首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This study aimed to examine, using diffusion tensor imaging (DTI), differences in electrode placement in four patients undergoing deep brain stimulation for chronic neuropathic pain of varying aetiology. A pre-operative DTI was obtained for each patient, who was then implanted with deep brain stimulation electrodes in the periventricular/periaqueductal grey area with good pain relief. Using seeds from the postoperative MRI scan, probabilistic tractography was performed from the pre-operative DTI.  相似文献   

2.
The functional profiles of regions in the ventral occipital‐temporal cortex (VTC), a critical region for object visual recognition, are associated with the VTC connectivity patterns to nonvisual regions relevant to the corresponding object domain. However, whether and how whole‐brain connections affect recognition behavior remains untested. We directly examined the necessity of VTC connectivity in object recognition behavior by testing 82 patients whose lesion spared relevant VTC regions but affected various white matter (WM) tracts and other regions. In these patients, we extracted the whole‐brain anatomical connections of two VTC domain‐selective (large manmade objects and animals) clusters with probabilistic tractography, and examined whether such connectivity pattern can predict recognition performance of the corresponding domains with support vector regression (SVR) analysis. We found that the whole‐brain anatomical connectivity of large manmade object‐specific cluster successfully predicted patients’ large object recognition performance but not animal recognition or control tasks, even after we excluded connections with early visual regions. The contributing connections to large object recognition included tracts between VTC‐large object cluster and distributed regions both within and beyond the visual cortex (e.g., putamen, superior, and middle temporal gyrus). These results provide causal evidence that the VTC whole‐brain anatomical connectivity is necessary for at least certain domains of object recognition behavior.  相似文献   

3.
The insular cortex of macaques has a wide spectrum of anatomical connections whose distribution is related to its heterogeneous cytoarchitecture. Although there is evidence of a similar cytoarchitectural arrangement in humans, the anatomical connectivity of the insula in the human brain has not yet been investigated in vivo. In the present work, we used in vivo probabilistic white-matter tractography and Laplacian eigenmaps (LE) to study the variation of connectivity patterns across insular territories in humans. In each subject and hemisphere, we recovered a rostrocaudal trajectory of connectivity variation ranging from the anterior dorsal and ventral insula to the dorsal caudal part of the long insular gyri. LE suggested that regional transitions among tractography patterns in the insula occur more gradually than in other brain regions. In particular, the change in tractography patterns was more gradual in the insula than in the medial premotor region, where a sharp transition between different tractography patterns was found. The recovered trajectory of connectivity variation in the insula suggests a relation between connectivity and cytoarchitecture in humans resembling that previously found in macaques: tractography seeds from the anterior insula were mainly found in limbic and paralimbic regions and in anterior parts of the inferior frontal gyrus, while seeds from caudal insular territories mostly reached parietal and posterior temporal cortices. Regions in the putative dysgranular insula displayed more heterogeneous connectivity patterns, with regional differences related to the proximity with either putative granular or agranular regions.  相似文献   

