首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intraerythrocytic Plasmodium falciparum parasites at the trophozoite and schizont stages synthesize a greater than 200-kDa protein, the mature erythrocyte surface antigen (MESA), that is localized at the membrane of infected red blood cells and manifests size polymorphism and antigenic diversity among parasite isolates. Because MESA is localized in the host cell membrane, we examined parasites with differing knob and cytoadherence phenotypes to determine whether MESA expression correlated with knob formation and cytoadherence. A cloned line of P. falciparum that was cultured with repeated selection for the knobbed and cytoadherent phenotypes did not express MESA, due to at least partial deletion of the single-copy MESA gene. In contrast, parasites from the same clone that were cultured without this selection lost the knobbed and cytoadherent phenotypes, but continued to express MESA. These results indicate that MESA is apparently not required for differentiation and multiplication of erythrocyte stage P. falciparum parasites in vitro, or for knob formation and cytoadherence. We speculate that MESA may have a role in evasion of the host immune response by P. falciparum.  相似文献   

2.
Plasmodium falciparum parasites that induce knobs in the host erythrocyte membrane (K+ phenotype) synthesize a 90 kDa histidine-rich protein (PfHRP-1), whereas knobless variants do not. A monoclonal antibody (mAb 89) to PfHRP-1, in combination with cryo-thin section immunoelectron microscopy, localized the antigen in the parasitophorous vacuolar space and vesicles within the erythrocyte cytosol. Additional immunoelectron microscopic studies showed that PfHRP-1 was also associated with submembranous electron-dense material under knobs and with microfilaments of the host erythrocyte skeletal network. Immunofluorescence and immunoelectron microscopy of intact, non-fixed K+ infected erythrocytes using mAb 89 and a rabbit antiserum raised against purified PfHRP-1, failed to identify any surface exposed epitopes. These antibodies also failed to block cytoadherence of infected erythrocytes to C32 melanoma cells or to affect macrophage phagocytosis of infected erythrocytes.  相似文献   

3.
The Plasmodium falciparum 11.1 gene locus on chromosome 10 extends over 30 kb and contains approximately 22 kb of a tandemly repeated 27-bp sequence. Biochemical and size similarities have been noted between the reported 11.1 antigen and a variable-Mr, surface-radioiodinatable protein which appears to be involved in the cytoadherence of red blood cells infected with mature intraerythrocytic parasites to venular endothelium. We attempted to determine if these proteins were identical. Using rabbit antibody and affinity purified human immune sera specific for peptides encoded by the 27-bp repeat and a flanking 5' region, we have shown that the 11.1 locus encodes a protein of more than 1000 kDa. This protein cross-reacts with an uncharacterized 260-kDa protein, previously identified as the gene product of the 11.1 locus, and Pf155-RESA, but not with the radioiodinatable protein. The 11.1 protein that we have identified is a malarial protein of unprecedented size.  相似文献   

4.
Several proteins synthesized by mature asexual stages of Plasmodium falciparum interact with the erythrocyte membrane skeleton. One of these is the mature-parasite-infected erythrocyte surface antigen (MESA; also called PfEMP2), a phosphoprotein of 250-300 kDa, which is found on the internal face of the erythrocyte membrane. When MESA is precipitated with anti-MESA antibodies, another phosphoprotein of 80 kDa is co-precipitated. This 80-kDa phosphoprotein was identified by peptide mapping as the erythrocyte membrane component band 4.1. Thus, MESA is apparently anchored at the erythrocyte membrane through an association with band 4.1. Band 4.1 is more intensely phosphorylated in infected erythrocytes and is increased in relative molecular mass in erythrocytes infected by isolates of P. falciparum that cytoadhere.  相似文献   

