首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-syndromic neurosensory autosomal recessive deafness (NSRD) is the most common form of genetic hearing loss. Previous studies defined at least 15 human NSRD loci. Recently we demonstrated that DFNB1, located on the long arm of chromosome 13, accounts for approximately 80% of cases in the Mediterranean area. Further analysis with additional markers now identifies several recombinants which narrow the candidate region to approximately 5 cM, encompassed by markers D13S141 and D13S232 and including several ESTs and candidate genes, including the connexin26 (GJB2) gene. Analysis of PCR products from our affected patients' DNA shows two frameshift mutations in the connexin26 gene. Deletion of a G within a stretch of six Gs at position 35 of the GJB2 cDNA (mutation 35delG) leads to premature chain termination and is present in 63% of NSRD chromosomes, demonstrating linkage to chromosome 13. Deletion of a T at position 167 of GJB2 (mutation 167delT), also resulting in premature chain termination, was detected in another patient. Four neutral sequence polymorphisms were also identified. These findings are in agreement with a recent study showing that mutations in the connexin26 gene are associated with genetic forms of deafness in three Pakistani families and that GJB2 is DFNB1. Connexin26 is a member of a large family of proteins involved in formation of gap junctions, which are involved in electrical synapses and the direct transfer of small molecules and ionic currents between neighboring cells. The identification of GJB2 as the DFNB1 gene should provide a better understanding of the biology of normal and abnormal hearing, help form the basis for diagnosis and may facilitate development of strategies for treatment of this common genetic disorder.   相似文献   

2.
Non-syndromal, recessive deafness (NSRD) is the most common form of inherited deafness or hearing impairment in humans. NSRD is genetically heterogeneous and it has been estimated that as many as 35 different loci may be involved. We report the mapping of a novel locus for autosomal recessive, non-syndromal deafness (DFNB16) in three consanguineous families originating from Pakistan and the Middle East. Using multipoint analysis (HOMOZ/MAPMAKER) a maximum combined lod score of 6.5 was obtained for the interval D15S1039-D15S123. Recombination events and haplotype analysis define a 12-14 cM critical region between the markers D15S1039 and D15S155 on chromosome 15q15-q21.  相似文献   

3.
Geographically isolated populations have been successfully used to localize genes for recessive inherited diseases, including non-syndromic sensorineural recessive deafness (NSRD). To date, 25 loci for NSRD have been localized on human chromosomes (DFNB loci), and six of the corresponding genes have been identified. Here, we report on the contribution of the DFNB1 locus (GJB2 gene) to NRSD in seven affected families living in three northern Tunisian geographic isolates, and we provide evidence for genetic heterogeneity within isolates. This finding challenges the classical view of a single 'founder' mutation segregating in such isolates.  相似文献   

4.
Non-syndromic recessive deafness (NSRD) is the most commonly encountered form of hereditary hearing loss. The majority of NSRD cases in the Mediterranean area are linked to the DFNB1 locus (the connexin 26 GJB2 gene). Unrelated NSRD patients issued from 68 Jordanian families, were tested for mutations of the GJB2 gene by sequencing. Sixteen per cent of the families tested were linked to the DFNB1 locus. The 35delG was the only GJB2 mutation detected in these families. One of these families, presenting with four affected members and not linked to the gene, was subjected to a genome-wide search and was found to be mapped to 9q34.3 with a multipoint lodscore of 3.9. One candidate gene in the interval, coding for the chloride intracellular channel 3, CLIC3, was tested and excluded. The identification of a new NSRD locus, DFNB33, in one Jordanian family, shows the wide genetic heterogeneity that characterizes hearing impairment and the genetic diversity in Middle-Eastern populations.  相似文献   

