共查询到20条相似文献,搜索用时 11 毫秒
1.
Chlamydia trachomatis serovar differentiation by direct sequence analysis of the variable segment 4 region of the major outer membrane protein gene. 下载免费PDF全文
The polymerase chain reaction method was used to amplify DNA from the fourth variable segment of the gene encoding the major outer membrane protein of Chlamydia trachomatis. Direct sequencing of the amplified DNA from prototype strains confirmed previously identified nucleotide sequence differences that were specific for each serovar. This analysis revealed differences in the DNA sequences of prototype strains C/UW-1 and G/IOL-238 from those of prototype strains C/TW-3 and G/UW-57, sequenced previously. This method was also used to determine the serovar types of C. trachomatis in 125 urogenital specimens from infected patients. The most common serovars were E (38%), F (17%), and G and D (14% each). Serovar D was found significantly more often in specimens from men than in specimens from women (P = 0.004). Conversely, serovar G was found significantly more often in specimens from women than in specimens from men (P = 0.026). Only two serovar G isolates gave sequences identical to that of the prototype strain G/IOL-238, suggesting that this strain may be a serovar variant. Three isolates (D+, G-, and J') gave sequences which have not been reported previously. One isolate had the same sequence as the D- serovar variant. Sequence analysis of amplified DNA reveals subtle differences between C. trachomatis strains and provides a very sensitive method for molecular epidemiological analysis. 相似文献
2.
Immunoassay for detecting Chlamydia trachomatis major outer membrane protein. 总被引:2,自引:2,他引:2 下载免费PDF全文
The development of a solid-phase immunoassay for the detection of the 39,500-dalton major outer membrane protein of the Chlamydia trachomatis lymphogranuloma venereum serotype L2 is described. The test uses immunoadsorbent-purified rabbit anti-L2 major outer membrane protein immunoglobulin G (IgG) passively adsorbed to microtiter plates as a capture antibody. This same IgG antibody was either conjugated to horseradish peroxidase or radioiodinated with 125I and used as a probe to detect major outer membrane protein bound to immobilized IgG. At its greatest sensitivity, the test was capable of detecting 0.5 to 1 ng of purified major outer membrane protein, 5 X 10(3) elementary body inclusion-forming units, and approximately 100 C. trachomatis intracytoplasmic inclusions per assay. 相似文献
3.
Nucleotide and deduced amino acid sequences for the four variable domains of the major outer membrane proteins of the 15 Chlamydia trachomatis serovars. 总被引:20,自引:27,他引:20 下载免费PDF全文
The amino acid sequences of major outer membrane proteins (MOMPs) from Chlamydia trachomatis serovars A, B, C, L1, and L2 are predominantly conserved but have four variable domains (VDs) in which major neutralizing and serotyping antigenic determinants are located. Because these MOMP VDs are primarily responsible for antigenic differences between serovars and are associated with important immunological and biological properties, we undertook studies focused on defining these sequences within the MOMPs of all 15 C. trachomatis serovars. We used oligonucleotide primer extension sequencing of MOMP mRNA to determine the nucleotide and deduced amino acid sequences of the four MOMP VDs of the 15 C. trachomatis serovars. Comparative amino acid sequence homologies of all four domains separated the serovars into three groups: group 1, serovars B, Ba, D, E, L1, and L2; group 2, serovars G and F; and group 3, serovars A, C, H, I, J, K, and L3. Hydrophilicity and charge values for each domain were determined. The MOMP VDs of given serovars with the greatest total hydrophilicity and charge values were found to be the location of antigenic determinants recognized by MOMP-specific monoclonal antibodies. These findings should be useful for predicting MOMP antigenic determinants and testing the antigenic properties of these VDs by using synthetic peptides corresponding to each MOMP VD. The potential usefulness of the VD sequence information is discussed in relation to the development of defined synthetic peptides and oligonucleotides that may be used to develop new serological and diagnostic assays for C. trachomatis infections. 相似文献
4.
5.