5.
The ring-infected erythrocyte surface antigen (RESA) is a 155-kDa malarial polypeptide which is released from merozoites and becomes associated with the erythrocyte membrane at the time of invasion. Inside-out vesicles (IOVs) prepared from Plasmodium falciparum-infected erythrocytes contain RESA, presumably bound to the membrane skeleton, as it is largely insoluble in Triton X-100. When these IOVs were incubated with [gamma-32P]ATP, a 155-kDa polypeptide was labeled in IOVs from infected, but not from uninfected erythrocytes. Immunoprecipitation using specific rabbit antisera confirmed that RESA is indeed a phosphoprotein. Phosphoamino acid analysis revealed phosphoserine and a small amount of phosphothreonine, but no phosphotyrosine. Labeling of intact parasitized erythrocytes with inorganic [32P]phosphate for several hours in culture resulted in RESA in Triton-insoluble extracts being phosphorylated. Labeling of synchronized parasites showed that RESA was phosphorylated only when it became associated with the erythrocyte membrane, and although RESA was abundant in mature parasites, it was not phosphorylated. RESA, released into the culture supernatants during the growth of P. falciparum, bound to IOVs prepared from normal uninfected erythrocytes, and subsequent labeling with [gamma-32P]ATP resulted in the phosphorylation of RESA. The evidence suggests that RESA is phosphorylated by an erythrocyte membrane kinase and probably not by a parasite-encoded enzyme.  相似文献   

6.
Attachment of erythrocytes infected by Plasmodium falciparum to receptors of the microvasculature is a major contributor to the pathology and morbidity associated with malaria. Adhesion is mediated by the P. falciparum erythrocyte membrane protein 1 (PfEMP-1), which is expressed at the surface of infected erythrocytes and is linked to both antigenic variation and cytoadherence. PfEMP-1 contains multiple adhesive modules, including the Duffy binding-like domain and the cysteine-rich interdomain region (CIDR). The interaction between CIDRalpha and CD36 promotes stable adherence of parasitized erythrocytes to endothelial cells. Here we show that a segment within the C-terminal region of CIDRalpha determines CD36 binding specificity. Antibodies raised against this segment can specifically block the adhesion to CD36 of erythrocytes infected with various parasite strains. Thus, small regions of PfEMP-1 that determine binding specificity could form suitable components of an antisequestration malaria vaccine effective against different parasite strains.  相似文献   

7.
The mature-parasite-infected erythrocyte surface antigen (MESA) of Plasmodium falciparum is an antigenically variable, high molecular weight protein of trophozoites and schizonts that is located at the erythrocyte surface membrane. It is first synthesized at the late ring stage and continues to be synthesized until late schizogony. MESA cannot be detected on the external surface of erythrocytes infected by trophozoites and early schizonts but is located at the internal surface in association with the erythrocyte membrane skeleton. The degree of association with the membrane skeleton varies among parasite lines, being greater in knobby parasite lines. MESA is phosphorylated and is present in a similar location to another phosphoprotein, the ring-infected erythrocyte surface antigen (RESA). However, it differs from RESA in being detected at a later stage of asexual development of the parasite.  相似文献   

8.
Erythrocytes containing mature gametocytes of Plasmodium falciparum circulate in the blood until they are ingested by a mosquito, an event that triggers gametogenesis and lysis of the infected erythrocyte. It was previously shown that a parasite protein (Pf155/RESA) accumulates in the erythrocyte cytoplasm next to the parasitophorous vacuolar membrane (S. Uni, A. Masuda, M. J. Stewart, R. Nussenzweig, and M. Aikawa, Am. J. Trop. Med. Hyg., 36:481-488, 1987). Using a monoclonal antibody to Pf155/RESA and rabbit sera to two different repeat peptides of Pf155/RESA, we have studied the location of Pf155/RESA after induction of gametogenesis. Five minutes after triggering gametogenesis, the parasitophorous membrane no longer surrounded the parasite, bringing the parasite membrane in contact with the erythrocyte cytoplasm. Clear spaces appeared throughout the hemoglobin-rich host cytoplasm; Pf155/RESA was now localized in the cytoplasm directly surrounding the spaces. No membrane existed between the spaces and the erythrocyte cytoplasm. The spaces with surrounding Pf155/RESA protein extended to the erythrocyte membrane. After lysis of the erythrocyte membrane (15 min after triggering gametogenesis), the protein was distributed along the erythrocyte membrane and throughout the space between the gamete and the erythrocyte membrane. The mechanism by which Pf155/RESA remained aggregated around the spaces and its role in erythrocyte lysis are unknown. It is of interest that the parasite appeared to use the same molecule during invasion of erythrocytes and during release of gametes from infected erythrocytes.  相似文献   