4.
Deep brain stimulation (DBS) is an established surgical therapy for medically refractory tremor disorders including essential tremor (ET) and is currently under investigation for use in a variety of other neurologic and psychiatric disorders. There is growing evidence that the anti‐tremor effects of DBS for ET are directly related to modulation of the dentatorubrothalamic tract (DRT), a white matter pathway that connects the cerebellum, red nucleus, and ventral intermediate nucleus of the thalamus. Emerging white matter targets for DBS, like the DRT, will require improved three‐dimensional (3D) reference maps of deep brain anatomy and structural connectivity for accurate electrode targeting. High‐resolution diffusion MRI of postmortem brain specimens can provide detailed volumetric images of important deep brain nuclei and 3D reconstructions of white matter pathways with probabilistic tractography techniques. We present a high spatial and angular resolution diffusion MRI template of the postmortem human brainstem and thalamus with 3D reconstructions of the nuclei and white matter tracts involved in ET circuitry. We demonstrate registration of these data to in vivo, clinical images from patients receiving DBS therapy, and correlate electrode proximity to tractography of the DRT with improvement of ET symptoms. Hum Brain Mapp 36:3167–3178, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
Many animal studies have reported on the neural connectivity of the vestibular nuclei(VN).However,little is reported on the structural neural connectivity of the VN in the human brain.In this study,we attempted to investigate the structural neural connectivity of the VN in 37 healthy subjects using diffusion tensor tractography.A seed region of interest was placed on the isolated VN using probabilistic diffusion tensor tractography.Connectivity was defined as the incidence of connection between the VN and each brain region.The VN showed 100% connectivity with the cerebellum,thalamus,oculomotor nucleus,trochlear nucleus,abducens nucleus,and reticular formation,irrespective of thresholds.At the threshold of 5 streamlines,the VN showed connectivity with the primary motor cortex(95.9%),primary somatosensory cortex(90.5%),premotor cortex(87.8%),hypothalamus(86.5%),posterior parietal cortex(75.7%),lateral prefrontal cortex(70.3%),ventromedial prefrontal cortex(51.4%),and orbitofrontal cortex(40.5%),respectively.These results suggest that the VN showed high connectivity with the cerebellum,thalamus,oculomotor nucleus,trochlear nucleus,abducens nucleus,and reticular formation,which are the brain regions related to the functions of the VN,including equilibrium,control of eye movements,conscious perception of movement,and spatial orientation.  相似文献   

6.
Reduced dopamine input to cortical and subcortical brain structures, particularly those in the sensorimotor network, is a hallmark of Parkinson's disease (PD). The extent to which dopamine dysfunction affects connectivity within this and other brain networks remains to be investigated. The purpose of this study was to measure anatomical and functional connectivity in groups of PD patients and controls to determine whether connectivity deficits within the cortico–basal ganglia thalamocortical system could be attributed to PD, particularly in sensorimotor connections. A neuroimaging paradigm involving diffusion‐weighted magnetic resonance imaging (MRI) and resting‐state functional MRI was implemented in a large cohort of PD patients and control subjects. Probabilistic tractography and functional correlation analyses were performed to map connections between brain structures and to derive indices of connectivity that were then used to compare groups. Anatomical connectivity deficits were demonstrated in PD patients, specifically for sensorimotor connections. Functional deficits were also found in some of the same connections. In addition, functional connectivity was found to increase in associative and limbic connections in PD patients compared with controls. This study lends support to findings regarding the dysfunction of the sensorimotor circuit in PD. As deficits in anatomical and functional connectivity within this circuit were in some cases concordant in PD patients, a possible link between brain structure and function is suggested. Increases in functional connectivity in other cortico–basal ganglia thalamocortical circuits may be indicative of compensatory effects in response to system deficits elsewhere. © 2012 Movement Disorder Society  相似文献   

7.
BACKGROUND: A reduction in interhemispheric connectivity is thought to contribute to the etiology of schizophrenia. Diffusion Tensor Imaging (DTI) measures the diffusion of water and can be used to describe the integrity of the corpus callosum white matter tracts, thereby providing information concerning possible interhemispheric connectivity abnormalities. Previous DTI studies in schizophrenia are inconsistent in reporting decreased Fractional Anisotropy (FA), a measure of anisotropic diffusion, within different portions of the corpus callosum. Moreover, none of these studies has investigated corpus callosum systematically, using anatomical subdivisions. METHODS: DTI and structural MRI scans were obtained from 32 chronic schizophrenic subjects and 42 controls. Corpus callosum cross sectional area and its probabilistic subdivisions were determined automatically from structural MRI scans using a model based deformable contour segmentation. These subdivisions employ a previously generated probabilistic subdivision atlas, based on fiber tractography and anatomical lobe subdivision. The structural scan was then co-registered with the DTI scan and the anatomical corpus callosum subdivisions were propagated to the associated FA map. RESULTS: Results revealed decreased FA within parts of the corpus interconnecting frontal regions in schizophrenia compared with controls, but no significant changes for callosal fibers interconnecting parietal and temporo-occipital brain regions. In addition, integrity of the anterior corpus was statistically significantly correlated with negative as well as positive symptoms, while posterior measures correlated with positive symptoms only. CONCLUSIONS: This study provides quantitative evidence for a reduction of interhemispheric brain connectivity in schizophrenia, involving corpus callosum, and further points to frontal connections as possibly disrupted in schizophrenia.  相似文献   

