after transplantation in the heart, cell retention and differentiation capacity of the CMPCs are low. Combining cells with biomaterials might overcome this problem. By serving as a (temporal) environment, the biomaterial can retain the cells and provide signals that enhance survival, proliferation and differentiation of the cells. To gain more insight into the effect that the encapsulation of CMPCs in a biomaterial has on their behavior, we cultured CMPCs in unidirectional constrained and stress-free collagen/Matrigel hydrogels. CMPCs cultured in 3D hydrogels stay viable and keep their cardiomyogenic profile independent of the application of strain. Moreover, the increased expression of Nkx2.5, myocardin and cTnT in 3D hydrogels compared to 2D cultures, suggests enhanced cardiomyogenic differentiation capacity of cells in 3D. Furthermore, increased expression of collagen I, collagen III, elastin and fibronectin and of the matrix remodeling enzymes MMP-1, MMP-2, MMP-9, and TIMP-1 and TIMP-2 in the 3D hydrogels is indicative of an enhanced matrix remodeling capacity of CMPCs in a 3D environment, independent of the application of strain. Interestingly, the additional application of static strain to the 3D hydrogels, as imposed by hydrogel constrainment, stabilized CMPC viability and proliferation, resulted in enhanced cardiac marker protein expression and appeared crucial for cellular organization and morphology. More specifically, CMPCs cultured in 3D collagen/Matrigel constrained hydrogels became readily mechanosensitive, had a rod-shaped morphology, and responded to the applied strain by orienting in the direction of the constraint. Overall, our data demonstrate the applicability of CMPCs in a 3D environment since encapsulation of CMPCs may stabilize survival and proliferation, can enhance the differentiation and remodeling capacity of the cells, and could induce cellular re-organization, which all may contribute to an improved efficiency of cardiac stem cell therapy.  相似文献   

7.
The NADPH oxidase responsible for generation of superoxide anion and related microbicidal oxidants by phagocytes is assembled from at least five distinct proteins. Two are cytosolic components (p47-phox and p67-phox) that contain Src homology 3 (SH3) domains and associate with a transmembrane cytochrome b558 upon activation. We show here that the SH3 domains of p47-phox bind to proline-rich sequences in p47-phox itself and the p22-phox subunit of cytochrome b558. Binding of the p47-phox SH3 domains to p22-phox was abolished by a mutation in one proline-rich sequence (Pro156-->Gln) noted in a distinct form of chronic granulomatous disease and was inhibited by a short proline-rich synthetic peptide corresponding to residues 149-162 of p22-phox. Expression of mutated p22-phox did not restore oxidase activity to p22-phox-deficient B cells and did not enable p22-phox-dependent translocation of p47-phox to membranes in phorbol ester-stimulated cells. We also show that the cytosolic oxidase components associate with one another through the C-terminal SH3 domain of p67-phox and a proline-rich C-terminal sequence in p47-phox. These SH3 target sites conform to consensus features deduced from SH3 binding sites in other systems. We propose a model in which the oxidase complex assembles through a mechanism involving SH3 domains of both cytosolic proteins and cognate proline-rich targets in other oxidase components.  相似文献   

8.
Due to the weak regeneration potential of cartilage, there is a high clinical incidence of articular joint disease, leading to a strong demand for cartilaginous tissue surrogates. The aim of this study was to evaluate a gelatin-based hydrogel for its suitability to support chondrogenic differentiation of human mesenchymal stem cells. Gelatin-based hydrogels are biodegradable, show high biocompatibility, and offer possibilities to introduce functional groups and/or ligands. In order to prove their chondrogenesis-supporting potential, a hydrogel film was developed and compared with standard cell culture polystyrene regarding the differentiation behavior of human mesenchymal stem cells. Cellular basis for this study were human adipose tissue-derived mesenchymal stem cells, which exhibit differentiation potential along the adipogenic, osteogenic and chondrogenic lineage. The results obtained show a promotive effect of gelatin-based hydrogels on chondrogenic differentiation of mesenchymal stem cells in vitro and therefore encourage subsequent in vivo studies.  相似文献   

9.