9.
Naturally acquired antibodies to Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP-1), the variant surface antigens expressed on the surface of infected erythrocytes, are thought to play a role in protection against P. falciparum malaria. Here, we have studied the development of antibodies to PfEMP-1 in adult malaria patients living in Rourkela, India, an area with a low malaria transmission rate, and prevalence of antibodies to PfEMP-1 in residents of San Dulakudar, India, a village in which P. falciparum malaria is hyperendemic. Convalescent-phase sera from adult malaria patients from Rourkela agglutinate homologous P. falciparum isolates as well as some heterologous isolates, suggesting that they develop partially cross-reactive antibodies to PfEMP-1 following infection. Adult sera from San Dulakudar agglutinate diverse P. falciparum isolates, suggesting that they have antibodies with wide recognition of diverse PfEMP-1. Mixed-agglutination assays using pairs of P. falciparum isolates confirm the presence of both variant-specific and partially cross-reactive antibodies in convalescent-phase sera from Rourkela and adult sera from San Dulakudar. Analysis of PfEMP-1 sequences suggests a molecular basis for the observed cross-reactivity.  相似文献   

10.
A novel dual expression system for the generation and analysis of immune responses to recombinant protein is described. The two expression systems are based on the IgG-binding domains (ZZ) of staphylococcal protein A (SpA) and the human serum albumin (HSA) binding domains (BB) of streptococcal protein G, respectively. Products of fusions with the ZZ region are used to generate an immune response against the recombinant peptide and the corresponding peptide fused to the BB region is used for analysis and purification of the specific antibodies. The protein A and protein G expression systems were used to produce fusion proteins with the repeated C terminal octapeptide subunit EENVEHDA of the Plasmodium falciparum merozoite derived protein Pf155/RESA. Rabbits were immunized with the protein A-derived fusion protein (designated ZZ-M1) and the antibody response was analyzed using the protein G-derived fusion protein (designated BB-M1). The rabbit antisera reacted with BB-M1 in both ELISA and immunoblotting. In addition, BB-M1 proved to be an efficient ligand for affinity purification of antibodies specific for the malaria peptide. Furthermore, the rabbit antisera reacted with Pf155/RESA both in merozoite extracts and when deposited in the membrane of parasite infected erythrocytes.  相似文献   

11.
Two types of antimalaria antibodies in the serum of 54 villagers living in a malaria endemic area of Thailand were determined by indirect immunofluorescence assay in order to define the status of malaria immunity within the group. Antibodies to parasite-derived antigens in the membrane of ring stage-infected erythrocytes were very high (> or = 1:1,250) in 44%, moderate to low (< or = 1:250) in 37% of the sera, and the rest did not have the antibody. However, all the sera had antibodies to antigens of the intraerythrocytic mature parasites, showing a very high level in 65% and moderate to low levels in 37% of the sera. Sera with high antibody titers to either type of antigen significantly inhibited cytoadherence of P. falciparum-infected erythrocytes. All the sera variably inhibited rosette formation of the parasites but showed no association with the antibody titers. These results suggest that the antibodies to cytoadherence and rosette formation can be elicited and sustained in the malaria experienced host while living in the endemic area. This may be a natural preventive mechanism against the severity of P. falciparum infection in the infected host. How long the antiparasite adherence activity will last remains to be investigated.  相似文献   

12.
The immune response against the Plasmodium falciparum variant surface antigen P. falciparum erythrocyte membrane protein 1 (PfEMP1) is a key component of clinical immunity against falciparum malaria. In this study, we used sera from human volunteers who had been infected with the P. falciparum 3D7 strain to investigate the development, specificity, and dynamics of anti-PfEMP1 antibodies measured against six different strain 3D7 Duffy binding-like domain 1α (DBL1α) fusion proteins. We observed that a parasitemia of 20 to 200 infected erythrocytes per μl was required to trigger an antibody response to DBL1α and that antibodies against one DBL1α variant cross-react with other DBL1α variants. Both serum and purified immunoglobulin Gs (IgGs) were able to agglutinate infected erythrocytes, and purified anti-DBL1α IgGs bound to the live infected red blood cell surface in a punctate surface pattern, confirming that the IgGs recognize native PfEMP1. Analysis of sera from tourists naturally infected with P. falciparum suggests that the anti-PfEMP1 antibodies often persisted for more than 100 days after a single infection. These results help to further our understanding of the development of acquired immunity to P. falciparum infections.  相似文献   

