首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The incidence of abnormal pregnancies in carriers of balanced translocations depends strictly on the chromosomes involved in the translocations. The aim of this study was to verify whether conventional aneuploidy screening could be advantageously combined with preimplantation genetic diagnosis (PGD) for translocations. METHODS: Twenty-eight carriers of Robertsonian and reciprocal translocations underwent 43 PGD cycles; specific probes were used to screen the translocation in 172 embryos generated by 35 cycles; most of these embryos were also screened for chromosomes 13, 16, 18, 21, 22 (n = 166), XY (n = 107), 1 (n = 17) and 15 (n = 88). For the remaining eight cycles (carriers of reciprocal translocations) only the chromosomes involved in common aneuploidy screening were investigated on the 40 embryos generated in vitro. RESULTS: In Robertsonian translocations, the proportion of embryos with abnormalities due to the translocation was 21%, common aneuploidies contributed 31% of total abnormalities, whereas the remaining 36% of embryos had abnormalities due to both types of chromosome. For reciprocal translocations, the chromosomes involved in the translocation were responsible for 65% of total abnormalities; only 6% of the embryos were abnormal for common aneuploidies and 16% carried abnormalities due to both the chromosomes involved in the translocation and those not related to the translocation. CONCLUSIONS: An interchromosomal effect seems to play a role in the case of Robertsonian translocations, where the relevant contribution of aneuploidy exposes the couple to an additional risk of abnormal pregnancy.  相似文献   

2.
BACKGROUND: Preimplantation Genetic Diagnosis (PGD) using FISH to analyze up to nine chromosomes to discard chromosomally abnormal embryos has resulted in an increase of pregnancy rates in certain groups of patients. However, the number of chromosomes that can be analyzed is a clear limitation. We evaluate the reliability of using comparative genomic hybridization (CGH) to detect the whole set of chromosomes, as an alternative to PGD using FISH. METHODS AND RESULTS: We have analysed by CGH both, first polar bodies (1PBs) and metaphase II (MII) oocytes from 30 oocytes donated by 24 women. The aneuploidy rate was 48%. Considering two maternal age groups, a higher number of chromosome abnormalities were detected in the older group of oocytes (23% versus 75%, P < 0.02). About 33% of the 1PB-MII oocyte doublets diagnosed as aneuploid by CGH would have been misdiagnosed as normal if FISH with nine chromosome probes had been used. CONCLUSION: We demonstrate the reliability of 1PB analysis by CGH, to detect almost any chromosome abnormality in oocytes as well as unbalanced segregations of maternal translocations in a time frame compatible with regular in vitro fertilization (IVF). The selection of euploid oocytes could help to increase implantation and pregnancy rates of patients undergoing IVF treatment.  相似文献   

3.
BACKGROUND: The object of this study was to determine the mechanisms that produce aneuploidy in oocytes and establish which chromosomes are more prone to aneuploidy. METHODS: A total of 54 oocytes from 36 women were analysed. The whole chromosome complement of the first polar body (1PB) was analysed by comparative genomic hybridization (CGH), while the corresponding metaphase II (MII) oocyte was analysed by fluorescence in situ hybridization (FISH) to confirm the results. RESULTS: Matched CGH-FISH results were obtained in 42 1PB-MII doublets, of which 37 (88.1%) showed reciprocal results. The aneuploidy rate was 57.1%. Two-thirds of the aneuploidy events were chromatid abnormalities. Interestingly, the chromosomes more frequently involved in aneuploidy were chromosomes 1, 4 and 22 followed by chromosome 16. In general, small chromosomes (those equal to or smaller in size than chromosome 13) were more prone to aneuploidy (chi2-test, P=0.07); 25% of the aneuploid doublets would have been misdiagnosed as normal using FISH with probes for nine-chromosomes. CONCLUSIONS: The combination of two different techniques, CGH and FISH, for the study of 1PB and MII allowed the identification and confirmation of any numerical chromosome abnormality, as well as helping to determine the mechanisms involved in the genesis of maternal aneuploidy.  相似文献   