8.
Estimating the interregional structural connections of the brain via diffusion tractography is a complex procedure and the parameters chosen can affect the outcome of the connectivity matrix. Here, we investigated the influence of different connection reconstruction methods on brain connectivity networks. Specifically, we applied three connection reconstruction methods to the same set of diffusion MRI data, initiating tracking from deep white matter (method #1, M1), from the gray matter/white matter interface (M2), and from the gray/white matter interface with thresholded tract volume rather than the connection probability as the connectivity index (M3). Small-world properties, hub identification, and hemispheric asymmetry in connectivity patterns were then calculated and compared across methods. Despite moderate to high correlations in the graph-theoretic measures across different methods, significant differences were observed in small-world indices, identified hubs, and hemispheric asymmetries, highlighting the importance of reconstruction method on network parameters. Consistent with the prior reports, the left precuneus was identified as a hub region in all three methods, suggesting it has a prominent role in brain networks.  相似文献   

9.
Deep brain stimulation (DBS) of the subcallosal cingulate white matter (SCCWM) is an experimental therapy for major depressive disorder (MDD). The specific axonal pathways that mediate the anti-depressant effects of DBS remain unknown. Patient-specific tractography-activation models (TAMs) are a new tool to help identify pathways modulated by DBS. TAMs consist of four basic components: 1) anatomical and diffusion-weighted imaging data acquired on the patient; 2) probabilistic tractography from the brain region surrounding the implanted DBS electrode; 3) finite element models of the electric field generated by the patient-specific DBS parameter settings; and 4) application of the DBS electric field to multi-compartment cable models of axons, with trajectories defined by the tractography, to predict action potential generation in specific pathways. This study presents TAM predictions from DBS of the SCCWM in one MDD patient. Our findings suggest that small differences in electrode location can generate substantial differences in the directly activated pathways.  相似文献   

10.
Posterior cortical atrophy (PCA) is rare neurodegenerative dementia, clinically characterized by a progressive decline in higher-visual object and space processing. After a brief review of the literature on the neuroimaging in PCA, here we present a study of the brain structural connectivity in a patient with PCA and progressive isolated visual and visuo-motor signs. Clinical and cognitive data were acquired in a 58-years-old patient (woman, right-handed, disease duration 18 months). Brain structural and diffusion tensor (DT) Magnetic Resonance Imaging (MRI) were obtained. A voxel-based morphometry (VBM) study was performed to explore the pattern of gray matter (GM) atrophy, and a fully automatic segmentation was assessed to obtain the hippocampal volumes. DT MRI-based tractography was used to assess the integrity of long-range white matter (WM) pathways in the patient and in six sex- and age-matched healthy subjects. This PCA patient had a clinical syndrome characterized by left visual neglect, optic ataxia, and left limb apraxia, as well as mild visuo-spatial episodic memory impairment. VBM study showed bilateral posterior GM atrophy with right predominance; DT MRI tractography demonstrated WM damage to the right hemisphere only, including the superior and inferior longitudinal fasciculi and the inferior fronto-occipital fasciculus, as compared to age-matched controls. The homologous left-hemisphere tracts were spared. No difference was found between left and right hippocampal volumes. These data suggest that selective visuo-spatial deficits typical of PCA might not result from cortical damage alone, but by a right-lateralized network-level dysfunction including WM damage along the major visual pathways.  相似文献   