13.
In malarial infections of primates, the spleen has been shown to modulate parasite antigen expression on the surfaces of infected erythrocytes. The processes affected include cytoadherence, which is central to the pathophysiology of severe falciparum malaria, and the related phenomenon of rosette formation. In this study, the cytoadherence and rosette formation behaviors of Plasmodium falciparum-infected erythrocytes from a splenectomized patient were examined during the first erythrocytic cycle in vitro. Ultrastructural studies were also performed. Infected erythrocytes were found to cytoadhere to C32 melanoma cells via leukocyte differentiation antigen CD36 but not intercellular adhesion molecule 1. They also displayed on their surfaces electron-dense knobs similar in structure and density to those on infected erythrocytes from intact hosts. These findings may reflect a stable cytoadherent phenotype of the parasite isolate that is unaffected by the absence of the spleen. Alternatively, the modulating role of the spleen may have been assumed by other organs of the mononuclear phagocytic system in a previously infected individual. No rosette formation was observed, but as not all natural isolates form rosettes, this observation may or may not be related to the asplenic status of the patient. Parasite and host factors appear to be important in determining the effect of splenectomy on cytoadherence and rosette formation in human falciparum malaria.  相似文献   

14.
During Plasmodium falciparum asexual intraerythrocytic development, the host's cell plasma membrane is modified by the insertion of parasite proteins. One or more of these modifications mediate the cytoadherence of infected erythrocytes to host vascular endothelium. However, these surface antigens can be the target of cytophilic antibodies which promote phagocytosis of the infected erythrocyte. It has been proposed that antibodies directed to epitopes rich in asparagine play an important role in this process, which has promoted efforts to isolate the corresponding gene(s). We describe here P. falciparum asparagine- and aspartate-rich protein 1 (PfAARP1), a new giant (circa 700-kDa) protein associated with the infected erythrocyte membrane which is rich in asparagine and aspartate residues due to the presence of nine blocks of repeats. Topology analysis predicts that PfAARP1 has multiple transmembrane domains and at least five external loops. Human antibodies immunopurified against a sequence composed exclusively of asparagine and aspartate amino acids derived from PfAARP1 label the surface of the infected erythrocyte, demonstrating that such motifs are exposed. Interestingly, external loop 4 of PfAARP1 contains repetitions of these residues, and their possible role as a target of cytophilic antibodies is discussed.  相似文献   

15.
Pf155 is a merozoite-derived polypeptide antigen which the parasite Plasmodium falciparum deposits in the membranes of erythrocytes at invasion. Eleven laboratory strains or clones of P. falciparum and a large number of isolates obtained from patients from different parts of the world were studied for antigenic diversity in Pf155. Immunoglobulin G antibodies from different serum samples from P. falciparum-infected donors were affinity purified on monolayers of glutaraldehyde-fixed and air-dried erythrocytes infected with P. falciparum of different origins and tested in different combinations by immunoblotting, reinvasion inhibition, and a modified immunofluorescence procedure in which the membranes of recently infected erythrocytes were stained. Similar experiments were performed with monoclonal and oligoclonal antibodies specific for different epitopes in the C-terminal region of Pf155. No strain- or isolate-associated antigenic diversity or size variation of Pf155 was detected, indicating that the immunodominant regions of this antigen are highly conserved throughout the world.  相似文献   

16.
A synthetic gene encoding a tetramer of the repeated subunit EENVEHDA of the Plasmodium falciparum antigen Pf155/RESA was expressed in a dual-expression system. The resulting fusion proteins, designated ZZ-M1 and BB-M1, comprised the EENVEHDA repeats and either two immunoglobulin G-binding domains from staphylococcal protein A or the human serum albumin-binding domains from streptococcal protein G, respectively. The soluble fusion proteins were affinity purified to homogeneity in one-step procedures. ZZ-M1 was used for immunization of rabbits. The rabbit antisera reacted with BB-M1 in an enzyme-linked immunosorbent assay and with Pf155/RESA in immunofluorescence of infected erythrocytes and immunoblotting. Inhibition studies revealed that the antibodies mainly recognized epitopes formed by two or more EENVEHDA subunits and were remarkably specific for Pf155/RESA. Importantly, the antibodies also inhibited P. falciparum merozoite reinvasion in vitro efficiently, indicating that they reacted with biologically important epitopes exposed on the native antigen. Immunization with Freund complete adjuvant resulted in high levels of specific immunoglobulin G antibodies over a 1-year period, whereas the antibody response obtained after immunization without adjuvant was generally weaker, immunoglobulin G and M mediated, and not sustained for longer periods. However, these titers were restored after booster injection. Taken together, the results support the usefulness of recombinant gene constructs of this type as immunogens for malaria vaccines.  相似文献   