Immunoaccessible peptide sequences of the major outer membrane protein from Chlamydia trachomatis serovar C. 下载免费PDF全文
The antigenicity of the major outer membrane protein of Chlamydia trachomatis serovar C was assessed by using overlapping hexapeptide homologs of serovar C major outer membrane protein and rabbit antisera in a peptide enzyme-linked immunosorbent assay. Five immunogenic sites were found distributed within variable sequences of the protein: four were immunodominant and three were surface exposed on native elementary bodies of serovar C. None was surface exposed on serovars H, I, and J. 相似文献
6.
The major outer membrane protein (MOMP) of Chlamydia trachomatis was determined to be a glycoprotein on the basis of susceptibility to glycosidase digestion and the presence of carbohydrate by staining and radiolabeling. The MOMP of the serovar L2 organisms was isolated by electroelution from the protein band excised from the gel after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The incubation of MOMP with N-glycosidase F, an endoglycosidase that cleaves the N-glycan, and periodate resulted in two new molecular weight species. While MOMP treated with N-glycosidase F showed a lower-molecular-weight mobility, the periodate-treated MOMP increased in molecular weight. Both treatments abolished the ability of the MOMP to bind to HeLa cell components. In the immunoblot, the reactivity to the monoclonal antibody specific against the C. trachomatis species was preserved. The endoglycosidase specific to O-linked glycan, endo-alpha-N-acetylgalactosaminidase, had no visible effect on the isolated MOMP. Carbohydrate was detected in the MOMP by p-phenylenediamine staining of the protein band in the gel following SDS-PAGE. Autoradiograms of proteins of chlamydial organisms metabolically labeled with [3H]galactose or [3H]glucosamine and separated by SDS-PAGE revealed the MOMP band. The isolated MOMP was shown to bind specifically to concanavalin A, wheat germ agglutinin, and Dolichos biflorus agglutinin in the lectin binding assay. No binding was observed with Ulex europaeus agglutinin I, soybean agglutinin, or Ricinus communis agglutinin. 相似文献
7.
Partial amino acid sequence and molecular cloning of the encoding gene for the major outer membrane protein of Chlamydia trachomatis. 总被引:5,自引:4,他引:5 下载免费PDF全文
The first 25 N-terminal amino acids of the major outer membrane protein of Chlamydia trachomatis serovar L2 were determined. The amino acid sequence was used to construct an oligonucleotide probe specific for the major outer membrane protein gene. Using this oligonucleotide as a hybridization major outer membrane protein gene. Using this oligonucleotide as a hybridization probe, we discovered one recombinant clone that produced a 15-kilodalton polypeptide which reacted with a monoclonal antibody directed against the major outer membrane protein type-specific epitope. In a separate set of experiments, we uncovered another recombinant clone that produced a 51-kilodalton polypeptide which was reactive with an anti-major outer membrane protein subspecies-specific monoclonal antibody. The expression of these recombinant DNA plasmids in Escherichia coli is discussed. 相似文献
8.
Typing of Chlamydia trachomatis by restriction endonuclease analysis of the amplified major outer membrane protein gene. 下载免费PDF全文
P Rodriguez A Vekris B de Barbeyrac B Dutilh J Bonnet C Bebear 《Journal of clinical microbiology》1991,29(6):1132-1136
A procedure was developed for characterization of Chlamydia trachomatis strains by using restriction endonuclease analysis of amplified genes of the major outer membrane protein (MOMP). Reference strains of the 15 serovars (A through K and L1 through L3) and clinical isolates were tested. The nucleotide sequences of the MOMP genes of each of the 15 serovars were arbitrarily constructed by using the sequences of the four variable domains known for each serovar and the constant domains of serovar L1. Computer analysis of these sequences indicated that two restriction digestions performed in parallel, one with AluI and the other with IIpaII, followed by HinfI and EcoRI, would allow the theoretical differentiation of 13 serovars. Serovars Ba and L1 presented the same theoretical restriction profile. Our typing method consisted of polymerase chain reaction amplification of a fragment of about 1,200 bp of the MOMP gene, followed by restriction endonuclease digestion with the aforementioned enzymes. From the 15 serovars, we obtained 14 different patterns; 13 profiles were serovar specific, while serovars B and Ba presented the same pattern. Application of this typing method to C. trachomatis strains isolated from clinical material gave the same results as the immunotyping method for 14 of 17 strains. Furthermore, restriction endonuclease analysis detected differences within a serovar. This method seems to be promising for epidemiological studies. 相似文献
9.
