首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 173 毫秒
1.
Transplantation studies have demonstrated that glia-depleted areas of the CNS can be reconstituted by the introduction of cultured cells. Thus, the influx of Schwann cells into glia-free areas of demyelination in the spinal cord can be prevented by the combined introduction of astrocytes and cells of the O-2A lineage. Although Schwann cell invasion of areas of demyelination is associated with destruction of astrocytes, the transplantation of rat tissue culture astrocytes ("type-1") alone cannot suppress this invasion, indicating a role for cells of the O-2A lineage in reconstruction of glial environments. By transplanting different glial cell preparations and manipulating lesions so as to prevent meningeal cell and Schwann cell proliferation it is possible to demonstrate that the behaviour of tissue culture astrocytes ("type-1") and astrocytes derived from O-2A progenitor cells ("type-2") is different. In the presence of meningeal cells, tissue culture astrocytes clump together to form cords of cells. In contrast, type-2 astrocytes spread throughout glia-free areas in a manner unaffected by the presence of meningeal cells or Schwann cells. Thus, progenitor-derived astrocytes show a greater ability to fill glia-free areas than tissue culture astrocytes. Similarly, when introduced into infarcted white matter in the spinal cord, progenitor-derived astrocytes fill the malacic area more effectively than tissue culture astrocytes, although axons do not regenerate into the reconstituted area.  相似文献   

2.
Summary Injection of ethidium bromide into X-irradiated spinal cord white matter produces a lesion in which demyelinated axons reside in an environment that is permanently depleted of glial cells. By transplanting defined populations of glial cells into this lesion it is possible to recreate normal or novel glial environments. In this study we have transplanted cultures of astrocytes into the X-irradiated ethidium bromide lesion in order to (1) assess the ability of these cells to relate to components within the lesion environment and thereby contribute to tissue reconstruction and (2) establish an astrocytic environment around demyelinated axons that resembles pathological states such as the chronic demyelinated plaques of multiple sclerosis. In order to focus attention on the interactions between astrocytes and demyelinated axons we developed a protocol for depleting astrocyte cultures of oligodendrocyte lineage cells and Schwann cells based on complement-mediated immunocytolysis andin vitro X-irradiation. In addition to establishing the ability of transplanted astrocytes to form an astrocytic matrix around demyelinated axons, this study has also revealed the diversity of cell types present within neonatal forebrain cultures.  相似文献   

3.
Summary We have examined axonal growth and synaptic regeneration in identified giant neurons of the transected lamprey spinal cord using intracellular injection of horseradish peroxidase. Wholemounts together with serial section light and electron microscopy, show that axons from identified Müller and Mauthner reticulospinal neurons grow across the lesion and regenerate new synaptic contacts. Relatively normal swimming returns in these animals by 3–4 weeks after spinal transection. This occurs despite the formation of regenerated synapses in regions of the cord that are not usually occupied by these neurons.The regenerating axons branch profusely in contrast to their unbranched state in the normal animal. In addition to showing the two synaptic configurations found normally, synapses may be formed by slender sprouts from the growing giant axon. These sprout type synaptic contacts appear unique to the regenerating neuron. Only regenerated chemical synapses were seen; the morphologically mixed chemical and electrical (gap junction) synaptic complex common in the normal animal was not observed at regenerated synapses.The site of spinal transection in the functionally recovered animal shows an increase in the number of ependymal and glial cells. Ependymal-like cells appear in regions away from the central canal. The expanded ependymal and glial processes covering the peripheral surface of the injured cord become convoluted, in contrast to their normal smooth configuration. There is no collagen within the cord at the site of transection but a considerable deposition is seen external to the cord surface.Axonal growth across a spinal lesion and subsequent synaptic regeneration can be examined in single identifiable giant interneurons in the spinal cord of the larval lamprey. This preparation may be used as an assay to investigate factors that could contribute to functional recovery following central nervous system injury in the higher vertebrates.  相似文献   

