首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thrombin is now recognized as an important factor in many cancers. Here, we examined the expression and role of the recently discovered thrombin receptor PAR4, in human colon cancer cells. PAR4 mRNA was found in 10 out of 14 (71%) human colon cancer cell lines tested but not in epithelial cells isolated from normal human colon. This finding is in line with immunostaining results of PAR4 in human colon tumors and its absence in normal human colonic mucosa. Investigation of the functional significance of the aberrant expression of PAR4 in colon cancer cells revealed (i) a prompt increase in intracellular calcium concentration on challenge with PAR4‐specific agonist AP4 (100 μM) and (ii) marked mitogenic response (2.5‐fold increase in cell number) in a dose‐dependent manner on treatment with AP4 (0.1–300 μM). Analysis of the signaling pathways downstream of PAR4 activation in HT29 cells showed (i) a sustained phosphorylation of extracellular signal‐related kinase 1/2 (ERK1/2) and (ii) the involvement of epidermal growth factor receptor B‐2 (ErbB‐2) but not of epidermal growth factor receptor in PAR4‐induced mitogen‐activated protein kinase activation. Tyrphostin AG1478, the ErbB inhibitor, reversed the action of AP4 on ERK1/2 and ErbB‐2 phosphorylation and HT29 cell growth. Finally, the Src inhibitor PP2 abrogated ErbB‐2 and ERK phosphorylation and HT29 cell proliferation, suggesting the essential role of Src activity in PAR4‐induced phosphorylation of ErbB‐2. These data highlight the role of PAR4 as a new important player in the control of colon tumors and underline the critical role of ErbB‐2 transactivation. © 2008 Wiley‐Liss, Inc.  相似文献   

2.
The objective of this study was to assess the anti-tumor efficacy of rapamycin alone or in combination with herceptin in breast cancer. A total of 20 human breast cancer lines were examined for expression of various receptor tyrosine kinases and activation of their down stream signaling molecules, as well as for their invasion and colony forming ability. The ErbB2 and PI3 kinase pathway inhibitors were tested for the inhibition on breast cancer cell growth and tumor development. Seven of the 20 lines displayed an elevated level of ErbB2, others had varying level of EGF, IGF-1 or insulin receptor. Over 30% of the lines also had constitutive activation of Akt and MAP kinase. The lines displayed a wide range of colony forming and invasion ability. The PI3 kinase pathway inhibitors LY294002 and rapamycin inhibited the colony forming ability of all of the lines with the ErbB2 overexpressing lines having a higher sensitivity. A similar trend was observed for inhibition of invasion by LY294002. Rapamycin alone and additively together with herceptin inhibited the breast cancer cell growth especially in ErbB2 overexpressing cells. Rapamycin and herceptin synergistically inhibited tumor growth and endpoint tumor load in a xenograft model using a MCF-7 subline and in a MMTV-ErbB2 transgenic model. Rapamycin and herceptin significantly reduced the level of cyclin D1 and D3 and increased the cleavage of caspase 3 suggesting an increased apoptosis. Our results suggest that rapamycin together with herceptin has an enhanced anti-cancer effect and could be developed as an improved therapeutic regimen for breast cancer.  相似文献   

3.
The ErbB2/3 heterodimer plays a critical role in breast cancer genesis and progression. EBP1, an ErbB3 binding protein, inhibits breast cancer growth but its effects on ErbB3 ligand mediated signal transduction or ErbB receptors is not known. We report here that ectopic expression of EBP1 in MCF-7 and AU565 breast cancer cell lines inhibited HRG-induced proliferation. ErbB2 protein levels were substantially decreased in EBP1 transfectants, while ErbB3 levels were unchanged. HRG-induced AKT activation was attenuated in EBP1 stable transfectants and transfection of a constitutively activated AKT partially restored the growth response to HRG. Down-regulation of EBP1 expression in MCF-7 cells by shRNA resulted in increased cell growth in response to HRG and increased cyclin D1 and ErbB2 expression. These results suggest that EBP1, by down-regulating ErbB signal transduction, attentuates HRG-mediated growth of breast cancer cells.  相似文献   