11.
The mechanisms of deep brain stimulation (DBS) are poorly understood. Earlier, high-frequency DBS has been thought to represent a depolarization block of the target area and low-frequency stimulation has been thought to 'drive' neuronal activity. We investigated the long-term effect of low-frequency DBS in a longitudinal imaging study of a patient who received bilateral pedunculopontine nucleus stimulation. We used the diffusion tensor imaging techniques including probabilistic tractography and topographic mapping to analyze long-term changes in connectivity with low-frequency DBS. Post-DBS connectivity analysis suggested a normalization of pathological pedunculopontine nucleus connectivity with DBS therapy. These findings may help elucidate the mechanisms of DBS, suggesting neuroplasticity involving a reorganization of target connectivity long term. This is the first reported case showing neuroimaging evidence of neuroplasticity after low-frequency DBS.  相似文献   

12.
Lateralization of higher brain functions requires that a dominant hemisphere collects relevant information from both sides. The right dorsal premotor cortex (PMd), particularly implicated in visuomotor transformations, was hypothesized to be optimally located to converge visuospatial information from both hemispheres for goal‐directed movement. This was assessed by probabilistic tractography and a novel analysis enabling group comparisons of whole‐brain connectivity distributions of the left and right PMd in standard space (16 human subjects). The resulting dominance of contralateral PMd connections was characterized by right PMd connections with left visual and parietal areas, indeed supporting a dominant role in visuomotor transformations, while the left PMd showed dominant contralateral connections with the frontal lobe. Ipsilateral right PMd connections were also stronger with posterior parietal regions, relative to the left PMd connections, while ipsilateral connections of the left PMd were stronger with, particularly, the anterior cingulate, the ventral premotor and anterior parietal cortex. The pattern of dominant right PMd connections thus points to a specific role in guiding perceptual information into the motor system, while the left PMd connections are consistent with action dominance based on a lead in motor intention and fine precision skills.  相似文献   

13.
The role of massa intermedia (MI) is poorly understood in humans. Recent studies suggest its presence may play a role in normal human neurocognitive function while prior studies have shown the absence of MI correlated with psychiatric disorders. There is growing evidence that MI is likely a midline white matter conduit, responsible for interhemispheric connectivity, similar to other midline commissures. MI presence was identified in an unrelated sample using the Human Connectome Project database. MI structural connectivity maps were created and gray matter target regions were identified using probabilistic tractography of the whole brain. Probabilistic tractography revealed an extensive network of connections between MI and limbic, frontal and temporal lobes as well as insula and pericalcarine cortices. Women compared to men had stronger connectivity via their MI. The presented results support the role of MI as a midline commissure with strong connectivity to the amygdala, hippocampus, and entorhinal cortex.  相似文献   

14.
Convergent clinical and neuroimaging evidence suggests that higher vestibular function is subserved by a distributed network including visuospatial, cognitive–affective, proprioceptive, and integrative brain regions. Clinical vestibular syndromes may perturb this network, resulting in deficits across a variety of functional domains. Here, we leverage structural and functional neuroimaging to characterize this extended network in healthy control participants and patients with post‐concussive vestibular dysfunction (PCVD). Then, 27 healthy control subjects (15 females) and 18 patients with subacute PCVD (12 female) were selected for participation. Eighty‐two regions of interest (network nodes) were identified based on previous publications, group‐wise differences in BOLD signal amplitude and connectivity, and multivariate pattern analysis on affective tests. Group‐specific “core” networks, as well as a “consensus” network comprised of connections common to all participants, were then generated based on probabilistic tractography and functional connectivity between the 82 nodes and subjected to analyses of node centrality and community structure. Whereas the consensus network was comprised of affective, integrative, and vestibular nodes, PCVD participants exhibited diminished integration and centrality among vestibular and affective nodes and increased centrality of visual, supplementary motor, and frontal and cingulate eye field nodes. Clinical outcomes, derived from dynamic posturography, were associated with approximately 62% of all connections but best predicted by amygdalar, prefrontal, and cingulate connectivity. No group‐wise differences in diffusion metrics or tractography were noted. These findings indicate that cognitive, affective, and proprioceptive substrates contribute to vestibular processing and performance and highlight the need to consider these domains during clinical diagnosis and treatment planning.  相似文献   