4.
This review summarises some of the major findings derived from studies using the model of a glia-depleted environment developed and characterised in this laboratory. Glial depletion is achieved by exposure of the immature rodent spinal cord to x-radiation which markedly reduces both astrocyte and oligodendrocyte populations and severely impairs myelination. This glia-depleted, hypomyelinated state presents a unique opportunity to examine aspects of spinal cord maturation in the absence of a normal glial population. An associated sequela within 2–3 wk following irradiation is the appearance of Schwann cells in the dorsal portion of the spinal cord. Characteristics of these intraspinal Schwann cells, their patterns of myelination or ensheathment, and their interrelations with the few remaining central glia have been examined. A later sequela is the development of Schwann cells in the ventral aspect of the spinal cord where they occur predominantly in the grey matter. Characteristics of these ventrally situated intraspinal Schwann cells are compared with those of Schwann cells located dorsally. Recently, injury responses have been defined in the glia-depleted spinal cord subsequent to the lesioning of dorsal spinal nerve roots. In otherwise normal animals, dorsal nerve root injury induces an astrocytic reaction within the spinal segments with which the root(s) is/are associated. Lesioning of the 4th lumbar dorsal root on the right side in irradiated or nonirradiated animals results in markedly different glial responses with little astrocytic scarring in the irradiated animals. Tracing studies reveal that these lesioned dorsal root axons regrow rather robustly into the spinal cord in irradiated but not in nonirradiated animals. To examine role(s) of glial cells in preventing this axonal regrowth, glial cells are now being added back to this glia-depleted environment through transplantation of cultured glia into the irradiated area. Transplanted astrocytes establish barrier-like arrangements within the irradiated cords and prevent axonal regrowth into the cord. Studies using other types of glial cultures (oligodendrocyte or mixed) are ongoing.  相似文献   

5.
Summary The amphibian spinal cord is characterized by the presence of radially oriented astrocytic glial cells. These cells have their somata located in the grey matter of the spinal cord and radial processes that extend from the soma through the grey and white matters to the pial surface of the cord. Here we show that these radial glial cells are the predominant cell type labelled by horseradish peroxidase (HRP) when the marker is applied to the surface of the cord. The morphology of the HRP-labelled processes of an individual cell is different as they pass through the grey and white matter regions of the cord. By indirect immunofluorescence on frozen sections we show that the binding of an antibody raised against mammalian glial fibrillary acidic protein (GFAP) is preferentially localized in those areas of the glial process that traverse the white matter of the spinal cord. By transmission electron microscopy we confirm that there are no astrocyte cell bodies either at the pial surface or throughout the white matter region of the cord. These results demonstrate that all the astrocytes in the adult frog spinal cord can be selectively labelled through the application of HRP to the surface of the cord, and that the processes of these labelled cells display regional morphological and biochemical specializations depending on their location in the cord.We propose that these astrocytes may play an important role in setting up the grey-white matter arrangement of the amphibian spinal cord and that a single astrocyte of the frog spinal cord may combine the properties and functions of both grey and white matter mammalian astrocytes.  相似文献   

6.
Summary The subpial glial limiting membrane of the cat spinal cord was examined by scanning electron microscopy after disruption of plasma membranes of astrocytes composing this membrane by controlling the fixation time in glutaraldehyde and OsO4. The subpial glial limiting membrane of the spinal cord was principally composed of two layers of astrocytic processes: an upper layer mainly composed of laminated flattened processes and a lower layer mainly composed of thin, cord-like processes. The outermost surface of the limiting membrane immediately beneath the subpial basement membrane was totally lined with flattened, overlapping astrocytic processes. The majority of the flattened processes in the upper layer of the limiting membrane were varied in shape and usually smaller than 5x5 m2, and the rest of the flattened processes were oval or round, and larger (5–10 m in diameter) than the majority of the flattened processes. Glomerular structures of tightly packed glial filaments were observed within the superficial flattened processes. These glomerular structures appeared to occupy the central space as a cytoskeletal core. The thin, cord-like processes contained a varying number of glial filaments running parallel to one another to form narrow bundles of filaments. These bundles of filaments coursed obliquely toward the outer surface of the spinal cord where they were transformed into superficial flattened glomerular structures of various forms.  相似文献   