4.
Low selectivity is one of the major problems of currently used anticancer drugs, therefore, there is a high demand for novel, selective antitumor agents. In this study, the anticancer effects and mechanisms of guttiferone K (GUTK), a novel polyprenylated acylphloroglucinol derivative isolated from Garcinia cowa Roxb., were examined for its development as a novel drug targeting colon cancer. GUTK concentration‐ and time‐dependently reduced the viability of human colon cancer HT‐29 cells (IC50 value 5.39 ± 0.22 μM) without affecting the viability of normal human colon epithelial CCD 841 CoN cells and induced G0/G1 cell cycle arrest in HT‐29 cells by down‐regulating cyclins D1, D3 and cyclin‐dependent kinases 4 and 6, while selectively restoring p21Waf1/Cip1 and p27Kip1 to levels comparable to those observed in normal colon cells, without affecting their levels in normal cells. GUTK (10.0 μM) induced cleavage of PARP, caspases‐3, ‐8 and ‐9 and chromatin condensation to stimulate caspase‐3‐mediated apoptosis. The addition of a JNK inhibitor, SP600125, partially reversed GUTK‐induced caspase‐3 activity, indicating the possible involvement of JNK in GUTK‐induced apoptosis. Furthermore, GUTK (10 mg/kg, i.p.) significantly decreased the tumor volume in a syngeneic colon tumor model when used alone or in combination with 5‐fluorouracil without toxicity to the mice. Immunohistochemical staining of the tumor sections revealed a mechanism involving an increase in cleaved caspase‐3 and a decrease in cell proliferation marker Ki‐67. Our results support GUTK as a promising novel, potent and selective antitumor drug candidate for colon cancer.  相似文献   

5.
GTP cyclohydrolase (GCH1) is the key‐enzyme to produce the essential enzyme cofactor, tetrahydrobiopterin. The byproduct, neopterin is increased in advanced human cancer and used as cancer‐biomarker, suggesting that pathologically increased GCH1 activity may promote tumor growth. We found that inhibition or silencing of GCH1 reduced tumor cell proliferation and survival and the tube formation of human umbilical vein endothelial cells, which upon hypoxia increased GCH1 and endothelial NOS expression, the latter prevented by inhibition of GCH1. In nude mice xenografted with HT29‐Luc colon cancer cells GCH1 inhibition reduced tumor growth and angiogenesis, determined by in vivo luciferase and near‐infrared imaging of newly formed blood vessels. The treatment with the GCH1 inhibitor shifted the phenotype of tumor associated macrophages from the proangiogenic M2 towards M1, accompanied with a shift of plasma chemokine profiles towards tumor‐attacking chemokines including CXCL10 and RANTES. GCH1 expression was increased in mouse AOM/DSS‐induced colon tumors and in high grade human colon and skin cancer and oppositely, the growth of GCH1‐deficient HT29‐Luc tumor cells in mice was strongly reduced. The data suggest that GCH1 inhibition reduces tumor growth by (i) direct killing of tumor cells, (ii) by inhibiting angiogenesis, and (iii) by enhancing the antitumoral immune response.  相似文献   

6.
ErbB3 receptor tyrosine kinase has been shown to induce tumor progression in several types of cancer through heterodimerization with ErbB2. However, the role of ErbB3 and its ligand heregulin (HRG) in tumor metastasis remains poorly understood. In the present study, we tried to clarify their contributions to the metastasis of ErbB3-overexpressing B16-BL6 melanoma cells. Stimulation with HRG induced phosphorylation of ErbB3 and metastatic properties including MMP-9 expression, invasion, adhesion and experimental lung metastasis in vivo. These cellular responses were blocked by inhibiting the tyrosine kinase activity of EGFR with PD153035. In addition, phosphorylation of EGFR was rapidly induced by HRG, suggesting that EGFR is a possible heterodimeric counterpart of ErbB3. RNA interference demonstrated that subcutaneous tumor growth and angiogenesis was attenuated by inactivation of ErbB3 in cancer cells. Although experimental pulmonary metastasis was not affected by the knockdown of ErbB3, spontaneous metastasis was, even when primary tumors in the foot pad were amputated at a similar size. These results indicate that HRG-induced activation of ErbB3 via EGFR promotes tumor growth and metastasis of melanoma cells.  相似文献   