Background

Extensive investigation of the NF-κB1 -94ins/delATTG promoter polymorphism for risk association with ulcerative colitis (UC) and Crohn’s disease (CD) risk has yielded conflicting results.

Aims

The objective of this meta-analysis was to evaluate the risk association between the NF-κB1 -94ins/delATTG promoter polymorphism and UC and CD.

Methods

All eligible case–control studies of the association of NF-κB1 -94ins/delATTG promoter polymorphism with UC and CD were identified in the Pubmed and Embase databases. From these data, odds ratios (OR) with 95?% confidence intervals (CI) were calculated. Meta-analysis was performed for alleles (D vs. W) and genotypes (DD?+?WD vs. WW, DD vs. WW?+?WD, DD vs. WW, WD vs. WW) in a fixed/random effects model.

Results

Nine case–control studies that included 4,447 cases (2,631 UC and 1,816 CD) and 2,195 controls were identified. Results indicated increased risk association of D allele carriers with UC (D vs. W: OR?=?1.08, 95?% CI?=?1.01–1.17, P?=?0.03; DD vs. WW?+?WD: OR?=?1.16, 95?% CI?=?1.01–1.32, P?=?0.04 and DD vs. WW: OR?=?1.20, 95?% CI?=?1.03–1.39, P?=?0.02). No risk association was identified with CD.

Conclusion

This meta-analysis indicated that the NF-κB1 -94ins/delATTG promoter polymorphism is a risk factor for UC but not CD.  相似文献   

10.
Invasive potentials of carcinomas greatly contribute to their metastasis, which is a major threat in most cancers. We have recently shown that Arf6 plays a pivotal role in breast cancer invasive activities and identified AMAP1 as an effector of GTP-Arf6 in invasion. Expression of AMAP1 correlates well with invasive phenotypes of primary tumors of the human breast. We also have shown that AMAP1 functions by forming a trimeric protein complex with cortactin and paxillin. In this complex, AMAP1 binds to the src homology 3 (SH3) domain of cortactin via its proline-rich peptide, SKKRPPPPPPGHKRT. SH3 domains are known to bind generally to the proline-rich ligands with a one-to-one stoichiometry. We found that AMAP1/cortactin binding is very atypical in its stoichiometry and interface structure, in which one AMAP1 proline-rich peptide binds to two cortactin SH3 domains simultaneously. We made a cell-permeable peptide derived from the AMAP1 peptide, and we show that this peptide specifically blocks AMAP1/cortactin binding, but not other canonical SH3/proline bindings, and effectively inhibits breast cancer invasion and metastasis. Moreover, this peptide was found to block invasion of other types of cancers, such as glioblastomas and lung carcinomas. We also found that a small-molecule compound, UCS15A, which was previously judged as a weak inhibitor against canonical SH3/proline bindings, effectively inhibits AMAP1/cortactin binding and breast cancer invasion and metastasis. Together with fine structural analysis, we propose that the AMAP1/cortactin complex, which is not detected in normal mammary epithelial cells, is an excellent drug target for cancer therapeutics.  相似文献   

11.
Filoviruses Ebola (EBOV) and Marburg (MARV) are devastating high-priority pathogens capable of causing explosive outbreaks with high human mortality rates. The matrix proteins of EBOV and MARV, as well as eVP40 and mVP40, respectively, are the key viral proteins that drive virus assembly and egress and can bud independently from cells in the form of virus-like particles (VLPs). The matrix proteins utilize proline-rich Late (L) domain motifs (e.g., PPxY) to hijack specific host proteins that contain WW domains, such as the HECT family E3 ligases, to facilitate the last step of virus–cell separation. We identified E3 ubiquitin ligase Smad Ubiquitin Regulatory Factor 2 (SMURF2) as a novel interactor with VP40 that positively regulates VP40 VLP release. Our results show that eVP40 and mVP40 interact with the three WW domains of SMURF2 via their PPxY motifs. We provide evidence that the eVP40–SMURF2 interaction is functional as the expression of SMURF2 positively regulates VLP egress, while siRNA knockdown of endogenous SMURF2 decreases VLP budding compared to controls. In sum, our identification of novel interactor SMURF2 adds to the growing list of identified host proteins that can regulate PPxY-mediated egress of VP40 VLPs. A more comprehensive understanding of the modular interplay between filovirus VP40 and host proteins may lead to the development of new therapies to combat these deadly infections.  相似文献   