4.
Preimplantation genetic diagnosis (PGD) using the first polar body (1PB) is a modality of PGD that can be used when the woman is the carrier of a genetic disease or of a balanced chromosomal reorganization. PGD using 1PB biopsy in carriers of balanced chromosome reorganizations has not become generalized. Here, we describe our experience based on the analysis of unfertilized or fresh, non-inseminated control oocytes, by fixing separately the 1PB and the corresponding oocyte, and on the study of six clinical cases of PGD using 1PB biopsy (four Robertsonian translocations and two reciprocal translocations). In fresh oocytes, the chromosome morphology of the 1PB was well preserved, and the results were always concordant for each oocyte-1PB pair. This indicates that the 1PB can be reliably used for the diagnosis of chromosome reorganizations. In these studies the technical problems encountered when performing PGD using 1PB biopsies for chromosome studies are also addressed. Three different strategies of 1PB biopsy (laser beam, partial zona dissection and acid Tyrode's) and two different protocols (intracytoplasmic sperm injection before or after 1PB biopsy) and their effect on the percentage of oocytes diagnosed and the fertilization rate, are discussed. In reciprocal translocation cases, published in the literature or studied by us, in which at least nine oocytes had been diagnosed, a correlation has been found between the frequency of nondisjunction observed and the theoretical recombination rate. To date, PGD by 1PB analysis alone or combined with blastomere biopsies in female carriers of chromosomal rearrangements has been used in 18 cases, with a further six cases reported here. A total of 325 cumulus-oocyte complexes have been obtained, of which 294 were biopsied and 224 were diagnosed. A total of 52 embryos was transferred, 19 of which implanted and 17 produced full-term pregnancies.  相似文献   

5.
The use of metaphase comparative genomic hybridization (CGH) to screen all human chromosomes for aneuploidy in preimplantation embryos is hindered by the time required to perform the analysis. We report in this paper a novel approach to manufacture a DNA microarray for CGH for the detection of aneuploidy in single cells. We spotted human chromosome-specific libraries on glass slides that were depleted of repetitive sequences and tested our array CGH method in 14 experiments using either single male and/or single female lymphocytes. For the autosomes, the mean normalized ratios were all close to the expected ratio of 1.0 with overall 300/308 (97%) of the normalized ratios falling within the range 0.75 to 1.25. It was possible to deduce the correct copy number of the X chromosome in 13/14 (92.9%) separate array CGH experiments but the Y chromosome in only 4/14 (29%). We tested our microarray CGH method on a single fibroblast from each of three cell lines containing a specific chromosome aneuploidy (trisomy 13, 15 or 18) and in each case our microarray analysis was able to obtain a diagnosis based on the fact that the aneuploid chromosome gave the highest ratio (1.32, 1.27 and 1.27 respectively) with the ratios of all other chromosomes falling within the range 0.75-1.25. Requiring just 30 h, our method may be more suitable for PGD aneuploidy screening than metaphase CGH.  相似文献   

6.
Preimplantation genetic diagnosis (PGD) for monogenic diseases is widely applied, allowing the transfer to the uterus of healthy embryos. PGD is also employed for the detection of chromosome abnormalities for couples at high risk of producing aneuploid embryos, such as advanced maternal (>35 years). A significant number of patients requesting PGD for monogenic diseases are also indicated for chromosome testing. We optimized and clinically applied a PGD protocol permitting both cytogenetic and molecular genetic analysis. A couple, carriers of two cystic fibrosis (CF) mutations (c.3849 + 10 KbC > T and c.3408C > A) with a maternal age of 38 years and two previously failed IVF-PGD cycles, was enrolled in the study. After ovarian stimulation, six oocytes were obtained. To detect abnormalities for all 23 chromosomes of the oocyte, the first polar body (1PB) was biopsied from five of the oocytes and analyzed using comparative genomic hybridization (CGH). CGH analysis showed that 1PB 1 and 1PB 4 were aneuploid (22X,-9,-13,+19 and 22X,-6, respectively), while 1PB 2, 1PB 3 and 1PB 6 were euploid. Blastomere biopsy was only applicable on embryos formed from Oocyte 3 and Oocyte 6. After whole-genome amplification with multiple displacement amplification, a multiplex PCR, amplifying informative short tandem repeats (D7S1799; D7S1817) and DNA fragments encompassing the mutation sites, was performed. MiniSequencing was applied to directly detect each mutation. Genetic diagnosis showed that Embryo 6 was affected by CF and Embryo 3 carried only the c.3849 + 10 KbC > T mutation. Embryo 3 was transferred achieving pregnancy and a healthy boy was born. This strategy may lead to increased pregnancy rates by allowing preferential transfer of euploid embryos.  相似文献   