5.
Autosomal recessive nonsyndromic deafness is one of the most frequent forms of inherited hearing impairment. Over 30 autosomal recessive nonsyndromic hearing loss loci have been mapped, and 15 genes have been isolated. Of the over 30 reported autosomal recessive nonsyndromic hearing loss (NSHL) loci, the typical phenotype is prelingual non-progressive severe to profound hearing loss with the exception of DFNB8, which displays postlingual onset and DFNB13, which is progressive. In this report we describe a large inbred kindred from a remote area of Pakistan, comprising six generations and segregating autosomal recessive nonsyndromic prelingual deafness. DNA samples from 24 individuals were used for genome wide screen and fine mapping. Linkage analysis indicates that in this family the NSHL locus, (DFNB35) maps to a 17.54 cM region on chromosome 14 flanked by markers D14S57 and D14S59. Examination of haplotypes reveals a region that is homozygous for 11.75 cM spanning between markers D14S588 and D14S59. A maximum two-point LOD score of 5.3 and multipoint LOD score of 7.6 was obtained at marker D14S53. The interval for DFNB35 does not overlap with the regions for DFNA9, DFNA23 or DFNB5.  相似文献   

6.
Non-syndromic recessive deafness (NSRD) is the most common form of prelingual hereditary hearing loss. To date, 10 autosomal NSRD loci (DFNBs) have been identified by genetic mapping; at least three times as many additional loci are expected to be identified. We have performed linkage analyses in two inter-related inbred kindreds, comprised of >50 affecteds, from a single Israeli-Arab village segregating NSRD. Genetic mapping by two-point and multi-point linkage analysis in 10 candidate regions identified the segregating gene to be on human chromosome 13q11 (DFNB1). Haplotype analysis, using eight microsatellite markers spanning 15 cM in 13q11, suggested the segregation of two different mutations in this kindred: affected individuals were homozygotes for either haplotype or compound heterozygotes. The gene for the connexin 26 gap junction protein, recently shown to be mutant in both dominant and recessive deafness, maps to this locus. We identified two distinct mutations, W77R and Gdel35, both of which likely inactivate connexin 26. The Gdel35 change likely occurs at a mutational hotspot within the connexin 26 gene. The recombination of marker alleles at the polymorphisms studied in 13q11, at known map distances from the mutations, allowed us to estimate the age of the mutations to be 3-5 generations (75-125 years). This study independently confirms the identity of connexin 26 as an NSRD gene. Importantly, we demonstrate that in small populations with high rates of consanguinity, as compared with large outbred populations, recessive mutations may have very recent origin and show allelic diversity.   相似文献   

7.
Molecular testing for mutations in the gene encoding connexin-26 (GJB2) at the DFNB1 locus has become the standard of care for genetic diagnosis and counseling of autosomal recessive non-syndromic hearing impairment (ARNSHI). The spectrum of mutations in GJB2 varies considerably among the populations, different alleles predominating in different ethnic groups. A cohort of 34 families of Spanish Romani (gypsies) with ARNSHI was screened for mutations in GJB2. We found that DFNB1 deafness accounts for 50% of all ARNSHI in Spanish gypsies. The predominating allele is W24X (79% of the DFNB1 alleles), and 35delG is the second most common allele (17%). An allele-specific PCR test was developed for the detection of the W24X mutation. By using this test, carrier frequencies were determined in two sample groups of gypsies from different Spanish regions (Andalusia and Catalonia), being 4% and 0%, respectively. Haplotype analysis for microsatellite markers closely flanking the GJB2 gene revealed five different haplotypes associated with the W24X mutation, all sharing the same allele from marker D13S141, suggesting that a founder effect for this mutation is responsible for its high prevalence among Spanish gypsies.  相似文献   

8.
The first localization of a gene responsible for autosomal,neurosensory, recessive deafness recently assigned NSRD1 tothe centromeric region of human chromosome 13. We now reporton a dominant form of neurosensory deafness found In a familyof French origin. The deafness is moderate to severe, has aprellngual onset and affects predominantly the high frequencies.The gene responsible for this form of deafness was found bylinkage analysis to map to the same region of chromosome 13as NSRD1. A multipoint analysis gave a maximum lod score of4.66 with a most likely location close to locus D13S175. Thissuggests that different mutations in NSRD1 may cause both dominantand recessive neurosensory deafness.  相似文献   