Expression of the major outer membrane protein of Chlamydia trachomatis in Escherichia coli. 总被引:2,自引:0,他引:2 下载免费PDF全文
The major outer membrane protein (MOMP) of Chlamydia trachomatis was expressed in Escherichia coli. To assess whether it assembled into a conformationally correct structure at the cell surface, we characterized the recombinant MOMP (rMOMP) by Western immunoblot analysis, indirect immunofluorescence, and immunoprecipitation with monoclonal antibodies (MAbs) that recognize contiguous and conformational MOMP epitopes. Western blot analysis showed that most of the rMOMP comigrated with authentic monomer MOMP, indicating that its signal peptide was recognized and cleaved by E. coli. The rMOMP could not be detected on the cell surface of viable or formalin-killed E. coli organisms by indirect immunofluorescence staining with a MAb specific for a MOMP contiguous epitope. In contrast, the same MAb readily stained rMOMP-expressing E. coli cells that had been permeabilized by methanol fixation. A MAb that recognizes a conformational MOMP epitope and reacted strongly with formalin- or methanol-fixed elementary bodies failed to stain formalin- or methanol-fixed E. coli expressing rMOMP. Moreover, this MAb did not immunoprecipitate rMOMP from expressing E. coli cells even though it precipitated the authentic protein from lysates of C. trachomatis elementary bodies. Therefore we concluded that rMOMP was not localized to the E. coli cell surface and was not recognizable by a conformation-dependent antibody. These results indicate that rMOMP expressed by E. coli is unlikely to serve as an accurate model of MOMP structure and function. They also question the utility of rMOMP as a source of immunogen for eliciting neutralizing antibodies against conformational antigenic sites of the protein. 相似文献
10.
Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. 总被引:75,自引:91,他引:75 下载免费PDF全文
Elementary bodies (EB) of Chlamydia trachomatis serotypes C, E, and L2 were extrinsically radioiodinated, and whole-cell lysates of these serotypes were compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Autoradiography of the polypeptide profiles identified a major surface protein with an apparent subunit molecular weight of 39,500 that was common to each C. trachomatis serotype. The abilities of nonionic (Triton X-100), dipolar ionic (Zwittergent TM-314), mild (sodium deoxycholate and sodium N-lauroyl sarcosine), and strongly anionic (SDS) detergents to extract this protein from intact EB of the L2 serotype were investigated by SDS-PAGE analysis of the soluble and insoluble fractions obtained after each detergent treatment. Only SDS readily extracted this protein from intact EB. Sarkosyl treatment selectively solubilized the majority of other EB proteins, leaving the 39,500-dalton protein associated with the Sarkosyl-insoluble fraction. Ultrastructural studies of the Sarkosyl-insoluble EB pellet showed it to consist of empty EB particles possessing an apparently intact outer membrane. No structural evidence for a peptidoglycan-like cell wall was found. Morphologically these chlamydial outer membrane complexes (COMC) resembled intact chlamydial EB outer membranes. The 39,500-dalton outer membrane protein was quantitatively extracted from COMC by treating them with 2% SDS at 60 degrees C. This protein accounted for 61% of the total COMC-associated protein, and its extraction resulted in a concomitant loss of the COMC membrane structure and morphology. The soluble extract obtained from SDS-treated COMC was adsorbed to a hydroxylapatite column and eluted with a linear sodium phosphate gradient. The 39,500-dalton protein was eluted from the column as a single peak at a phosphate concentration of approximately 0.3 M. The eluted protein was nearly homogeneous by SDS-PAGE and appeared free of contaminating carbohydrate, glycolipid, and nucleic acid. Hyperimmune mouse antiserum prepared against the 39,500-dalton protein from serotype L2 reacted with C. trachomatis serotypes Ba, E, D, K, L1, L2, and L3 by indirect immunofluorescence with EB but failed to react with serotypes A, B, C, F, G, H, I, and J, with the C. trachomatis mouse pneumonitis strain, or with the C. psittaci feline pneumonitis, guinea pig inclusion conjunctivitis, or 6BC strains. Thus, the 39,500-dalton major outer membrane protein is a serogroup antigen of C. trachomatis organisms. 相似文献
11.