15.
Diffusion MRI fiber tractography has been increasingly used to map the structural connectivity of the human brain. However, this technique is not without limitations; for example, there is a growing concern over anatomically correlated bias in tractography findings. In this study, we demonstrate that there is a bias for fiber tracking algorithms to terminate preferentially on gyral crowns, rather than the banks of sulci. We investigate this issue by comparing diffusion MRI (dMRI) tractography with equivalent measures made on myelin‐stained histological sections. We begin by investigating the orientation and trajectories of axons near the white matter/gray matter boundary, and the density of axons entering the cortex at different locations along gyral blades. These results are compared with dMRI orientations and tract densities at the same locations, where we find a significant gyral bias in many gyral blades across the brain. This effect is shown for a range of tracking algorithms, both deterministic and probabilistic, and multiple diffusion models, including the diffusion tensor and a high angular resolution diffusion imaging technique. Additionally, the gyral bias occurs for a range of diffusion weightings, and even for very high‐resolution datasets. The bias could significantly affect connectivity results using the current generation of tracking algorithms.  相似文献   

16.
Gray matter connectivity can be described in terms of its topographical organization, but the differential role of white matter connections underlying that organization is often unknown. In this study, we propose a method for unveiling principles of organization of both gray and white matter based on white matter connectivity as assessed using diffusion magnetic ressonance imaging (MRI) tractography with spectral embedding gradient mapping. A key feature of the proposed approach is its capacity to project the individual connectivity gradients it reveals back onto its input data in the form of projection images, allowing one to assess the contributions of specific white matter tracts to the observed gradients. We demonstrate the ability of our proposed pipeline to identify connectivity gradients in prefrontal and occipital gray matter. Finally, leveraging the use of tractography, we demonstrate that it is possible to observe gradients within the white matter bundles themselves. Together, the proposed framework presents a generalized way to assess both the topographical organization of structural brain connectivity and the anatomical features driving it.  相似文献   

17.
Deep brain stimulation (DBS) is an effective surgical treatment for movement disorders. Although stimulation sites for movement disorders such as Parkinson's disease are established, the therapeutic mechanisms of DBS remain controversial. Recent research suggests that specific white‐matter tract and circuit activation mediates symptom relief. To investigate these questions, we have developed a patient‐specific open‐source software pipeline called ‘DBSproc’ for (1) localizing DBS electrodes and contacts from postoperative CT images, (2) processing structural and diffusion MRI data, (3) registering all images to a common space, (4) estimating DBS activation volume from patient‐specific voltage and impedance, and (5) understanding the DBS contact‐brain connectivity through probabilistic tractography. In this paper, we explain our methodology and provide validation with anatomical and tractographic data. This method can be used to help investigate mechanisms of action of DBS, inform surgical and clinical assessments, and define new therapeutic targets. Hum Brain Mapp 37:422–433, 2016. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