12.
In recent years, many investigations on the development of innovative dressing materials with potential applications, e.g., for cytostatics delivery, have been performed. One of the most promising carriers is albumin, which tends to accumulate near cancer cells. Here, chitosan-based hydrogels containing albumin spheres and Aloe vera juice, designed for the treatment of skin cancers or burn wounds resulting from radiotherapy, were developed. The presence of albumin in hydrogel matrices was confirmed via Fourier transform infrared (FT-IR) and Raman spectroscopy. Albumin spheres were clearly visible in microscopic images. It was proved that the introduction of albumin into hydrogels resulted in their increased resistance to the tensile load, i.e., approximately 30% more force was needed to break such materials. Modified hydrogels showed approximately 10% more swelling ability. All hydrogels were characterized by hydrophilicity (contact angles were <90°) which may support the regeneration of epithelial cells and non-cytotoxicity towards murine fibroblasts L929 and released Aloe vera juice more effectively in an acidic environment than in a neutral one wherein spheres introduced into the hydrogel matrix extended the release time. Thus, the developed materials, due to their chemical composition and physicochemical properties, constitute promising materials with great application potential for biomedical purposes.  相似文献   

13.
Src homology 3 (SH3) domains are conserved protein modules 50-70 amino acids long found in a variety of proteins with important roles in signal transduction. These domains have been shown to mediate protein-protein interactions by binding short proline-rich regions in ligand proteins. However, the ligand preferences of most SH3 domains and the role of these preferences in regulating SH3-mediated protein-protein interactions remain poorly defined. We have used a phage-displayed library of peptides of the form X6PXXPX6 to identify ligands for eight different SH3 domains. Using this approach, we have determined that each SH3 domain prefers peptide ligands with distinct sequence characteristics. Specifically, we have found that the Src SH3 domain selects peptides sharing the consensus motif LXXRPLPXpsiP, whereas Yes SH3 selects psiXXRPLPXLP, Abl SH3 selects PPXthetaXPPPpsiP, Cortactin SH3 selects +PPpsiPXKPXWL, p53bp2 SH3 selects RPXpsiPpsiR+SXP, PLCgamma SH3 selects PPVPPRPXXTL, Crk N-terminal SH3 selects psiPpsiLPpsiK, and Grb2 N-terminal SH3 selects +thetaDXPLPXLP (where psi, theta, and + represent aliphatic, aromatic, and basic residues, respectively). Furthermore, we have compared the binding of phage expressing peptides related to each consensus motif to a panel of 12 SH3 domains. Results from these experiments support the ligand preferences identified in the peptide library screen and evince the ability of SH3 domains to discern subtle differences in the primary structure of potential ligands. Finally, we have found that most known SH3-binding proteins contain proline-rich regions conforming to the ligand preferences of their respective SH3 targets.  相似文献   

14.
Injectable hydrogels are being developed as potential translatable materials to influence the cascade of events that occur after myocardial infarction. These hydrogels, consisting of both synthetic and natural materials, form through numerous chemical crosslinking and assembly mechanisms and can be used as bulking agents or for the delivery of biological molecules. Specifically, a range of materials are being applied that alter the resulting mechanical and biological signals after infarction and have shown success in reducing stresses in the myocardium and limiting the resulting adverse left ventricular (LV) remodeling. Additionally, the delivery of molecules from injectable hydrogels can influence cellular processes such as apoptosis and angiogenesis in cardiac tissue or can be used to recruit stem cells for repair. There is still considerable work to be performed to elucidate the mechanisms of these injectable hydrogels and to optimize their various properties (e.g., mechanics and degradation profiles). Furthermore, although the experimental findings completed to date in small animals are promising, future work needs to focus on the use of large animal models in clinically relevant scenarios. Interest in this therapeutic approach is high due to the potential for developing percutaneous therapies to limit LV remodeling and to prevent the onset of congestive heart failure that occurs with loss of global LV function. This review focuses on recent efforts to develop these injectable and acellular hydrogels to aid in cardiac repair.  相似文献   