9.
The locus for a type of an autosomal recessive non-syndromic deafness (ARND), DFNB13, was previously mapped to a 17-cm interval of chromosome 7q34-36. We identified two consanguineous Tunisian families with severe to profound ARND. Linkage analyses with microsatellites surrounding the previously identified loci detected linkage with markers corresponding to the DFNB13 locus in both families. Haplotype analyses assigned this locus to a 3.2-Mb region between markers D7S2468 and D7S2473. In order to refine this interval, we identified nine dinucleotide repeats in the 7q34 region. To investigate the polymorphism of these repeats, a population study of 74 unrelated individuals from different regions of Tunisia was carried out. Our results demonstrated that eight of the nine repeats are polymorphic. The average number of alleles at these informative loci was 9.12 with a polymorphism information content of 0.71. Little evidence for linkage disequilibrium between some marker pairs was found. Haplotype analysis using these microsatellites refined the DFNB13 interval to an area of 2.2 Mb between the D7S5377 and D7S2473. In order to identify the DFNB13 gene, we sequenced and eliminated three candidate genes. Other known and predicted genes are being screened for deafness-causing mutations.  相似文献   

10.
Pathogenic variants at the DFNB1 locus encompassing the GJB2 and GJB6 genes account for 50% of autosomal‐recessive, congenital nonsyndromic hearing loss in the United States. Most cases are caused by sequence variants within the GJB2 gene, but a significant number of DFNB1 patients carry a large deletion (GJB6‐D13S1830) in trans with a GJB2 variant. This deletion lies upstream of GJB2 and was shown to reduce GJB2 expression by disrupting unidentified regulatory elements. First‐tier genetic testing for hearing loss includes GJB2 sequence and GJB6‐D13S1830 deletion analysis; however, several other deletions in this locus, each with distinct breakpoints, have been reported in DFNB1 patients and are missed by current panels. Here, we report the development of a targeted droplet digital polymerase chain reaction‐based assay for comprehensive copy‐number analysis at the DFNB1 locus that detects all deletions reported to date. This assay increased detection rates in a multiethnic cohort of 87 hearing loss patients with only one identified pathogenic GJB2 variant. We identify two deletions, one of which is novel, in two patients (2/87 or 2.3%), suggesting that other pathogenic deletions at the DFNB1 locus may be missed. Mapping the assayed DFNB1 deletions also revealed a ~95 kb critical region, which may harbor the GJB2 regulatory element(s).  相似文献   

11.
A consanguineous family with autosomal recessive nonsyndromic hearing impairment (NSHI) was ascertained in Pakistan and displayed significant evidence of linkage to 3q13.31-q22.3. The novel locus (DFNB42) segregating in this kindred, maps to a 21.6 cM region according to a genetic map constructed using data from both the deCode and Marshfield genetic maps. This region of homozygosity is flanked by markers D3S1278 and D3S2453. A maximum multipoint LOD score of 3.72 was obtained at marker D3S4523. DFNB42 represents the third autosomal recessive NSHI locus to map to chromosome 3.  相似文献   

12.
Approximately 80% of the hereditary hearing loss is nonsyndromic. Isolated deafness is the most genetically heterogeneous trait. We have ascertained 10 individuals from a large consanguineous Tunisian family with congenital profound autosomal recessive deafness. All affected individuals are otherwise healthy. Genotype analysis excluded linkage to known recessive deafness loci in this family. Following a genome wide screening, a linkage was detected only with locus D1S206 on chromosome 1, thereby defining a novel deafness locus, DFNB32. In order to confirm linkage and for fine mapping the genetic interval, 12 individuals belonging to this family were added and 19 microsatellite markers were tested. A maximum two-point lodscore of 4.96 was obtained at a new polymorphic marker D1S21401. Haplotype analysis defined a 16 Mb critical region between D1S2868 and afmb014zb9. The interval of DFNB32 locus overlap with DFNA37 locus and the Marshall and Stickler syndromes locus. The entire coding region of COL11A1, responsible of the later syndromes, was screened and no mutation was observed. Towards the identification of the DFNB32 gene, a search on the Human Cochlear cDNA Library and EST Database was done. The genes corresponding to the ESTs found in the DFNB32 interval are being screened for deafness-causing mutations.  相似文献   

