首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.

Background

The incidence of obesity has risen dramatically over the last few decades. This epidemic may be affected by exposure to xenobiotic chemicals. Bisphenol A (BPA), an endocrine disruptor, is detectable at nanomolar levels in human serum worldwide. Adiponectin is an adipocyte-specific hormone that increases insulin sensitivity and reduces tissue inflammation. Thus, any factor that suppresses adiponectin release could lead to insulin resistance and increased susceptibility to obesity-associated diseases.

Objectives

In this study we aimed to compare a) the effects of low doses of BPA and estradiol (E2) on adiponectin secretion from human breast, subcutaneous, and visceral adipose explants and mature adipocytes, and b) expression of putative estrogen and estrogen-related receptors (ERRs) in these tissues.

Methods

We determined adiponectin levels in conditioned media from adipose explants or adipocytes by enzyme-linked immunosorbant assay. We determined expression of estrogen receptors (ERs) α and β, G-protein–coupled receptor 30 (GPR30), and ERRs α, β, and γ by quantitative real-time polymerase chain reaction.

Results

BPA at 0.1 and 1 nM doses suppressed adiponectin release from all adipose depots examined. Despite substantial variability among patients, BPA was as effective, and often more effective, than equimolar concentrations of E2. Adipose tissue expresses similar mRNA levels of ERα, ERβ, and ERRγ, and 20- to 30-fold lower levels of GPR30, ERRα, and ERRβ.

Conclusions

BPA at environmentally relevant doses inhibits the release of a key adipokine that protects humans from metabolic syndrome. The mechanism by which BPA suppresses adiponectin and the receptors involved remains to be determined.  相似文献   

2.

Background

Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are man-made, ubiquitous, and persistent contaminants in the environment, wildlife, and humans. Although recent studies have shown that these chemicals interfere with fetal growth in humans, the results are inconsistent.

Objectives

Our goal was to investigate the correlation between relatively low levels of PFOS and PFOA in maternal serum and birth weight and birth size.

Methods

We conducted a hospital-based prospective cohort study between July 2002 and October 2005 in Sapporo, Japan. A total of 428 women and their infants were involved in the study. We obtained characteristics of the mothers and infants from self-administered questionnaire surveys and from medical records. We analyzed maternal serum samples for PFOS and PFOA by liquid chromatography–tandem mass spectrometry (LC/MS/MS).

Results

After adjusting for confounding factors, PFOS levels negatively correlated with birth weight [per log10 unit: β = −148.8 g; 95% confidence interval (CI), −297.0 to −0.5 g]. In addition, analyses stratified by sex revealed that PFOS levels negatively correlated with birth weight only in female infants (per log10 unit: β = −269.4 g; 95% CI, −465.7 to −73.0 g). However, we observed no correlation between PFOA levels and birth weight.

Conclusion

Our results indicate that in utero exposure to relatively low levels of PFOS was negatively correlated with birth weight.  相似文献   

3.

Background

There is increasing concern that early-life exposure to endocrine-disrupting chemicals (EDCs) can influence the risk of disease development. Phthalates and phenols are two classes of suspected EDCs that are used in a variety of everyday consumer products, including plastics, epoxy resins, and cosmetics. In utero exposure to EDCs may affect disease propensity through epigenetic mechanisms.

Objective

The objective of this study was to determine whether prenatal exposure to multiple EDCs is associated with changes in miRNA expression of human placenta, and whether miRNA alterations are associated with birth outcomes.

Methods

Our study was restricted to a total of 179 women co-enrolled in the Harvard Epigenetic Birth Cohort and the Predictors of Preeclampsia Study. We analyzed associations between first-trimester urine concentrations of 8 phenols and 11 phthalate metabolites and expression of 29 candidate miRNAs in placenta by qRT-PCR.

Results

For three miRNAs—miR-142-3p, miR15a-5p, and miR-185—we detected associations between Σphthalates or Σphenols on expression levels (p < 0.05). By assessing gene ontology enrichment, we determined the potential mRNA targets of these microRNAs predicted in silico were associated with several biological pathways, including the regulation of protein serine/threonine kinase activity. Four gene ontology biological processes were enriched among genes significantly correlated with the expression of miRNAs associated with EDC burden.