7.
We have performed comparative genomic hybridization (CGH) analysis of single blastomeres from human preimplantation embryos of patients undergoing preimplantation genetic diagnosis (PGD) for inherited structural chromosome aberrations and from embryos of IVF couples without known chromosomal aberrations. The aim was to verify the PGD results for the specific translocation, reveal the overall genetic balance in each cell and visualize the degree of mosaicism regarding all the chromosomes within the embryo. We successfully analysed 94 blastomeres from 28 human embryos generated from 13 couples. The single cell CGH could verify most of the unbalanced translocations detected by PGD. Some of the embryos exhibited a mosaic pattern regarding the chromosomes involved in the translocation, and different segregation could be seen within an embryo. In addition to the translocations, we found a high degree of numerical aberrations including monosomies, trisomies and duplications or deletions of parts of chromosomes. All of the embryos (100%) were mosaic, containing more than one chromosomally uniform cell line, or even chaotic with a different chromosomal content in each blastomere.  相似文献   

8.
BACKGROUND: Robertsonian translocations carry reproductive risks that are dependent on the chromosomes involved and the sex of the carrier. We describe five couples that presented for preimplantation genetic diagnosis (PGD). METHODS: PGD was carried out using cleavage-stage (day 3) embryo biopsy, fluorescence in-situ hybridization (FISH) with locus-specific probes, and day 4 embryo transfer. RESULTS: Couple A (45,XX,der(14;21)(q10;q10)) had two previous pregnancies, one with translocation trisomy 21. A successful singleton pregnancy followed two cycles of PGD. Couple B (45,XX,der(13;14)(q10;q10)) had four miscarriages, two with translocation trisomy 14. One cycle of PGD resulted in triplets. Couple C (45,XX,der(13;14)(q10;q10)) had four years of infertility; two cycles were unsuccessful. Couple D (45,XY,der(13;14)(q10;q10)) presented with oligozoospermia. A singleton pregnancy followed two cycles of PGD. Couple E (45,XY,der(13;14)(q10;q10)) had a sperm count within the normal range and low levels of aneuploid spermatozoa. PGD was therefore not recommended. No evidence for a high incidence of embryos with chaotic or mosaic chromosome complements was found. CONCLUSIONS: For fertile couples, careful risk assessment and genetic counselling should precede consideration for PGD. Where translocation couples need assisted conception for subfertility, PGD is a valuable screen for imbalance, even when the risk of viable chromosome abnormality is low.  相似文献   

9.
This report describes preimplantation genetic diagnosis (PGD) of a couple with a known paternally-derived balanced cryptic translocation 46,XY.ish t(2q;17q)(210E14-,B37c1+;B37c1-,210E14+) in embryos from a couple who previously had a child with severe mental retardation and was previously described in this journal [Bacino et al., 2000]. This child inherited the unbalanced product of translocation from her father: 46,XX.ish der(2)t(2q;17q)pat(210E14-,B37c1+). The couple desired a normal offspring and sought PGD to avoid clinical pregnancy termination. They were treated three times with in vitro fertilization followed by PGD. Two sequential FISH hybridizations were performed. In the first hybridization, telomeric probes to 2q and 17q and a chromosome 17 centromere probe were employed. The second hybridization screened for maternal age-related aneuploidy (X,Y,13,18,21). Of the 18 informative embryos, only 4 (22%) were normal. The remaining 12 (67%) were abnormal; most with unbalanced products (10/12) from the paternally-derived rearrangement. The most frequent mode of segregation observed for this cryptic translocation was adjacent-1 (7/18, 39%). This suggests cryptic translocations are amenable to PGD and, as are traditional translocations, demonstrate higher frequencies of unbalanced segregants than the empiric risk of 10-15% observed at amniocentesis or chorionic villus sampling. Thus, cryptic translocations presumably behave like overt translocations, in that PGD must be performed on a relatively large number of embryos to assure even 2-3 transferable embryos.  相似文献   