7.
8.
9.
Colon cancer is a leading cause of morbidity and mortality in Western countries. Basic fibroblast growth factor (bFGF) was up‐regulated in patients with colon cancer and was considered as a potential therapeutic target. In this study, we first demonstrated that a novel bFGF‐binding peptide (named P7) inhibited proliferation of several colon cancer cell lines including HT‐29, LoVo, and Caco2 cells stimulated by bFGF. Further investigations with HT‐29 cells indicated that P7 arrested the cell cycle at the G0/G1 phase of bFGF‐stimulated cells, reduced the levels of phospho‐Erk1/Erk2 induced by bFGF, and caused significant changes in the expression of proteins related to proliferation, cell cycle, and cancer. Our results suggested that the bFGF‐binding peptide has a potential antitumor effect on colon cancer. (Cancer Sci 2010; 101: 1212–1218)  相似文献   

10.
11.
The inhibitory effect of trastuzumab, a humanized monoclonal antibody directed against the extracellular domain of ErbB2, is associated with its ability to induce ErbB2-Y1248 phosphorylation, and the status of phosphorylated ErbB2-Y1248 (ErbB2-pY1248) may correlate with the sensitivity of breast cancers to trastuzumab. The mechanisms of which remain unclear. Here, we show that binding of trastuzumab to ErbB2 activates ErbB2 kinase activity and enhances ErbB2-Y1248 phosphorylation in trastuzumab-sensitive breast cancer cells. This in turn increases the interaction between ErbB2 and non-receptor Csk-homologous kinase (CHK), leading to growth inhibition of breast cancer cells. Overexpression of CHK mimics trastuzumab treatment to mediate ErbB2-Y1248 phosphorylation, Akt downregulation, and growth inhibition of trastuzumab-sensitive breast cancer cells. CHK overexpression combined with trastuzumab exerts an additive effect on cell growth inhibition. We further demonstrate that positive ErbB2-pY1248 staining in ErbB2-positive breast cancer biopsies correlates with the increased trastuzumab response in trastuzumab neoadjuvant settings. Collectively, this study highlights an important role for ErbB2-pY1248 in mediating trastuzumab-induced growth inhibition and trastuzumab-induced interactions between CHK and ErbB2-pY1248 is identified as a novel mechanism of action that mediates the growth inhibition of breast cancer cells. The novel mechanistic insights into trastuzumab action revealed by this study may impact the design of next generation of therapeutic monoclonal antibodies targeting receptor tyrosine kinases, as well as open new avenues to identify novel targets for the treatment of ErbB2-positive cancers.  相似文献   

12.
Inactivation of epidermal growth factor receptor (EGFR) family members are prime targets for cancer therapy. Here, we show that tephrosin, a natural rotenoid which has potent antitumor activities, induced internalization of EGFR and ErbB2, and thereby induced degradation of the receptors. Treatment of HT-29 cells with tephrosin inhibited both the ligand-induced and constitutive phosphorylation of EGFR, ErbB2 and ErbB3, and concomitantly suppressed the activation of the downstream signaling molecules such as Akt and Erk1/2 mitogen-activated protein kinase (MAPK). Tephrosin caused internalization of EGFR and ErbB2 into vehicles, which resulted in degradation of the receptors. This degradation was blocked by the lysosomal inhibitor, chloroquine. We also showed that tephrosin induced apoptosis. Tephrosin did not induce the proteolytic processing of caspase-3 and poly(ADP-ribose) polymerase (PARP), but did nuclear translocation of apoptosis-inducing factor (AIF), suggesting that tephrosin may induce caspase-independent apoptosis. These findings provide the first evidence that tephrosin could exert antitumor effects by inducing internalization and degradation of inactivated EGFR and ErbB2 in human colon cancer cells.  相似文献   