Conclusions

Overall, these results suggest that prenatal phenol and phthalate exposure is associated with altered miRNA expression in placenta, suggesting a potential mechanism of EDC toxicity in humans.

Citation

LaRocca J, Binder AM, McElrath TF, Michels KB. 2016. First-trimester urine concentrations of phthalate metabolites and phenols and placenta miRNA expression in a cohort of U.S. women. Environ Health Perspect 124:380–387; http://dx.doi.org/10.1289/ehp.1408409  相似文献   

4.
5.
6.

Background

Prenatal exposure to endocrine-disrupting chemicals such as persistent organic pollutants (POPs) may increase risk of obesity later in life.

Objective

We examined the relation of in utero POPs exposure to offspring obesity and cardiometabolic risk factors at 4 years of age in the Rhea mother–child cohort in Crete, Greece (n = 689).

Methods

We determined concentrations of polychlorinated biphenyls (PCBs), dichlorodiphenyldichloroethylene (DDE), and hexachlorobenzene (HCB) in first-trimester maternal serum. We measured child weight, height, waist circumference, skinfold thicknesses, blood pressure (BP), blood levels of lipids, C-reactive protein, and adipokines at 4 years of age. Childhood obesity was defined using age- and sex-specific cut points for body mass index (BMI) as recommended by the International Obesity Task Force.

Results

On multivariable regression analyses, a 10-fold increase in HCB was associated with a higher BMI z-score (adjusted β = 0.49; 95% CI: 0.12, 0.86), obesity [relative risk (RR) = 8.14; 95% CI: 1.85, 35.81], abdominal obesity (RR = 3.49; 95% CI: 1.08, 11.28), greater sum of skinfold thickness (β = 7.71 mm; 95% CI: 2.04, 13.39), and higher systolic BP (β = 4.34 mmHg; 95% CI: 0.63, 8.05) at 4 years of age. Prenatal DDE exposure was associated with higher BMI z-score (β = 0.27; 95% CI: 0.04, 0.5), abdominal obesity (RR = 3.76; 95% CI: 1.70, 8.30), and higher diastolic BP (β = 1.79 mmHg; 95% CI: 0.13, 3.46). PCBs were not significantly associated with offspring obesity or cardiometabolic risk factors.

Conclusions

Prenatal exposure to DDE and HCB was associated with excess adiposity and higher blood pressure levels in early childhood.

Citation

Vafeiadi M, Georgiou V, Chalkiadaki G, Rantakokko P, Kiviranta H, Karachaliou M, Fthenou E, Venihaki M, Sarri K, Vassilaki M, Kyrtopoulos SA, Oken E, Kogevinas M, Chatzi L. 2015. Association of prenatal exposure to persistent organic pollutants with obesity and cardiometabolic traits in early childhood: the Rhea mother–child cohort (Crete, Greece). Environ Health Perspect 123:1015–1021; http://dx.doi.org/10.1289/ehp.1409062  相似文献   

7.
8.

Background

The etiologies of the male urogenital anomalies cryptorchidism and hypospadias are poorly understood. It has been suggested, however, that in utero hormone levels may be related to risk. Endocrine-disrupting chemicals, including polychlorinated biphenyl (PCB) compounds, may alter hormone levels and thereby affect the fetus.

Objectives

To examine whether in utero PCB exposure is related to cryptorchidism and hypospadias, we examined PCB levels among pregnant women enrolled in the Collaborative Perinatal Project (CPP).

Methods

The CPP enrolled pregnant women at 12 U.S. medical centers between 1959 and 1965. For the present research, we analyzed third-trimester serum samples from the mothers of 230 sons with cryptorchidism, 201 sons with hypospadias, and 593 sons with neither condition. We estimated adjusted odds ratios (ORs) and 95% confidence intervals (CIs) using logistic regression and examined the associations of each anomaly with individual PCB congener levels, sum of PCBs, and several functional groupings of PCBs.

Results

In general, the ORs for cryptorchidism or hypospadias showed no notable associations with individual PCB congener levels or functional groupings of PCBs. However, the ORs and 95% CIs for the sum of PCBs associated with hypospadias were as follows: 0–1.9 μg/L, reference group; 2–2.9 μg/L, OR = 1.57, 95% CI, 1.05–2.34; 3–3.9 μg/L, OR = 1.45, 95% CI, 0.90–2.34; and ≥ 4.0 μg/L, OR = 1.69, 95% CI, 1.06–2.68; p-value for trend = 0.08.