7.
We have studied the cellular basis for recovery from acute spinal cord injury induced by applied electric fields. We have emphasized this recovery is due to the regeneration of spinal axons around and through the lesion, and have begun to evaluate the contribution of other cells to the recovery process. We have imposed a voltage gradient of about 320 V/mm across puncture wounds to the adult rat spinal cord in order to study the accumulation and orientation of GFAP+ astrocytes within and adjacent to the lesion. This electric field was imposed by a miniaturized electronic implant designed to alternate the polarity of the field every 15 minutes. Astrocytes are known to undergo hyperplastic transformation within injured mammalian cords forming a major component of the scar that forms in response to injury. We have made three observations using a new computer based morphometry technique: First, we note a slight shift in the orientation of astrocytes parallel to the long axis of the spinal cord towards an imaginary reference perpendicular to this axis by approximately 10°—but only in undamaged white matter near the lesion. Second, the relative number of astrocytes was markedly, and statistically significantly, reduced within electrically—treated spinal cords, particularly in the lesion. Third, the imposed voltage gradient statistically reduced the numbers of astrocytes possessing oriented cell processes within the injury site compared to adjacent undamaged regions of spinal cord.  相似文献   

8.
Ao Q  Wang AJ  Chen GQ  Wang SJ  Zuo HC  Zhang XF 《Medical hypotheses》2007,69(6):1234-1237
Spinal cord repair is a problem that has long puzzled neuroscientists. The failure of the spinal cord to regenerate and undergo reconstruction after spinal cord injury (SCI) can be attributed to secondary axonal demyelination and neuronal death followed by cyst formation and infarction as well as to the nature of the injury environment, which promotes glial scar formation. Cellular replacement and axon guidance are both necessary for SCI repair. Multipotent neural stem cells (NSCs) have the potential to differentiate into both neuronal and glial cells and are, therefore, likely candidates for cell replacement therapy following SCI. However, NSC transplantation alone is not sufficient for spinal cord repair because the majority of the NSCs engrafted into the spinal cord have been shown to differentiate with a phenotype which is restricted to glial lineages, further promoting glial scaring. Olfactory ensheathing cells (OECs) are a unique type of glial cell that occur both peripherally and centrally along the olfactory nerve. The ability of olfactory neurons to grow axons in the mature central nervous system (CNS) milieu has been attributed to the presence of OECs. It has been shown that transplanted OECs are capable of migrating into and through astrocytic scars and thereby facilitating axonal regrowth through an injury barrier. Given the complementary properties of NSCs and OECs, we predict that the co-transplantation of NSCs and OECs into an injured spinal cord would have a synergistic effect, promoting neural regeneration and functional reconstruction. The lost neurocytes would be replaced by NSCs, while the OECs would build "bridges" crossing the glial scaring that conduct axon elongation and promote myelinization simultaneously. Furthermore, the two types of cells could first be seeded into a bioactive scaffold and then the cell seeded construct could be implanted into the defect site. We believe that this type of treatment would lead to improved neural regeneration and functional reconstruction after SCI.  相似文献   

9.
背景:脊髓损伤后治疗不理想的原因是脊髓组织的囊变和胶质瘢痕的形成,因此,明确胶质瘢痕的发生发展规律具有重要意义。 目的:观察大鼠脊髓损伤后脊髓胶质瘢痕形成的空间分布、时间规律,以及轴突变化特征。 方法:采用改良Allen重物坠落法建立SD大鼠脊髓损伤模型,分别于损伤后1 d,3 d,5 d,1周,2周,4周,6周,8周,10周,12周取材。以正常饲养的大鼠作对照。 结果与结论:大鼠脊髓损伤后4周开始出现致密瘢痕增生,之后瘢痕厚度平稳下降,至损伤后10周形成光滑的囊腔壁,囊腔内无胶质纤维酸性蛋白阳性星形胶质细胞,损伤区囊腔周围的胶质瘢痕内可见密集肥大的星形胶质细胞,未见神经丝蛋白阳性轴突位于囊腔内。提示脊髓损伤后4周胶质瘢痕厚度达到高峰,囊腔与残存轴突之间开始形成机械屏障,损伤后10周瘢痕厚度趋于稳定。   相似文献   