Primary human T-cell responses to the major outer membrane protein of Chlamydia trachomatis. 总被引:3,自引:0,他引:3 下载免费PDF全文
The major outer membrane protein (MOMP) of Chlamydia trachomatis is the main candidate antigen for a synthetic vaccine against chlamydial infection. Antibodies to surface-exposed epitopes on MOMP neutralize chlamydial infectivity but little is known about T-cell recognition of the molecule. We have measured primary human T-cell responses to recombinant fragments of MOMP as well as to the whole organism and synthetic MOMP peptides. Using antigen-pulsed low density cells (LDC) we were able to stimulate proliferative responses with T cells from most naive individuals. This response was antigen dose dependent and displayed an absolute requirement for dendritic cells in the antigen-presenting cell (APC) population. Several T-cell epitopes were identified in MOMP and one which stimulated T cells from 80% of donors was resolved as a 12 amino acid synthetic peptide. Dual cell surface labelling and cell cycle analysis by FACS revealed that both CD4+ and CD8+ T cells were stimulated in these cultures. The fact that we were able to obtain proliferative responses and interferon-gamma (IFN-gamma) production to MOMP using cells from cord bloods confirmed that these are genuine primary responses. These experiments have identified a region on MOMP, to which T cells from most humans make a primary response, which may be useful in a chlamydial vaccine. The approach is useful for vaccine development in general. 相似文献
12.
Neutralization of Chlamydia trachomatis infectivity with antibodies to the major outer membrane protein. 总被引:10,自引:25,他引:10 下载免费PDF全文
Rabbit immunoglobulin G (IgG) antibodies raised against the major outer membrane protein of the Chlamydia trachomatis lymphogranuloma venereum strain 434 neutralized the infectivity of the parasite for HeLa 229 cells. The mechanism by which anti-major outer membrane protein IgG prevented C. trachomatis from establishing infection was studied by using intrinsically 14C-radiolabeled elementary bodies. Neutralized elementary bodies were filterable through a polycarbonate filter (pore diameter, 600 nm), demonstrating that reduction in infectivity was not due to the aggregation of elementary bodies by cross-linking IgG. Antibody-neutralized elementary bodies attached to and penetrated HeLa cells at rats nearly identical to those for infectious organisms exposed to nonneutralizing control IgG. These results suggest that antibody interferes with the infectious process of the parasite after its internalization. Anti-major outer membrane protein Fab fragments could not be substituted for neutralizing IgG antibodies. The requirement for intact IgG implies that cross-linking of antibodies to the major outer membrane protein on the surfaces of the organisms may be instrumental in neutralization. 相似文献
13.
One hundred and eight clinical strains and 24 reference strains of C. trachomatis were typed using differential restriction mapping of omp1, the gene which encodes the major outer membrane protein. The gene was obtained by polymerase chain reaction (PCR). This molecular typing method correlated well with serological typing. Eighty-four per cent of clinical strains were typed using the enzyme AluI alone. Heterogeneity was looked for among the most common serovars (E, F, and D; 62%, 17%, and 9%, respectively). Analysis of the PCR-amplified fourth variable domain of omp1 using denaturing gradient gel electrophoresis followed by direct sequencing of the variants disclosed substantial heterogeneity within the D serovar. Conversely, serovars E and F were homogeneous, with however a single variant strain of serovar E. 相似文献
14.
Poliovirus hybrids expressing neutralization epitopes from variable domains I and IV of the major outer membrane protein of Chlamydia trachomatis elicit broadly cross-reactive C. trachomatis-neutralizing antibodies. 总被引:1,自引:1,他引:1 下载免费PDF全文
Trachoma and sexually transmitted diseases caused by Chlamydia trachomatis are major health problems worldwide. Epitopes from the variable domains of the major outer membrane protein are candidates for vaccine development. We have constructed hybrid polioviruses expressing sequences from major outer membrane protein variable domains I and IV. Antisera to the hybrids could, in combination, strongly neutralize 8 of the 12 C. trachomatis serovars most commonly associated with oculogenital infections and weakly neutralize the others. 相似文献
15.