Conclusions

Given the large number of associations examined, these findings do not strongly support the hypothesis that PCBs are associated with cryptorchidism or hypospadias. Because population serum PCB levels at the time of sample collection were considerably higher than levels at present, it is unlikely that current PCB exposure is related to the development of either anomaly.  相似文献   

9.

Background

Atrazine, one of the most common pesticide contaminants, has been shown to up-regulate aromatase activity in certain estrogen-sensitive tumors without binding or activating the estrogen receptor (ER). Recent investigations have demonstrated that the orphan G-protein–coupled receptor 30 (GPR30), which is structurally unrelated to the ER, mediates rapid actions of 17β-estradiol and environmental estrogens.

Objectives

Given the ability of atrazine to exert estrogen-like activity in cancer cells, we evaluated the potential of atrazine to signal through GPR30 in stimulating biological responses in cancer cells.

Methods and results

Atrazine did not transactivate the endogenous ERα in different cancer cell contexts or chimeric proteins encoding the ERα and ERβ hormone-binding domain in gene reporter assays. Moreover, atrazine neither regulated the expression of ERα nor stimulated aromatase activity. Interestingly, atrazine induced extracellular signal-regulated kinase (ERK) phosphorylation and the expression of estrogen target genes. Using specific signaling inhibitors and gene silencing, we demonstrated that atrazine stimulated the proliferation of ovarian cancer cells through the GPR30–epidermal growth factor receptor transduction pathway and the involvement of ERα.

Conclusions

Our results indicate a novel mechanism through which atrazine may exert relevant biological effects in cancer cells. On the basis of the present data, atrazine should be included among the environmental contaminants potentially able to signal via GPR30 in eliciting estrogenic action.  相似文献   

10.

Background

Bisphenol A (BPA) is a widespread endocrine-disrupting chemical used as the base compound in the manufacture of polycarbonate plastics. In humans, epidemiological evidence has associated BPA exposure in adults with higher risk of type 2 diabetes and heart disease.

Objective

We examined the action of environmentally relevant doses of BPA on glucose metabolism in mice during pregnancy and the impact of BPA exposure on these females later in life. We also investigated the consequences of in utero exposure to BPA on metabolic parameters and pancreatic function in offspring.

Methods

Pregnant mice were treated with either vehicle or BPA (10 or 100 μg/kg/day) during days 9–16 of gestation. Glucose metabolism experiments were performed on pregnant mice and their offspring.

Results

BPA exposure aggravated the insulin resistance produced during pregnancy and was associated with decreased glucose tolerance and increased plasma insulin, triglyceride, and leptin concentrations relative to controls. Insulin-stimulated Akt phosphorylation was reduced in skeletal muscle and liver of BPA-treated pregnant mice relative to controls. BPA exposure during gestation had long-term consequences for mothers: 4 months postpartum, treated females weighed more than untreated females and had higher plasma insulin, leptin, triglyceride, and glycerol levels and greater insulin resistance. At 6 months of age, male offspring exposed in utero had reduced glucose tolerance, increased insulin resistance, and altered blood parameters compared with offspring of untreated mothers. The islets of Langerhans from male offspring presented altered Ca2+ signaling and insulin secretion. BrdU (bromodeoxyuridine) incorporation into insulin-producing cells was reduced in the male progeny, yet β-cell mass was unchanged.

Conclusions

Our findings suggest that BPA may contribute to metabolic disorders relevant to glucose homeostasis and that BPA may be a risk factor for diabetes.  相似文献   

11.
12.

Background

Trichloroacetic acid, an oxidative metabolite of trichloroethylene (TRI), is a ligand of the peroxisome proliferator-activated receptor α (PPAR) α, which is involved in lipid homeostasis and anti-inflammation.

Objective

We examined the role of mouse and human PPARα in TRI-induced hepatic steatosis and toxicity.

Methods

Male wild-type (mPPARα), Pparα-null, and humanized PPARα (hPPARα) mice on an Sv/129 background were exposed via inhalation to 0, 1,000, and 2,000 ppm TRI for 8 hr/day for 7 days. We assessed TRI-induced steatosis or hepatic damage through biochemical and histopathological measurements.