15.
We have found conditions for saturation mutagenesis by restriction enzyme mediated integration that result in plasmid tagging of disrupted genes. Using this method we selected for mutations in genes that act at checkpoints downstream of the intercellular signaling system that controls encapsulation in Dictyostelium discoideum. One of these genes, mkcA, is a member of the mitogen-activating protein kinase cascade family while the other, regA, is a novel bipartite gene homologous to response regulators in one part and to cyclic nucleotide phosphodiesterases in the other part. Disruption of either of these genes results in partial suppression of the block to spore formation resulting from the loss of the prestalk genes, tagB and tagC. The products of the tag genes have conserved domains of serine proteases attached to ATP-driven transporters, suggesting that they process and export peptide signals. Together, these genes outline an intercellular communication system that coordinates organismal shape with cellular differentiation during development.  相似文献   

16.
A biomimetic hydrogel platform was designed to signal encapsulated cells using immobilized cell-cell communication cues, with a focus on enhancing the survival and function of encapsulated pancreatic β-cells to treat type 1 diabetes. When MIN6 cells, a pancreatic β-cell line, were encapsulated in poly(ethylene glycol) (PEG) hydrogels, their survival and glucose responsiveness to insulin were highly dependent on the cell-packing density. A minimum packing density of 10(7) cells/mL was necessary to maintain the survival of encapsulated β-cells without the addition of material functionalities (e.g., cell adhesion ligands). While single cell suspensions can improve diffusion-limited mass transfer, direct cell-cell interactions are limited. Thus, thiolated EphA5-Fc receptor and ephrinA5-Fc ligand were conjugated into PEG hydrogels via a thiol-acrylate photopolymerization to render an otherwise inert PEG hydrogel bioactive. The biomimetic hydrogels presented here can provide crucial cell-cell communication signals for dispersed β-cells and improve their survival and proliferation. Together with the cell-adhesive peptide RGDS, the immobilized fusion proteins (EphA5-Fc and ephrinA5-Fc) synergistically increased the survival of both MIN6 β-cells and dissociated islet cells, both at a very low cell-packing density (< 2 × 10(6) cells/mL). This unique gel platform demonstrates new strategies for tailoring biomimetic environments to enhance the encapsulation of cells that require cell-cell contact to survive and function.  相似文献   

17.
Dental pulp tissue engineering (TE) endeavors to regenerate dentin/pulp complex by combining a suitable supporting matrix, stem cells, and biochemical stimuli. Such procedures foresee a matrix that can be easily introduced into the root canal system (RCS) and tightly adhere to dentin walls to assure the dentin surface’s proper colonization with progenitor cells capable of restoring the dentin/pulp complex. Herein was investigated an injectable self-setting hyaluronic acid-based (HA) hydrogel system, formed by aldehyde-modified (a-HA) with hydrazide-modified (ADH), enriched with platelet lysate (PL), for endodontic regeneration. The hydrogels’ working (wT) and setting (sT) times, the adhesion to the dentine walls, the hydrogel’s microstructure, and the delivery of human dental pulp cells (DPCs) were studied in vitro. Hydrogels incorporating PL showed a suitable wT and sT and a porous microstructure. The tensile tests showed that the breaking point occurs after 4.3106 ± 1.8677 mm deformation, while in the indentation test after 1.4056 ± 0.3065 mm deformation. Both breaking points occur in the hydrogel extension. The HA/PL hydrogels exhibited supportive properties and promoted cell migration toward dentin surfaces in vitro. Overall, these results support using PL-laden HA injectable hydrogels (HA/PL) as a biomaterial for DPCs encapsulation, thereby displaying great clinical potential towards endodontic regenerative therapies.  相似文献   