18.
In this study we demonstrate that the pattern of an amygdala‐centric network contributes to individual differences in trait anxiety. Individual differences in trait anxiety were predicted using maximum likelihood estimates of amygdala structural connectivity to multiple brain targets derived from diffusion‐tensor imaging (DTI) and probabilistic tractography on 72 participants. The prediction was performed using a stratified sixfold cross validation procedure using a regularized least square regression model. The analysis revealed a reliable network of regions predicting individual differences in trait anxiety. Higher trait anxiety was associated with stronger connections between the amygdala and dorsal anterior cingulate cortex, an area implicated in the generation of emotional reactions, and inferior temporal gyrus and paracentral lobule, areas associated with perceptual and sensory processing. In contrast, higher trait anxiety was associated with weaker connections between amygdala and regions implicated in extinction learning such as medial orbitofrontal cortex, and memory encoding and environmental context recognition, including posterior cingulate cortex and parahippocampal gyrus. Thus, trait anxiety is not only associated with reduced amygdala connectivity with prefrontal areas associated with emotion modulation, but also enhanced connectivity with sensory areas. This work provides novel anatomical insight into potential mechanisms behind information processing biases observed in disorders of emotion. Hum Brain Mapp 36:4819–4830, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
Background It has been hypothesised that seizure induced neuronal loss and axonal damage in medial temporal lobe epilepsy (MTLE) may lead to the development of aberrant connections between limbic structures and eventually result in the reorganisation of the limbic network. In this study, limbic structural connectivity in patients with MTLE was investigated, using diffusion tensor MRI, probabilistic tractography and graph theory based network analysis. Methods 12 patients with unilateral MTLE and hippocampal sclerosis (five left and seven right MTLE) and 26 healthy controls were studied. The connectivity of 10 bilateral limbic regions of interest was mapped with probabilistic tractography, and the probabilistic fibre density between each pair of regions was used as the measure of their weighted structural connectivity. Binary connectivity matrices were then obtained from the weighted connectivity matrix using a range of fixed density thresholds. Graph theory based properties of nodes (degree, local efficiency, clustering coefficient and betweenness centrality) and the network (global efficiency and average clustering coefficient) were calculated from the weight and binary connectivity matrices of each subject and compared between patients and controls. Results MTLE was associated with a regional reduction in fibre density compared with controls. Paradoxically, patients exhibited (1) increased limbic network clustering and (2) increased nodal efficiency, degree and clustering coefficient in the ipsilateral insula, superior temporal region and thalamus. There was also a significant reduction in clustering coefficient and efficiency of the ipsilateral hippocampus, accompanied by increased nodal degree. Conclusions These results suggest that MTLE is associated with reorganisation of the limbic system. These results corroborate the concept of MTLE as a network disease, and may contribute to the understanding of network excitability dynamics in epilepsy and MTLE.  相似文献   

20.
《Brain stimulation》2022,15(3):615-623
BackgroundStimulation of the ventromedial hypothalamic region in animals has been reported to cause attack behavior labeled as sham-rage without offering information about the internal affective state of the animal being stimulated.ObjectiveTo examine the causal effect of electrical stimulation near the ventromedial region of the human hypothalamus on the human subjective experience and map the electrophysiological connectivity of the hypothalamus with other brain regions.MethodsWe examined a patient (Subject S20_150) with intracranial electrodes implanted across 170 brain regions, including the hypothalamus. We combined direct electrical stimulation with tractography, cortico-cortical evoked potentials (CCEP), and functional connectivity using resting state intracranial electroencephalography (EEG).ResultsRecordings in the hypothalamus did not reveal any epileptic abnormalities. Electrical stimulations near the ventromedial hypothalamus induced profound shame, sadness, and fear but not rage or anger. When repeated single-pulse stimulations were delivered to the hypothalamus, significant responses were evoked in the amygdala, hippocampus, ventromedial-prefrontal and orbitofrontal cortices, anterior cingulate, as well as ventral-anterior and dorsal-posterior insula. The time to first peak of these evoked responses varied and earliest propagations correlated best with the measures of resting-state EEG connectivity and structural connectivity.ConclusionThis patient's case offers details about the affective state induced by the stimulation of the human hypothalamus and provides causal evidence relevant to current theories of emotion. The complexity of affective state induced by the stimulation of the hypothalamus and the profile of hypothalamic electrophysiological connectivity suggest that the hypothalamus and its connected structures ought to be seen as causally important for human affective experience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号