10.
Interphase fluorescence in situ hybridization (FISH) analysis can provide rapid preliminary analysis of chromosome aneuploidy from direct amniocyte and chorionic villus sample (CVS) preparations. Typically, interphase FISH is used in screening for numerical abnormalities of chromosomes X, Y, 13, 18, and 21. More recently, FISH probe sets became available for the subtelomeric region of each chromosome, allowing screening for terminal chromosome rearrangements. The purpose of the current study was to evaluate the use of dual-color interphase FISH analysis with chromosome-specific subtelomere probes for rapid prenatal diagnosis in 14 pregnancies from 12 different translocation carriers. Interphase FISH analysis was performed on direct CVS or amniocyte preparations from 12 reciprocal translocation and two Robertsonian translocation pregnancies with the appropriate chromosome-specific subtelomere probes for each chromosome involved in the translocation. Analysis of the interphase FISH probe signals predicted balanced or normal segregants in each case, thus rapidly excluding a chromosomally unbalanced segregant. Subsequent metaphase analysis showed normal karyotypes in seven fetuses and balanced translocations in the remaining seven. This series illustrates the utility of interphase FISH analysis with chromosome-specific subtelomere probes for rapid prenatal diagnosis in cases of parental reciprocal translocations and Robertsonian translocations.  相似文献   

11.
To test the hypothesis that Robertsonian translocation may leadto altered crossing-over on both chromosomes involved in therearrangement (intrachromosomal effects) and other chromosomesin the cell (interchromosomal effects), we initiated this pilotstudy utilizing molecular markers (RFLPs) to determine the frequencyand approximate location of crossovers on chromosomes 21 ofhuman Robertsonian translocation carriers. Analysis of intrachromosomaleffects in five families with Robertsonian translocations involvinga chromosome 21 demonstrated an elevation in the amount of crossing-overon chromosomes 21 of the female translocation parent. Severalof the crossovers were localized proximal to 21q21.2, suggestingthat Robertsonian translocations may lead to an alteration ofboth the frequency and location of crossing-over. In an assessmentof interchromosomal effects in five additional families witha non-21 Robertsonian translocation, no effect could be demonstratedon chromosome 21. The initial data imply that Robertsonian translocationinfluences the number and position of exchanges on chromosomes21 involved in the rearrangement, which may be associated withan increased tendency for nondisjunction due to prolonged synapsisof 21. This pilot study demonstrates the utility of this approachin the assessment of intra- and interchromosomal effects ofRobertsonian translocations on recombination.  相似文献   

12.
 The incidence of chromosomal aneuploidy was studied in 208 unfertilized metaphase II human oocytes from an in vitro fertilization program by fluorescence in situ hybridization using probes for chromosomes 18, 21, and X. Chromosome spreads were prepared by a gradual fixation–air-drying method. We obtained analyzable results from 183 oocytes and 93 polar bodies; 167 oocytes (91%) were normal, 11 (6%) were diploid, and 5 (3%) were aneuploid. Of the five aneuploid oocytes, four involved chromosome 21, and one involved the X chromosome. In this study, oocyte aneuploidy caused by both nondisjunction of bivalent chromosomes and predivision of univalent chromosomes was observed. The aneuploidy rate (9.8%) in the oocytes from women aged ≧35 years was significantly higher than that (0.7%) in those aged 23 to 34 years (P= 0.0017). Received: February 14, 2002 / Accepted: June 10, 2002  相似文献   