10.
One of the main research strategies to improve treatment for spinal cord injury involves the use of cell transplantation. This review looks at the advantages and possible caveats of using glial cells from the olfactory system in transplant-mediated repair. These glial cells, termed olfactory ensheathing cells (OECs), ensheath the axons of the olfactory receptor neurons. The primary olfactory system is an unusual tissue in that it can support neurogenesis throughout life. In addition, newly generated olfactory receptor neurons are able to grow into the CNS environment of the olfactory bulb tissue and reform synapses. It is thought that this unique regenerative property depends in part on the presence of OECs. OECs share some of the properties of both astrocytes and Schwann cells but appear to have advantages over these and other glial cells for CNS repair. In particular, OECs are less likely to induce hypertrophy of CNS astrocytes. As well as remyelinating demyelinated axons, OEC grafts appear to promote the restoration of functions lost following a spinal cord lesion. However, much of the evidence for this is based on behavioural tests, and the mechanisms that underlie their potential benefits in transplant-mediated repair remain to be clarified.  相似文献   

11.
背景:前期研究发现控释胶质细胞源性神经营养因子与骨髓间充质干细胞源神经元样细胞联合移植可有效促进猕猴脊髓损伤后运动功能和感觉功能的恢复。 目的:观察控释胶质细胞源性神经营养因子联合骨髓间充质干细胞源神经元样细胞移植抑制猴脊髓损伤后胶质瘢痕形成的作用是否优于单纯细胞移植。 方法:取12只恒河猴,采用改良Allen氏法制作急性重度脊髓损伤模型,随机数字表法分为3组,实验组以控释胶质细胞源性神经营养因子联合自体骨髓间充质干细胞源神经元样细胞移植修复,对照组以自体骨髓间充质干细胞源神经元样细胞移植修复,空白对照组以磷酸盐缓冲液修复。修复后5个月,取出脊髓组织制成石蜡标本,应用免疫组织化学染色显示胶质瘢痕的形态特征、构成特点及瘢痕中神经纤维的再生情况,检测胶质瘢痕面积及胶质纤维酸性蛋白染色的平均吸光度值。 结果与结论:脊髓损伤部位胶质瘢痕由混合性增生的星形胶质细胞和组织细胞构成。空白对照组脊髓胶质瘢痕累及范围广,星形胶质细胞增生显著,神经丝蛋白免疫组织化学染色阴性,胶质瘢痕面积、胶质纤维酸性蛋白染色平均吸光度值高于实验组与对照组(P < 0.05);实验组、对照组脊髓胶质瘢痕累及范围较局限,神经丝蛋白免疫组织化学染色显示有少量神经纤维通过瘢痕区,并且实验组胶质瘢痕面积、胶质纤维酸性蛋白染色平均吸光度值低于对照组(P < 0.05)。结果表明,控释胶质细胞源性神经营养因子联合骨髓间充质干细胞源性神经元样细胞移植可更强抑制脊髓损伤后胶质瘢痕的形成。  相似文献   

12.
Transplantation of cultured adult olfactory ensheathing cells has been shown to induce anatomical and functional repair of lesions of the adult rat spinal cord and spinal roots. Histological analysis of olfactory ensheathing cells, both in their normal location in the olfactory nerves and also after transplantation into spinal cord lesions, shows that they provide channels for the growth of regenerating nerve fibres. These channels have an outer, basal lamina-lined surface apposed by fibroblasts, and an inner, naked surface in contact with the nerve fibres. A crucial property of olfactory ensheathing cells, in which they differ from Schwann cells, is their superior ability to interact with astrocytes. When confronted with olfactory ensheathing cells the superficial astrocytic processes, which form the glial scar after lesions, change their configuration so that their outer pial surfaces are reflected in continuity with the outer surfaces of the olfactory ensheathing cells. The effect is to open a door into the central nervous system. We propose that this formation of a bridging pathway may be the crucial event by which transplanted olfactory ensheathing cells allow the innate growth capacity of severed adult axons to be translated into regeneration across a lesion so that functionally valuable connections can be established.  相似文献   