Results

Plasma alanine aminotransferase and aspartate aminotransferase activities increased in all mouse lines after exposure to 1,000 and 2,000 ppm TRI. Exposure induced hepatocyte necrosis and inflammatory cells in all mouse lines, but hepatic lipid accumulation was observed only in Pparα-null and hPPARα mice. No differences were observed in TRI-mediated induction of hepatic PPARα target genes except for a few genes that differed between mPPARα and hPPARα mice. However, TRI significantly increased expression of triglyceride (TG)-synthesizing enzymes, diacylglicerol acyltransferases, and PPARγ in Pparα-null and hPPARα mice, which may account for the increased TG in their livers. TRI exposure elevated nuclear factor-kappa B (NFκB) p52 mRNA and protein in all mice regardless of PPARα genotype.

Conclusions

NFκB-p52 is a candidate molecular marker for inflammation caused by TRI, and PPARα may be involved in TRI-induced hepatosteatosis. However, human PPARα may afford only weak protection against TRI-mediated effects compared with mouse PPARα.  相似文献   

13.

Background

Exposure to environmental endocrine-disrupting chemicals (EDCs) is often associated with dysregulated immune homeostasis, but the mechanisms of action remain unclear.

Objectives

The aim of this study was to test a hypothesis that EDCs regulate the functions of human dendritic cells, a front-line, immunoregulatory cell type in contact with the environment.

Methods

We investigated circulating myeloid dendritic cells (mDCs) from five subjects and measured their responses, with or without coculture with autologous T cells, to two common EDCs, nonylphenol (NP) and 4-octylphenol (4-OP). EDC-associated cytokine responses, signaling events, and histone modifications were examined using ELISA, Western blotting, and chromatin immunoprecipitation (ChIP) assays, respectively.

Results

In all cases, mDCs treated with NP or 4-OP demonstrated increased expression of tumor necrosis factor-α (TNF-α) but decreased baseline and lipopolysaccharide (LPS)-induced (interleukin) (IL)-10 production; the increase in TNF-α was partially reversible by an estrogen receptor (ER) antagonist. Activation of the MKK3/6-p38 signaling pathway marked the effect of NP on TNF-α expression, concomitant with enhanced levels of methyltranferase complex [mixed-lineage leukemia (MLL) and tryptophan-aspartic acid repeat domain 5 (WDR5)] in the nucleus and of trimethylated H3K4, acetylated H3, and H4 at the TNFA gene locus. Further, up-regulated TNF-α expression was significantly suppressed in NP-treated mDCs by a histone acetyltransferase inhibitor. In the presence of NP-treated mDCs, T cells showed increased levels of IL-13 but decreased expression of interferon-γ.

Conclusions

These results suggest that NP and 4-OP may have functional effects on the response of mDCs via, in part, the ER, MKK3/6-p38 MAPK signaling pathway, and histone modifications, with subsequent influence on the T-cell cytokine responses.  相似文献   

14.

Background

Prenatal exposure to endocrine-disrupting chemicals (EDCs) may induce weight gain and obesity in children, but the obesogenic effects of mixtures have not been studied.

Objective

We evaluated the associations between pre- and perinatal biomarker concentrations of 27 EDCs and child weight status at 7 years of age.

Methods

In pregnant women enrolled in a Spanish birth cohort study between 2004 and 2006, we measured the concentrations of 10 phthalate metabolites, bisphenol A, cadmium, arsenic, and lead in two maternal pregnancy urine samples; 6 organochlorine compounds in maternal pregnancy serum; mercury in cord blood; and 6 polybrominated diphenyl ether congeners in colostrum. Among 470 children at 7 years, body mass index (BMI) z-scores were calculated, and overweight was defined as BMI > 85th percentile. We estimated associations with EDCs in single-pollutant models and applied principal-component analysis (PCA) on the 27 pollutant concentrations.

Results

In single-pollutant models, HCB (hexachlorobenzene), βHCH (β-hexachlorocyclohexane), and polychlorinated biphenyl (PCB) congeners 138 and 180 were associated with increased child BMI z-scores; and HCB, βHCH, PCB-138, and DDE (dichlorodiphenyldichloroethylene) with overweight risk. PCA generated four factors that accounted for 43.4% of the total variance. The organochlorine factor was positively associated with BMI z-scores and with overweight (adjusted RR, tertile 3 vs. 1: 2.59; 95% CI: 1.19, 5.63), and these associations were robust to adjustment for other EDCs. Exposure in the second tertile of the phthalate factor was inversely associated with overweight.