17.
The effect of sera on the cytoadherence in vitro of Plasmodium falciparum-infected erythrocytes to melanoma cells was examined. Sera from 19 healthy individuals living in endemic malarious areas in Thailand and 24 patients with P. falciparum malaria were tested against four local P. falciparum isolates. Out of 57 sera examined, 12 (21%) showed significant inhibition (greater than 50%) of cytoadherence for at least one isolate. Anti-malarial IgG antibody titres were determined for all 57 sera and although 11 of the 12 inhibitory sera had relatively high titres, 36 out of 47 sera with similarly high titres showed no significant inhibitory activity. Convalescent sera were no more effective than corresponding acute sera in inhibiting the cytoadherence of erythrocytes infected with any of the four heterologous isolates examined. Sera which significantly inhibited cytoadherence were also capable of reversing cytoadherence, and pooled plasma, from healthy individuals living in malarious areas, was effective in significantly reversing the in vitro cytoadherence of all the five parasite isolates examined. The results confirm the antibody mediated strain-specific nature of the inhibition of cytoadherence and stress the difficulty in selecting immune sera potentially useful for the immunotherapy of cerebral malaria patients in Thailand.  相似文献   

18.
In areas where Plasmodium falciparum is endemic, pregnant women are at increased risk for malaria, and this risk is greatest during the first pregnancy. The placenta sequesters parasites that are able to cytoadhere to chondroitin sulfate A (CSA), a molecule expressed by the placental syncytiotrophoblast, while parasites from a nonpregnant host do not bind to CSA. Cytoadherence is mediated by the expression of variants of the P. falciparum-erythrocyte membrane protein 1 family. Each member of this molecule family induces antibodies that specifically agglutinate infected erythrocytes and inhibit their cytoadherence ability. We investigated whether the higher susceptibility of primigravidae was related to the lack of immune response towards CSA-binding parasites. In a cross-sectional study, primigravidae delivering with a noninfected placenta were less likely to have antibodies agglutinating CSA-binding parasites than multigravidae (P < 0.01). In contrast, parasites from nonpregnant hosts were as likely to be recognized by the sera from women of various parities. In a longitudinal study, at 6 months of pregnancy, antibodies against CSA-binding parasites were present in 31.8% of primigravidae and in 76.9% of secundigravidae (P = 0.02). The antibodies against CSA-binding parasites inhibited the cytoadherence of a CSA-adherent parasite strain to the human placental trophoblast. Our data support the idea that the higher susceptibility of primiparae is related to a lack of a specific immune response to placental parasites.  相似文献   

19.
As the malarial parasite Plasmodium falciparum develops inside the erythrocyte, parasite-derived membrane structures, referred to as Maurer's clefts, play an important role in parasite development by delivering parasite proteins to the host cell surface, and participating in the assembly of the cytoadherence complex, essential for the pathogenesis of cerebral malaria. PfSBP1 is an integral membrane protein of the clefts, interacting with an erythrocyte cytosolic protein, identified here as the human Lantibiotic synthetase component C-like protein LANCL1. LANCL1 is specifically recruited to the surface of Maurer's clefts in P. falciparum mature blood stages. We propose that the interaction between PfSBP1 and LANCL1 is central for late steps of the parasite development to prevent premature rupture of the red blood cell membrane.  相似文献   

20.
It is proposed that the surface ligands of Plasmodium falciparum infected HbAS erythrocytes, not like infected HbAA erythrocytes, are altered due to the sickling that soon takes place once a HbAS erythrocyte gets infected with P. falciparum parasite. This alteration modulates cytoadherence and/or binding of the sickled erythrocytes to the peripheral blood mononuclear cells (PBMCs). Both cytoadherence and binding to PBMCs are responsible for the pathogenesis of malaria. Therefore, subjects of the HbAS genotype experience mild symptoms of malaria. The hypothesis could be tested in vitro by comparing the binding of P. falciparum infected HbAS and HbAA erythrocytes to platelet-endothelial cell adhesion molecule-1 (CD31) and by comparing the levels of tumor necrosis factor (TNF) and interferon gamma (IFN-gamma) following in vitro stimulation of PBMCs by HbAS and HbAA infected erythrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号