13.
Hereditary hearing impairment is a genetically heterogeneous disorder. To date, 49 autosomal recessive nonsyndromic hearing impairment (ARNSHI) loci have been described, and there are more than 16 additional loci announced. In 25 of the known loci, causative genes have been identified. A genome scan and fine mapping revealed a novel locus for ARNSHI (DFNB63) on chromosome 11q13.2-q13.4 in a five-generation Turkish family (TR57). The homozygous linkage interval is flanked by the markers D11S1337 and D11S2371 and spans a 5.3-Mb interval. A maximum two-point log of odds score of 6.27 at a recombination fraction of theta = 0.0 was calculated for the marker D11S4139. DFNB63 represents the eighth ARNSHI locus mapped to chromosome 11, and about 3.33 Mb separate the DFNB63 region from MYO7A (DFNB2/DFNB11). Sequencing of coding regions and exon-intron boundaries of 13 candidate genes, namely SHANK2, CTTN, TPCN2, FGF3, FGF4, FGF19, FCHSD2, PHR1, TMEM16A, RAB6A, MYEOV, P2RY2 and KIAA0280, in genomic DNA from an affected individual of family TR57 revealed no disease-causing mutations.  相似文献   

14.
In two large Turkish consanguineous families, a locus for autosomal recessive nonsyndromic hearing loss (ARNSHL) was mapped to chromosome 6p21.3 by genome-wide linkage analysis in an interval overlapping with the loci DFNB53 (COL11A2), DFNB66, and DFNB67. Fine mapping excluded DFNB53 and subsequently homozygous mutations were identified in the lipoma HMGIC fusion partner-like 5 (LHFPL5) gene, also named tetraspan membrane protein of hair cell stereocilia (TMHS) gene, which was recently shown to be mutated in the "hurry scurry" mouse and in two DFNB67-linked families from Pakistan. In one family, we found a homozygous one-base pair deletion, c.649delG (p.Glu216ArgfsX26) and in the other family we identified a homozygous transition c.494C>T (p.Thr165Met). Further screening of index patients from 96 Turkish ARNSHL families and 90 Dutch ARNSHL patients identified one additional Turkish family carrying the c.649delG mutation. Haplotype analysis revealed that the c.649delG mutation was located on a common haplotype in both families. Mutation screening of the LHFPL5 homologs LHFPL3 and LHFPL4 did not reveal any disease causing mutation. Our findings indicate that LHFPL5 is essential for normal function of the human cochlea.  相似文献   

15.
We report on a novel localization for a recessive form of deafness (DFNB), by linkage analysis in an Iranian consanguineous family. Affected individuals suffer from prelingual profound sensorineural hearing loss. Genome-wide analysis led to the characterization of a new locus, DFNB40, which maps to an approximately 9 Mb interval between markers D22S427 and D22S1144 at chromosome 22q11.21-12.1. Maximum lod score of 3.09 was obtained with D22S1174. Since the Bronx waltzer (bv) mouse mutant, characterized by waltzing behavior, deafness, and degeneration of cochlear inner hair cells, has been mapped to the syntenic region on murine chromosome 5, we suggest that DFNB40 and bv may result from orthologous gene defects.  相似文献   

16.
Autosomal recessive childhood-onset non-syndromic deafness is one of the most frequent forms of inherited hearing impairment. Recently five different chromosomal regions, 7q31, 11q13.5, 13q12, 14q and the pericentromeric region of chromosome 17, have been shown to harbour disease loci for this type of neurosensory deafness. We have studied a large family from Pakistan, containing several consanguineous marriages and segregating for a recessive non-syndromic childhood-onset deafness. Linkage analysis mapped the disease locus (DFNB8) on the distal long arm of chromosome 21, most likely between D21S212 and D21S1225 with the highest lod score of 7.31 at theta = 0.00 for D21S1575 on 21q22.3.   相似文献   