Conclusions

Prenatal exposure to organochlorines was positively associated with overweight at age 7 years in our study population. Other EDCs exposures did not confound this association.

Citation

Agay-Shay K, Martinez D, Valvi D, Garcia-Esteban R, Basagaña X, Robinson O, Casas M, Sunyer J, Vrijheid M. 2015. Exposure to endocrine-disrupting chemicals during pregnancy and weight at 7 years of age: a multi-pollutant approach. Environ Health Perspect 123:1030–1037; http://dx.doi.org/10.1289/ehp.1409049  相似文献   

15.

Background

The modulation of energetic homeostasis by pollutants has recently emerged as a potential contributor to the onset of metabolic disorders. Diethylhexyl phthalate (DEHP) is a widely used industrial plasticizer to which humans are widely exposed. Phthalates can activate the three peroxisome proliferator–activated receptor (PPAR) isotypes on cellular models and induce peroxisome proliferation in rodents.

Objectives

In this study, we aimed to evaluate the systemic and metabolic consequences of DEHP exposure that have remained so far unexplored and to characterize the underlying molecular mechanisms of action.

Methods

As a proof of concept and mechanism, genetically engineered mouse models of PPARs were exposed to high doses of DEHP, followed by metabolic and molecular analyses.

Results

DEHP-treated mice were protected from diet-induced obesity via PPARα-dependent activation of hepatic fatty acid catabolism, whereas the activity of neither PPARβ nor PPARγ was affected. However, the lean phenotype observed in response to DEHP in wild-type mice was surprisingly abolished in PPARα-humanized mice. These species differences are associated with a different pattern of coregulator recruitment.

Conclusion

These results demonstrate that DEHP exerts species-specific metabolic actions that rely to a large extent on PPARα signaling and highlight the metabolic importance of the species-specific activation of PPARα by xenobiotic compounds.  相似文献   

16.

Background

Persistent organic pollutants (POPs) may influence epigenetic mechanisms; therefore, they could affect chromosomal stability and gene expression. DNA methylation, an epigenetic mechanism, has been associated with cancer initiation and progression. Greenlandic Inuit have some of the highest reported POP levels worldwide.

Objective

Our aim in this study was to evaluate the relationship between plasma POPs concentrations and global DNA methylation (percent 5-methylcytosine) in DNA extracted from blood samples from 70 Greenlandic Inuit. Blood samples were collected under the Arctic Monitoring and Assessment Program and previously analyzed for a battery of POPs.

Methods

We used pyrosequencing to estimate global DNA methylation via Alu and LINE-1 assays of bisulfite-treated DNA. We investigated correlations between plasma POP concentrations and global DNA methylation via correlation coefficients and linear regression analyses.

Results

We found inverse correlations between percents methylcytosine and many of the POP concentrations measured. Linear regressions, adjusting for age and cigarette smoking, showed statistically significant inverse linear relationships mainly for the Alu assay for p,p′-DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane; β = −0.26), p,p′-DDE [1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene; β = −0.38], β-hexachlorocyclohexane (β = −0.48), oxychlordane (β = −0.32), α-chlordane (β = −0.75), mirex (β = −0.27), sum of polychlorinated biphenyls (β = −0.56), and sum of all POPs (β = −0.48). Linear regressions for the LINE-1 assay showed β estimates of similar magnitudes to those using the Alu assay, however, none was statistically significant.

Conclusions

This is the first study to investigate environmental exposure to POPs and DNA methylation levels in a human population. Global methylation levels were inversely associated with blood plasma levels for several POPs and merit further investigation.  相似文献   

17.
18.

Background

Lead exposure has long been associated with deficits in IQ among children. However, few studies have assessed the impact of lead on specific domains of behavior and cognition.

Objective

We evaluated the associations between lead and different domains of neurobehavior and their relative sensitivity to lead.