18.
PAK1 is a protein kinase downstream of the small GTPases Rac and Cdc42 that previous work has implicated in endothelial cell migration via modulation of cell contraction. The first proline-rich region of PAK that binds to an SH3 domain from the adapter protein NCK was responsible for these dominant-negative effects. To test the role of PAK in angiogenesis, we prepared a peptide in which the proline-rich region was fused to the polybasic sequence from the HIV Tat protein to facilitate entry into cells. We show that the short peptide selectively binds NCK, whereas a mutant peptide does not. Treatment of cells with the PAK peptide but not the control peptide disrupts localization of PAK. This peptide specifically inhibited endothelial cell migration and contractility similarly to full-length dominant-negative PAK. In an in vitro tube-forming assay, the PAK peptide specifically blocked formation of multicellular networks. In an in vivo chick chorioallantoic membrane assay, the PAK peptide specifically blocked angiogenesis. These results, therefore, suggest a role for PAK in angiogenesis.  相似文献   

19.
Reactive oxygen intermediates generated by the phagocyte NADPH oxidase are critically important components of host defense. However, these highly toxic oxidants can cause significant tissue injury during inflammation; thus, it is essential that their generation and inactivation are tightly regulated. We show here that an endogenous proline-arginine (PR)-rich antibacterial peptide, PR-39, inhibits NADPH oxidase activity by blocking assembly of this enzyme through interactions with Src homology 3 domains of a cytosolic component. This neutrophil-derived peptide inhibited oxygen-dependent microbicidal activity of neutrophils in whole cells and in a cell-free assay of NADPH oxidase. Both oxidase inhibitory and direct antimicrobial activities were defined within the amino-terminal 26 residues of PR-39. Oxidase inhibition was attributed to binding of PR-39 to the p47phox cytosolic oxidase component. Its effects involve both a polybasic amino-terminal segment and a proline-rich core region of PR-39 that binds to the p47phox Src homology 3 domains and, thereby, inhibits interaction with the small subunit of cytochrome b558, p22phox. These findings suggest that PR-39, which has been shown to be involved in tissue repair processes, is a multifunctional peptide that can regulate NADPH oxidase production of superoxide anion O2-. thus limiting excessive tissue damage during inflammation.  相似文献   

20.
Human stem cell leukemia-lymphoma syndrome usually presents itself as a myeloproliferative disorder (MPD) that evolves to acute myeloid leukemia and/or lymphoma. The syndrome associated with t(8;13)(p11;q12) results in expression of the ZNF198-fibroblast growth factor receptor (FGFR) 1 fusion tyrosine kinase. Current empirically derived cytotoxic chemotherapy is inadequate for treatment of this disease. We hypothesized that small-molecule inhibitors of the ZNF198-FGFR1 fusion would have therapeutic efficacy. We characterized the transforming activity of ZNF198-FGFR1 in hematopoietic cells in vitro and in vivo. Expression of ZNF198-FGFR1 in primary murine hematopoietic cells caused a myeloproliferative syndrome in mice that recapitulated the human MPD phenotype. Transformation in these assays, and activation of the downstream effector molecules PLC-gamma, STAT5, and phosphatidylinositol 3-kinase/AKT, required the proline-rich domains, but not the ZNF domains, of ZNF198. A small-molecule tyrosine kinase inhibitor, PKC412 (N-benzoyl-staurosporine) effectively inhibited ZNF198-FGFR1 tyrosine kinase activity and activation of downstream effector pathways, and inhibited proliferation of ZNF198-FGFR1 transformed Ba/F3 cells. Furthermore, treatment with PKC412 resulted in statistically significant prolongation of survival in the murine model of ZNF198-FGFR1-induced MPD. Based in part on these data, PKC412 was administered to a patient with t(8;13)(p11;q12) and was efficacious in treatment of progressive myeloproliferative disorder with organomegaly. Therefore, PKC412 may be a useful therapy for treatment of human stem cell leukemia-lymphoma syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号