17.
Autosomal recessive nonsyndromic hearing loss (ARNSHL) is the most common form of hereditary hearing impairment (HHI). To date, 16 different loci have been reported, making ARNSHL an extremely heterogeneous disorder. One of these loci, DFNB4, was mapped to a 5-cM interval of 7q31 in a large Middle-Eastern Druze family. This interval also includes the gene for Pendred syndrome. We report on three new families with HHI from the Madras region of southern India that demonstrate linkage to 7q. Their pedigrees are compatible with autosomal recessive inheritance. Furthermore, the largest family identifies a novel locus (DFNB17) telomeric to the DFNB4 and Pendred intervals. A 3-cM region of homozygosity by descent between markers D7S486 and D7S2529 is present in all affected individuals in this family and generates a multipoint LOD score of 4.24. The two other families map to the previously reported DFNB4 region but have insufficient power to attain significant LOD scores. However, mutations in the Pendred syndrome gene are present in one of these families. Am. J. Med. Genet. 78:107–113, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Mutations in OTOF , encoding otoferlin, cause non-syndromic recessive hearing loss. The goal of our study was to define the identities and frequencies of OTOF mutations in a model population. We screened a cohort of 557 large consanguineous Pakistani families segregating recessive, severe-to-profound, prelingual-onset deafness for linkage to DFNB9 . There were 13 families segregating deafness consistent with linkage to markers for DFNB9 . We analyzed the genomic nucleotide sequence of OTOF and detected probable pathogenic sequence variants among all 13 families. These include the previously reported nonsense mutation p.R708X and 10 novel variants: 3 nonsense mutations (p.R425X, p.W536X, and p.Y1603X), 1 frameshift (c.1103_1104delinsC), 1 single amino acid deletion (p.E766del) and 5 missense substitutions of conserved residues (p.L573R, p.A1090E, p.E1733K, p.R1856Q and p.R1939W). OTOF mutations thus account for deafness in 13 (2.3%) of 557 Pakistani families. This overall prevalence is similar, but the mutation spectrum is different from those for Western populations. In addition, we demonstrate the existence of an alternative splice isoform of OTOF expressed in the human cochlea. This isoform must be required for human hearing because it encodes a unique alternative C-terminus affected by some DFNB9 mutations.  相似文献   

19.
Non-syndromic sensorineural deafness is an extremely genetically heterogeneous condition. We have used autozygosity mapping in a large consanguineous United Arab Emirate family to identify a novel locus for autosomal recessive non-syndromic sensorineural deafness, DFNB27, on chromosome 2q23-q31, with a maximum two-point lod score of 5.18 at theta = 0 for marker D2S2257. The DFNB27 locus extends over a 17 cM region between D2S2157 and D2S2273, and may overlap the DFNA16 locus for dominantly inherited, fluctuating, progressive non-syndromal hearing loss. However, genotype data suggests that the locus is likely to be refined to between D2S326 and D2S2273 and thus distinct from the DFNA16 locus.  相似文献   

20.
The PDS gene encodes a transmembrane protein, known as pendrin, which functions as a transporter of iodide and chloride. Mutations in this gene are responsible for Pendred syndrome and autosomal recessive non-syndromic hearing loss at the DFNB4 locus on chromosome 7q31. A screen of 20 individuals from the midwestern USA with non-syndromic hearing loss and dilated vestibular aqueducts identified three people (15%) with PDS mutations. To determine whether PDS mutations in individuals with Pendred syndrome differ functionally from PDS mutations in individuals with non-syndromic hearing loss, we compared three common Pendred syndrome allele variants (L236P, T416P and E384G), with three PDS mutations reported only in individuals with non-syndromic hearing loss (V480D, V653A and I490L/G497S). The mutations associated with Pendred syndrome have complete loss of pendrin-induced chloride and iodide transport, while alleles unique to people with DFNB4 are able to transport both iodide and chloride, albeit at a much lower level than wild-type pendrin. We hypothesize that this residual level of anion transport is sufficient to eliminate or postpone the onset of goiter in individuals with DFNB4. We propose a model for pendrin function in the thyroid in which pendrin transports iodide across the apical membrane of the thyrocyte into the colloid space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号