Methods

We determined blood lead levels using a LeadCare instrument in 756 children 3–7 years of age attending pre- and elementary schools in Chennai, India. Anxiety, social problems, inattention, hyperactivity, and attention deficit hyperactivity disorder (ADHD), as well as executive function were assessed in children by their schoolteachers using Conners’ Teacher Rating Scales-39, Conners’ ADHD/Diagnostic and Statistical Manual for Mental Disorders, 4th Edition Scales (CADS), and the Behavior Rating Inventory of Executive Function questionnaires, with higher scores denoting worse behavior. Analyses were carried out using multivariate generalized estimating equations with comparisons of outcome Z-scores to assess the relative strengths of the associations between log-blood lead and the different domains of behavior.

Results

Mean blood lead level was 11.4 ± 5.3 μg/dL. Blood lead was associated with higher anxiety (β = 0.27, p = 0.01), social problems (β = 0.20, p = 0.02), and higher scores in the ADHD index (β = 0.17; p = 0.05). The effect estimate was highest for global executive function (β = 0.42; p< 0.001).

Conclusions

Higher blood lead levels in this population of young children is associated with increased risk of neurobehavioral deficits and ADHD, with executive function and attention being particularly vulnerable domains to the effects of lead.  相似文献   

19.

Background

Bisphenol AF has been acknowledged to be useful for the production of CF3-containing polymers with improved chemical, thermal, and mechanical properties. Because of the lack of adequate toxicity data, bisphenol AF has been nominated for comprehensive toxicological characterization.

Objectives

We aimed to determine the relative preference of bisphenol AF for the human nuclear estrogenic receptors ERα and ERβ and the bisphenol A–specific estrogen-related receptor ERRγ, and to clarify structural characteristics of receptors that influence bisphenol AF binding.

Methods

We examined receptor-binding activities of bisphenol AF relative to [3H]17β-estradiol (for ERα and ERβ) and [3H]bisphenol A (for ERRγ). Functional luciferase reporter gene assays were performed to assess receptor activation in HeLa cells.

Results

We found that bisphenol AF strongly and selectively binds to ERs over ERRγ. Furthermore, bisphenol AF receptor-binding activity was three times stronger for ERβ [IC50 (median inhibitory concentration) = 18.9 nM] than for ERα. When examined using a reporter gene assay, bisphenol AF was a full agonist for ERα. In contrast, it was almost completely inactive in stimulating the basal constitutive activity of ERβ. Surprisingly, bisphenol AF acted as a distinct and strong antagonist against the activity of the endogenous ERβ agonist 17β-estradiol.

Conclusion

Our results suggest that bisphenol AF could function as an endocrine-disrupting chemical by acting as an agonist or antagonist to perturb physiological processes mediated through ERα and/or ERβ.  相似文献   

20.

Background

The upward trend in industrial nations in the incidence of male genitourinary (GU) conditions may be attributed to increased exposure to endocrine disruptors. Polybrominated biphenyl (PBB), a brominated flame retardant, is one such suspected endocrine disruptor.

Objective

We investigated the relationship between maternal serum levels of PBBs and GU conditions among male offspring exposed in utero.

Methods

In this cohort study of sons born to women accidentally exposed to PBBs during 1973–1974, we examined self-reported data on GU conditions among male offspring in relation to maternal serum PBB levels. We used generalized estimating equations to calculate odds ratios (ORs), controlling for gestational age at birth.

Results

Of 464 sons, 33 reported any GU condition (13 hernias, 10 hydroceles, 9 cryptorchidism, 5 hypospadias, and 1 varicocele). Four reported both hernia and hydrocele, and one both hernia and cryptorchidism. After adjustment for gestational age at birth, sons of highly exposed women (> 5 ppb) were twice as likely to report any GU condition compared with sons of the least exposed women [≤1 ppb; OR = 2.0; 95% confidence interval (CI), 0.8–5.1]. This risk was increased when we excluded sons born after the exposure but before the mother’s serum PBB measurement (OR = 3.1; 95% CI, 1.0–9.1). We found evidence of a 3-fold increase in reported hernia or hydrocele among sons with higher PBB exposure (test of trend p-value = 0.04). Neither hypospadias nor cryptorchidism was individually associated with PBB exposure.

Conclusions

Although cryptorchidism and hypospadias were not associated with in utero PBB exposure, this study suggests that other GU conditions may be associated with exposure to endocrine-disrupting chemicals during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号