13.
In an attempt to identify regenerating axons in the central nervous system, a partial transection of the dorsal funiculus in the rat spinal cord was carried out with a pair of microdissection scissors, and a nylon thread loop was inserted into the lesion to demarcate the severed tissue. Nerve regeneration through the demarcated lesion was observed 4-20 days after the operation by light and electron microscopy. In the early stage, many naked axons appeared from the caudal part of the lesion, and some of these further extended into the demarcated space. They contained an accumulation of mitochondria, smooth-surfaced endoplasmic reticulum and vesicles in the axoplasm; this axoplasmic feature indicated that they were regenerating axons. They gradually increased in number, and took highly irregular courses exhibiting various fluctuations in diameter throughout their lengths. Immature Schwann cells as well as glial cells including oligodendrocytes and astrocytes appeared in close association with these regenerating axons. Oligodendrocytes eventually formed thin myelin sheaths. On the other hand, naked axons were present deflecting outside the thread loop; they showed no axoplasmic characteristics as described above. These axons could be regarded as uninjured ones merely undergoing demyelination due to the surgery. Thus, regenerating axons were clearly distinguished from merely demyelinated ones, and some of them were shown to grow through the traumatic lesion in the dorsal funiculus of the rat spinal cord.  相似文献   

14.
Cells that express the NG2 proteoglycan (NG2+ cells) comprise a unique population of glial cells in the central nervous system. While there is no question that some NG2+ cells differentiate into oligodendrocytes during development, the persistence of numerous NG2+ cells in the mature CNS has raised questions about their identity, relation to other CNS cell types, and functions besides their progenitor role. NG2+ cells also express the alpha receptor for platelet-derived growth factor (PDGF R), a receptor that mediates oligodendrocyte progenitor proliferation during development. Antigenically, NG2+ cells are distinct from fibrous and protoplasmic astrocytes, resting microglia, and mature oligodendrocytes. Therefore, we propose the term polydendrocytesto refer to all NG2-expressing glial cells in the CNS parenchyma. This distinguishes them from the classical glial cell types and identifies them as the fourth major glial population in the CNS. Recent observations suggest that polydendrocytes are complex cells that physically and functionally interact with other cell types in the CNS. Committed oligodendrocyte progenitor cells arise from restricted foci in the ventral ventricular zone in both spinal cord and brain. It remains to be clarified whether there are multiple sources of oligodendrocytes, and if so whether polydendrocytes (NG2+ cells) represent progenitor cells of all oligodendrocyte lineages. Proliferation of NG2+ cells during early development appears to be dependent on PDGF, but the regulatory mechanisms that govern NG2+ cell proliferation in the mature CNS remain unknown. Pulse-chase labeling with bromodeoxyuridine indicates that polydendrocytes that proliferate in the postnatal spinal cord differentiate into oligodendrocytes. Novel experimental approaches are being developed to further elucidate the functional properties and differentiation potential of polydendrocytes.  相似文献   

15.
We investigated the response and relationship of glial cells and neurons in lumbar spinal cord to hyperalgesia induced by the unilateral subcutaneous formalin injection into the hindpaw of rats. It was demonstrated that Fos/NeuN immunoreactive (-IR) neurons, glial fibrillary acidic protein (GFAP)-IR astrocytes and OX42-IR microglia were distributed in dorsal horn of lumbar spinal cord, predominantly in the superficial layer. In the time-course studies, GFAP-IR astrocytes were firstly detected, OX42-IR microglia were sequentially observed, Fos/NeuN-IR neurons were found slightly late. Immunoelectron microscopy studies established that many heterotypic gap junctions (HGJs), which consisting of Cx43-IR astrocytic process on one side and Cx32-IR dendrite on the other side, were present in superficial layer of dorsal horn. Ninety-one HGJs were found in 100 areas of experimental rats and occupied 91%, while only 39% HGJs were found in control rats. In experimental rats pretreated with intrathecal (i.t.) application of the carbenoxolone (a gap junction blocker) or fluorocitrate (a glial metabolic inhibitor), the paw withdrawal thermal latency was prolonged than those application of the sterile saline (i.t.). It suggests that spinal cord glial cells may play an important role for modulation of hyperalgesia induced by noxious stimuli through HGJs which located between astrocytes and neurons.  相似文献   