13.
The intestine is a large endocrine organ, but the dependence of colon cancer on hormones remains unknown. We show here that neurotensin, a paracrine/endocrine peptide in the gut, and the neurotensin receptor antagonist SR 48692 control colon cancer cell growth in vitro and in vivo by interacting with receptors that are ectopically expressed in colon cancers. In cell culture, neurotensin stimulates the growth of human colon cancer cell lines (SW480, SW620, HT29, HCT116 and Cl.19A) expressing the neurotensin receptor NTR1 but does not change the growth of Caco2 cells, which do not express NTR1. In SW480 cells, neurotensin is active in the 10–10 to 10–6 M concentration range (ED50 = 0.47 nM) while the neurotensin fragment (1–11) is inactive. Neurotensin also enhances the cellular cloning efficiency of SW480 cells in soft agar by inducing a 50% increase of colony formation. This effect is blocked by SR 48692, which alone does not alter colony formation. Subcutaneous delivery of neurotensin (0.54μmol/kg every 24 hr) by osmotic pumps to nude mice that have been xenografted with SW480 cells results in a significant increase of tumor volume, i.e., up to 255% of control at day 20 of treatment. SR 48692 administered alone (1.7 μmol/kg every 24 hr) by daily i.p. injections reduces the development of tumors formed by xenografting SW480 cells in nude mice. A significant mean reduction of tumor volume of 38% is observed during the 22‐day period of treatment. SR 48692 alone is also active at reducing tumor volume after xenografting HCT116 cells in nude mice. Our results support the notion that colon cancer growth may be dependent on blood‐borne neurotensin and suggest that non‐peptide neurotensin antagonists, such as SR 48692, may be useful for the development of novel therapeutic strategies of colon cancer. Int. J. Cancer 80:448–454, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

14.
The three oncogenes, ErbB receptors, Ras proteins and nucleolin may contribute to malignant transformation. Previously, we demonstrated that nucleolin could bind both Ras protein and ErbB receptors. We also showed that the crosstalk between the three proteins facilitates anchorage independent growth and tumor growth in nude mice, and that inhibition of this interaction in prostate and colon cancer cells reduces tumorigenicity. In the present study, we show that treatment with Ras and nucleolin inhibitors reduces the oncogenic effect induced by ErbB1 receptor in U87-MG cells. This combined treatment enhances cell death, reduces cell proliferation and cell migration. Moreover, we demonstrate a pivotal role of nucleolin in ErbB1 activation by its ligand. Nucleolin inhibitor prevents EGF-induced receptor activation and its downstream signaling followed by reduced proliferation. Furthermore, inhibition of Ras by Salirasib (FTS), mainly reduces cell viability and motility. The combined treatment, which targets both Ras and nucleolin, additively reduces tumorigenicity both in vitro and in vivo. These results suggest that targeting both nucleolin and Ras may represent an additional opportunity for inhibiting cancers, including glioblastoma, that are driven by these oncogenes.  相似文献   

15.
Xia W  Liu LH  Ho P  Spector NL 《Oncogene》2004,23(3):646-653
The expression of the NH2 terminally truncated ErbB2 receptor (p95ErbB2) in breast cancer correlates with metastatic disease progression compared with the expression of full-length p185ErbB2. We now show that heregulin (HRG), but not EGF, stimulates p95ErbB2 phosphorylation in BT474 breast cancer cells. Furthermore, phospho-p95ErbB2 forms heterodimers with ErbB3, but not EGFR, while p185ErbB2 heterodimerizes with both EGFR and ErbB3. The predilection of p95ErbB2 to heterodimerize with ErbB3 provides an explanation for its regulation by HRG, an ErbB3 ligand. GW572016, a reversible small molecule inhibitor of EGFR and ErbB2 tyrosine kinases, inhibits baseline p95ErbB2 phosphorylation in BT474 cells and tumor xenografts. Inhibition of p95ErbB2, p185ErbB2, and EGFR phosphorylation by GW572016 resulted in the inhibition of downstream phospho-Erk1/2, phospho-AKT, and cyclin D steady-state protein levels. Increased phosphorylation of p95ErbB2 and AKT in response to HRG was abrogated to varying degrees by GW572016. In contrast, trastuzumab did not inhibit p95ErbB2 phosphorylation or the expression of downstream phospho-Erk1/2, phospho-AKT, or cyclin D. It is tempting to speculate that trastuzumab resistance may be mediated in part by the selection of p95ErbB2-expressing breast cancer cells capable of exerting potent growth and prosurvival signals through p95ErbB2-ErbB3 heterodimers. Thus, p95ErbB2 represents a target for therapeutic intervention, and one that is sensitive to GW572016 therapy.  相似文献   