Cloning and sequence analysis of the major outer membrane protein gene of Chlamydia psittaci 6BC. 总被引:7,自引:0,他引:7 下载免费PDF全文
The gene encoding the major outer membrane protein (MOMP) of the psittacine Chlamydia psittaci strain 6BC was cloned and sequenced. N-terminal protein sequencing of the mature MOMP indicated that it is posttranslationally processed at a site identical to the site previously identified in the MOMP of Chlamydia trachomatis L2. The nucleotide sequence of the C. psittaci 6BC MOMP gene was found to be 67 to 68% identical to those of human C. trachomatis strains, 73% identical to that of Chlamydia pneumoniae IOL-207, 79% identical to that of the C. psittaci guinea pig inclusion conjunctivitis strain, GPIC, and 83% identical to that of the C. psittaci ovine abortion strain S26/3. In contrast, the 6BC sequence was found to be greater than 99% identical to the sequences reported for two strains of C. psittaci, A22/M and Cal-10 meningopneumonitis, believed to be of nonpsittacine avian origin. Monoclonal antibody analysis confirmed the nonpsittacine avian origin of A22/M but identified the Cal-10 strain from which the MOMP gene was previously sequenced as a psittacine strain. These results confirm that psittacine and nonpsittacine avian strains of C. psittaci are closely related and distinct from the mammalian guinea pig inclusion conjunctivitis and ovine abortion strains of C. psittaci. 相似文献
16.
Immune specificity of murine T-cell lines to the major outer membrane protein of Chlamydia trachomatis. 下载免费PDF全文
The antigenically variant Chlamydia trachomatis major outer membrane protein (MOMP) is a target of antibody-mediated neutralization in vitro, and it is an important protein for designing a subunit vaccine. Knowledge of MOMP T-cell determinants will be essential to elicit rapid and strong immune responses following an encounter with infectious organisms. C. trachomatis-specific T-cell lines were derived from MOMP-immunized BALB/c mice and selected with intact organisms. We used these short-term T-cell lines to identify determinants of MOMP that could be recognized by T cells following processing of the intact organism. T-cell line proliferation in response to overlapping MOMP peptides showed that only a peptide encompassing the third variable segment (VS3) elicited a strong proliferative response. We further mapped determinants within the VS3 peptide and found that a sequence-conserved portion of the VS3 peptide elicited T-cell proliferation of T-cell lines from BALB/c mice. Thus, unlike the response to several MOMP peptides with unselected T cells, development of short-term T-cell lines with intact organisms restricted the repertoire of antigens capable of being recognized by MOMP-specific T cells. 相似文献
17.
Antigenic analysis of the major outer membrane protein of Chlamydia trachomatis with murine monoclonal antibodies. 总被引:2,自引:8,他引:2 下载免费PDF全文
B E Batteiger W J Newhall th P Terho C E Wilde rd R B Jones 《Infection and immunity》1986,53(3):530-533
We prepared monoclonal antibodies against prototype strains of the 15 serovars of Chlamydia trachomatis and identified a subset of reagents that reacted with the major outer membrane protein(s) (MOMPs) of one or more serovars. We then determined the specificities of these anti-MOMP monoclonal antibodies by radioimmunoassay and immunoblot assays against the 15 serovars of C. trachomatis and a C. psittaci strain. We identified 14 different anti-MOMP antibody specificities, including serovar-, several orders of subspecies-, and species-specific determinants. In addition, one antibody reacted with all C. trachomatis serovars and a C. psittaci strain, indicating the presence of a genus-specific epitope on MOMP. Many of the cross-reactions of the subspecies-specific antibodies were similar to those previously reported by use of the microimmunofluorescence technique. We also observed a number of cross-reactions that were unexpected but consistent with data derived by the microimmunofluorescence test. All antibodies, except the genus-specific antibodies, reacted with whole elementary bodies in a radioimmunoassay, suggesting surface exposure of the epitopes. These data confirm and extend previous observations that MOMPs among C. trachomatis serovars are antigenically complex and diverse. In addition, these data indicate that the cross-reaction patterns of some monoclonal antibodies directed against MOMP are similar to those detected by the microimmunofluorescence test and are consistent with the hypothesis that such determinants are contained within MOMPs. 相似文献
18.