16.
17.
In mammals the olfactory receptor neurons are the only ones that are known to undergo continuous cell renewal in the adult animal. This means that the axon of each newly formed neuron must grow into the olfactory bulb to find its appropriate target cell. It is presumed that astrocytes ensheath the olfactory axons as they course through the nerve fiber layer of the bulb even though the cells in question differ ultrastructurally from typical astrocytes. The purpose of the present study was to examine the glial cells in the nerve fiber layer of the rat olfactory bulb in an effort to resolve this apparent discrepancy. Two morphologically distinct types of glial cell were found in the nerve fiber layer. One type, which resembled the typical astrocytes that are present in other areas of the cental nervous system, contained bundles of filaments in an electron-lucent cytoplasm. These cells also formed endfeet on blood vessels and formed part of the external glial limiting membrane. They did not, however, ensheath the olfactory axons. The cytoplasm of the other type of glial cell was denser than that of typical astrocytes and contained fewer filaments, which were seldom grouped into bundles. These cells also formed part of the glial limiting membrane at the surface of the bulb and were the only ones that ensheathed the olfactory axons. It is concluded that the cell ensheathing the olfactory axons in the nerve fiber layer of the rat olfactory bulb is a morphological variant of the typical astrocyte. One role of the former cell may be to support or encourage the growth of olfactory axons within the central nervous system.  相似文献   

18.
19.
Summary In kitten area 17 vimentin-like immunoreactivity is expressed in radial glial fibres up to one month postnatally, i.e. the time for which neuronal migration continues. During this time fibre density gradually decreases. A subpopulation of these fibres also contains S-100 protein and glial fibrillary acidic protein. However, these latter antigens disappear earlier than vimentin. In addition, vimentin immunoreactivity can be observed in astroglial cells of the white matter between the second and fifth postnatal week. Many of these cells resemble mature astrocytes but partially they have an intermediate morphology suggesting the possibility that they originated from radial glia. Such displaced radial glial cells are also positive for S-100 protein both in the cortex and white matter. Thus it is conceivable that at least part of the astrocytes of mature cat visual cortex originate from vimentin- or S-100-immunoreactive radial glia.  相似文献   

20.
The mechanisms that control the production and differentiation of glial cells during development are difficult to unravel because of displacement of precursor cells from their sites of origin to their permanent location. The two main neuroglial cells in the rat spinal cord are oligodendrocytes and astrocytes. Considerable evidence supports the view that oligodendrocytes in the spinal cord are derived from a region of the ventral ventricular zone (VZ). Some astrocytes, at least, may arise from radial glia. In this study a 5-Bromo-2'-deoxyuridine (BrdU) incorporation assay was used to identify proliferating cells and examine the location of proliferating glial precursor cells in the embryonic spinal cord at different times post BrdU incorporation. In this way the migration of proliferating cells into spinal cord white matter could be followed. At E14, most of the proliferating cells in the periventricular region were located dorsally and these cells were probably proliferating neuronal precursors. At E16 and E18, the majority of the proliferating cells in the periventricular region were located ventrally. In the white matter the number of proliferating cells increased as the animals increased in age and much of this proliferation occurred locally. BrdU labelling showed that glial precursor cells migrate from their ventral and dorsal VZ birth sites to peripheral regions of the cord. Furthermore although the majority of proliferating cells in the spinal cord at E16 and E18 were located in the ventral periventricular region, some proliferating cells remained in the dorsal VZ region of the cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号