13.
Robertsonian translocations between the acrocentric autosomes are the most common type of constitutional chromosome rearrangement in humans. However, Robertsonian translocations are very rarely acquired in cancer cells. We report a patient with prolymphocytic leukemia and an acquired Robertsonian translocation in the leukemic cells. The translocation was between chromosomes #13 and #15; t(13;15)(q11;p12). Two other cases of malignancy with an acquired Robertsonian translocation have been found, one being of the t(13;15) type, which accounts for only 1% of constitutional Robertsonian translocations. We propose, therefore, that although Robertsonian translocations are occasionally observed in cancer cells, they are very rarely acquired.  相似文献   

14.
We used fluorescent in situ hybridisation (FISH) to detect nine chromosomes (1, 13, 15, 16, 17, 18, 21, 22 and X) in 89 first Polar Bodies (1PBs), from in vitro matured oocytes discarded from IVF cycles. In 54 1PBs, we also analysed the corresponding oocyte in metaphase II (MII) to confirm the results; the other 35 1PBs were analysed alone as when preimplantation genetic diagnosis using 1PB (PGD-1PB) is performed. The frequency of aneuploid oocytes found was 47.5%; if the risk of aneuploidy for 23 chromosomes is estimated, the percentage rises to 57.2%. Missing chromosomes or chromatids found in 1PBs of 1PB/MII doublets were confirmed by MII results in 74.2%, indicating that only 25.8% of them were artefactual. Abnormalities observed in 1PBs were 55.8% whole-chromosome alterations and 44.2% chromatid anomalies. We observed a balanced predivision of chromatids for all chromosomes analysed. Differences between balanced predivision in 1PB and MII were statistically significant (P&<0.0001, chi(2) test); the 1PB was most affected. The mean abnormal segregation frequency for each chromosome was 0.89% (range 0.52-1.70%); so, each of the 23 chromosomes of an oocyte has a risk of 0.89% to be involved in aneuploidy. No significant differences were observed regarding age, type of abnormality (chromosome or chromatid alterations) or frequency of aneuploidy. Nine of the 35 patients (25.7%) whose 1PB and MII were studied presented abnormalities (extra chromosomes) that probably originated in early oogenesis. Analysis of 1PBs to select euploid oocytes could help patients of advanced age undergoing in vitro fertilization (IVF) treatment.  相似文献   

15.
16.
The majority of fluorescence in situ hybridization (FISH) studies on the meiotic segregation of Robertsonian translocations focus on the most common types, rob(13; 14) and rob(14; 21). Here we report the first study for carriers of rare Robertsonian translocations rob(13; 21) and rob(15; 22) combining analysis of meiotic segregation in sperm and blastomeres following pre-implantation genetic diagnosis (PGD). Dual-colour FISH was applied to nuclei from spermatozoa and blastomeres from PGD embryos using two subterminal contig probes for each translocation, and a second round with probes for chromosomes 16 and 18. Patient 1 had a rob(13; 21) and patient 2 had a rob(15; 22), and 86.3% and 87.5% of gametes respectively were consistent with meiotic segregation resulting in a normal or balanced chromosome complement. Analysis of embryos showed that for patient 1 and 2 respectively, 25% and 46% were balanced, and of the unbalanced embryos, 50% and 31% were mosaic or chaotic. Our patients with a rob(13; 21) and rob(15; 22) were found to have a similar meiotic segregation pattern to that for male carriers of the common Robertsonian translocations. The observed rate in unbalanced embryos being mosaic or chaotic may result in an increased risk of chromosomal abnormalities. Our results may help to improve the genetic counseling for carriers of rare Robertsonian translocations.  相似文献   