Sequence analysis of the major outer membrane protein gene of Chlamydia pneumoniae. 总被引:14,自引:6,他引:14 下载免费PDF全文
Compared with the major outer membrane proteins (MOMPs) of the other chlamydial species, the Chlamydia pneumoniae MOMP appears to be less antigenically complex, and as determined by immunoblot analysis, it does not appear to be the immunodominant antigen recognized during infection. Nucleotide sequence analysis of the C. pneumoniae MOMP gene (ompA) revealed that it consisted of a 1,167-base open reading frame with an inferred 39,344-dalton mature protein of 366 amino acids plus a 23-amino-acid leader sequence. A ribosomal-binding site was located in the 5' upstream region, and two stop codons followed by an 11-base dyad forming a stable stem-loop structure were identified. This sequence shares 68 and 71% DNA sequence homology to the Chlamydia trachomatis serovar L2 and Chlamydia psittaci ovine abortion agent MOMP genes, respectively. Interspecies alignment identified regions, corresponding to the variable domains, which share little sequence similarity with the other chlamydial MOMPs. All seven cysteines conserved in the C. trachomatis and C. psittaci MOMPs, which are involved in the formation of disulfide cross-linkages, are found in the C. pneumoniae MOMP. 相似文献
19.
Differential effect of trypsin on infectivity of Chlamydia trachomatis: loss of infectivity requires cleavage of major outer membrane protein variable domains II and IV. 总被引:4,自引:10,他引:4 下载免费PDF全文
The initial interaction of chlamydiae with host cells is not well understood. Chlamydial cell surface components that function in attachment are key virulence factors, and their identification is critical for understanding the pathogenic strategies of this very successful parasite. We used trypsin proteolysis of chlamydiae to define surface components that function in chlamydia-host cell interactions. We found that trypsin had a differential effect on the infectivity of Chlamydia trachomatis serovars B and L2 for HeLa 229 cells. Trypsin treatment resulted in a significant loss of attachment and infectivity of serovar B but had no effect on the infectivity of serovar L2. Fluorograms of chlamydiae metabolically labeled with 14C-amino acids and treated with trypsin showed that the major outer membrane protein (MOMP) of both serovars was cleaved. Evidence for two trypsin cleavage sites was found for the serovar B MOMP. One cleavage site was located between lysine 145 and valine 146 in variable domain (VD) II of the protein. The second site was located between lysine 309 and threonine 310 in VD IV. In contrast, the serovar L2 MOMP was cleaved only at lysine 309 in VD IV. These results suggest a functional role for MOMP in chlamydial attachment and implicate VDs II and IV of MOMP in this interaction. 相似文献
20.
Antibody recognition of a neutralization epitope on the major outer membrane protein of Chlamydia trachomatis. 总被引:1,自引:2,他引:1 下载免费PDF全文
Two BALB/c mice were immunized with serovar C Chlamydia trachomatis elementary bodies, and 63 hybridomas producing monoclonal antibodies to C. trachomatis were recovered. Eight hybridomas which were specific for an identical peptide epitope (AGLQND) in serovar C major outer membrane protein variable domain I were identified. Detailed immunochemical study of the antigen-antibody interaction and genetic characterization of the antibody variable-region gene sequences showed that distinct B-cell clonal lineages were elicited by the epitope sequence. Since each antibody had a distinct pattern of fine specificity for recognition of the epitope and displayed different degrees of cross-reactivity with a related serovar (serovar A), we conclude that B-cell recognition of an immunodominant neutralization epitope can be pleiotropic. Differences in B-cell recognition of a neutralization epitope may delay the emergence by mutation of antigenic-drift variants of the C. trachomatis major outer membrane protein. 相似文献