16.
BACKGROUND: Histone deacetylases (HDACs) modulate chromatin structure by regulating acetylation of core histone proteins. HDAC inhibitors, such as depsipeptide FR901228 (FK228), induce growth arrest and apoptosis in a variety of human cancer cells by mechanisms that cannot be attributed solely to histone acetylation. This study evaluated the mechanisms by which FK228 mediates apoptosis in non-small-cell lung cancer (NSCLC) cells. METHODS: Proliferation and apoptosis were assessed in a panel of NSCLC cell lines that vary in the expression of the growth-regulating proteins p53, pRb, and K-Ras treated with a clinically relevant dose of FK228 (25 ng/mL). Western blot and immunoprecipitation techniques were used to analyze expression of cell-cycle proteins (cyclin A, cyclin E, p53, and p21), signaling-related proteins (ErbB1, ErbB2, and Raf-1), activity of extracellular signal-regulated kinase 1 and 2 (ERK1/2), binding of mutant p53 and Raf-1 to heat shock protein (Hsp)90, and acetylation of Hsp90. RESULTS: FK228 treatment inhibited growth and induced apoptosis in NSCLC cells expressing wild-type or mutant p53. FK228 treatment led to altered expression of cyclin A, cyclin E, and p21, and to reduced expression of mutant, but not wild-type, p53. FK228-treated cells also were depleted of ErbB1, ErbB2, and Raf-1 proteins, and exhibited lower ERK1/2 activity. FK228 treatment also inhibited the binding of mutant p53 and Raf-1 to Hsp90; this inhibition was associated with acetylation of Hsp90. CONCLUSIONS: FK228 depletes the levels of several oncoproteins that are normally stabilized by binding to Hsp90 in cancer cells. The resulting ability of FK228 to diminish signal transduction via pathways involving Raf-1 and ERK may contribute to the potency and specificity of this novel antitumor agent.  相似文献   

17.
We previously reported that the ErbB2 oncoprotein prolongs and amplifies growth factor signalling by impairing ligand-dependent downregulation of hetero-oligomerised epidermal growth factor receptors. Here we show that treatment of A431 cells with different epidermal growth factor receptor ligands can cause growth inhibition to an extent paralleling ErbB2 tyrosine phosphorylation. To determine whether such growth inhibition signifies an interaction between the cell cycle machinery and ErbB2-dependent alterations of cell signalling kinetics, we used MCF7 breast cancer cells (which express wild-type p53) to create transient and stable ErbB2 transfectants (MCF7-B2). Compared with parental cells, MCF7-B2 cells are characterised by upregulation of p53, p21(WAF) and Myc, downregulation of Bcl2, and apoptosis. In contrast, MCF7-B2 cells co-transfected with dominant negative p53 (MCF7-B2/Delta p53) exhibit reduced apoptosis and enhanced growth relative to both parental MCF7-B2 and control cells. These data imply that wild-type p53 limits survival of ErbB2-overexpressing breast cancer cells, and suggest that signals of varying length and/or intensity may evoke different cell outcomes depending upon the integrity of cell cycle control genes. We submit that acquisition of cell cycle control defects may play a permissive role in ErbB2 upregulation, and that the ErbB2 overexpression phenotype may in turn select for the survival of cells with p53 mutations or other tumour suppressor gene defects.  相似文献   