17.
Preimplantation genetic diagnosis (PGD) has been carried out for two couples with different mosaic Robertsonian translocations. Two PGD cycles for a mosaic 13;13 homologous Robertsonian translocation carrier resulted in the birth of a healthy child in each cycle, illustrating the importance of scanning G‐banded preparations from homologous Robertsonian carriers for the presence of a normal cell line. One couple was referred for PGD because the male partner carried a mosaic 14;15 Robertsonian translocation with a normal cell line. A single PGD cycle resulted in the birth of a healthy child. Follow‐up studies and extended FISH analysis of the carrier's lymphocytes detected three cell lines, two carrying different 14;15 Robertsonian chromosomes and one normal cell line. The two 14;15 Robertsonian chromosomes had different breakpoints in the proximal short arm regions. We suggest that the presence of the D15Z1 polymorphism on the short arm of one chromosome 14 mediated the post‐zygotic formation of the two different Robertsonian chromosomes. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
BACKGROUND: The t(13;22) Robertsonian translocation constitutes a rare form of rearrangement between acrocentric human chromosomes. Most of the meiotic segregation studies of human Robertsonian translocations have been performed on common t(13;14) and t(14;21) translocations. Analysis of the chromosomal constitution in sperm of Robertsonian translocation carriers is of great interest for assessing the risk of unbalanced forms and adapting genetic counselling. In the present study, we present the first meiotic segregation study of a t(13;22) Robertsonian translocation in human sperm. METHODS: A total of 11 787 sperm nuclei were scored using two distinct FISH labelling techniques, i.e. the locus-specific probes (LSI) method and the whole chromosome painting (WCP) technique. RESULTS: The frequency of normal or balanced sperm resulting from alternate meiotic segregation was 86%. Incidences of unbalanced complements resulting from adjacent segregation modes were 12.79% and 14.36% in LSI and WCP assays, respectively. No significant excess of nullisomy or disomy for the affected chromosomes was observed. CONCLUSIONS: Similar results in segregation were obtained with the two techniques, demonstrating the efficiency of the two strategies for the direct segregation analysis of Roberstsonian translocations. The results obtained indicated a moderate meiotic production of imbalance. This study shows that the rare Robertsonian translocation (13;22) displays a similar distribution of balanced and unbalanced sperm patterns as the common Robertsonian translocations previously studied. This suggests that the behaviour of acrocentric chromosomes was similar in all cases of centric fusion.  相似文献   

19.
The chromosome constitution of five haploid, 178 diploid and11 triploid embryos fertilized in vitro was determined afterfixation on day 2 or day 3 of development. Karyotype analysisof 178 diploid embryos revealed abnormalities in 40 (22.5%)cases: 34 (19.1%) aneuploids, four (2.2%) mosaic embryos andtwo (1.1%) structural anomalies were identified. The majorityof aneuploid karyotypes (28/34) involved a single chromosomebut six embryos had aneuploidy of two or three chromosomes.The E group was most frequently involved in aneuploid karyotypes(10/23 hyperdiploid embryos) and trisomy 16, the most commonsingle anomaly in diploid embryos, was detected in 2.2% (4/178)of cases. Only one case of sex chromosome monosomy was identified.An excess of female karyotypes was detected in abnormal cases(sex ratio 0.48); this ratio was significantly (p< 0.05)different from that observed in normal cases (74: 64, XY: XX).The incidence of aneuploidy increased with maternal age butthis did not reach statistical significance. Embryo morphologyand growth rate, assessed by embryo development rating (EDR),did not distinguish between normal (mean score 7.9; mean EDR96.1) and aneuploid (mean score 8.1; mean EDR, 92.1) embryos.Numbers of hyperploid (n = 17) and hypoploid (n= 11) embryos(non-mosaic cases involving single chromosomes) were not statisticallydifferent. The relative proportions of chromosomes involvedin trisomic karyotypes showed a remarkable similarity to thepattern in spontaneous abortions. Pronuclear status was an unreliablepredictor of ploidy. Small numbers of karyotyped triploid embryosrevealed equal proportions of XXX, XXY and XYY embryos  相似文献   

20.
Preimplantation genetic diagnosis (PGD) for people suffering recurrent miscarriages is increasingly being performed worldwide. However, there is limited information on whether PGD can improve success rates in translocation carriers. We therefore compared pregnancy outcomes between PGD and natural pregnancy cases, reviewing the clinical research database. No improvement in the success rate at the first oocyte retrieval was evident in reciprocal translocation carriers. In the natural course of events, patients with translocations can hope for a baby in the long term. However, with PGD, rates can reach 68% after IVF failure and the duration to eventual birth may be shorter than with natural pregnancies. In the particular case of Robertsonian translocations, PGD may not be necessary because natural success rates are relatively good.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号