18.
Hepatitis B × antigen, or HBxAg, contributes importantly to the pathogenesis of hepatocellular carcinoma (HCC). Given that HBxAg constitutively activates β‐catenin and that upregulated ErbB‐2 promotes β‐catenin signaling in other tumor types, experiments were designed to ask whether HBxAg was associated with upregulated expression of ErbB‐2. When HBxAg positive and negative HepG2 cells were subjected to proteomics analysis, ErbB‐2 was shown to be upregulated in HepG2X but not control cells. ErbB‐2 was also strongly upregulated in HB infected liver, and weakly in some HCC nodules, where it correlated with HBxAg expression. Among tumor bearing patients, strong ErbB‐2 staining in the liver was associated with dysplasia, and a shorter survival after tumor diagnosis. This implies that elevated ErbB‐2 is an early marker of HCC. Treatment of HepG2X cells with ErbB‐2 specific siRNA not only reduced ErbB‐2 expression, but also reduced the expression of β‐catenin, suggesting that ErbB‐2 contributed to the stabilization of β‐catenin. ErbB‐2 specific siRNA also partially blocked the ability of HBxAg to promote DNA synthesis and growth of HepG2 cells. These results suggest that ErbB‐2/β‐catenin up‐regulation contributes importantly to the mechanism of HBxAg mediated hepatocellular growth. © 2009 UICC  相似文献   

19.
Inappropriate signalling through the EGFR and ErbB2/HER2 members of the epidermal growth factor family of receptor tyrosine kinases is well recognised as being causally linked to a variety of cancers. Consequently, monoclonal antibodies specific for these receptors have become increasingly important components of effective treatment strategies for cancer. Increasing evidence suggests that ErbB3 plays a critical role in cancer progression and resistance to therapy. We hypothesised that co-targeting the preferred ErbB2/ErbB3 heterodimer with a bispecific single-chain Fv (bs-scFv) antibody would promote increased targeting selectivity over antibodies specific for a single tumour-associated antigen (TAA). In addition, we hypothesised that targeting this important heterodimer could induce a therapeutic effect. Here, we describe the construction and evaluation of the A5-linker-ML3.9 bs-scFv (ALM), an anti-ErbB3/ErbB2 bs-scFv. The A5-linker-ML3.9 bs-scFv exhibits selective targeting of tumour cells in vitro and in vivo that co-express the two target antigens over tumour cells that express only one target antigen or normal cells that express low levels of both antigens. The A5-linker-ML3.9 bs-scFv also exhibits significantly greater in vivo targeting of ErbB2'+'/ErbB3'+' tumours than derivative molecules that contain only one functional arm targeting ErbB2 or ErbB3. Binding of ALM to ErbB2'+'/ErbB3'+' cells mediates inhibition of tumour cell growth in vitro by effectively targeting the therapeutic anti-ErbB3 A5 scFv. This suggests both that ALM could provide the basis for an effective therapeutic agent and that engineered antibodies selected to co-target critical functional pairs of TAAs can enhance the targeting specificity and efficacy of antibody-based cancer therapeutics.  相似文献   

20.
Dysregulation of ErbB receptor tyrosine kinases is thought to promote mammary tumor progression by stimulating tumor cell growth and invasion. Overexpression and aberrant activation of ErbB2/HER2 confer aggressive and malignant characteristics to breast cancer cells, and patients displaying ErbB2-amplified breast cancer face a worsened prognosis. Recent studies have established that ErbB2 and ErbB3 are commonly co-overexpressed in breast tumor cell lines and in patient samples. ErbB2 heterodimerizes with and activates the ErbB3 receptor, and the two receptors synergize in promoting growth factor-induced cell proliferation, transformation, and invasiveness. Our previous studies have shown that the neuregulin receptor degradation protein-1 (Nrdp1) E3 ubiquitin ligase specifically suppresses cellular ErbB3 levels by marking the receptor for proteolytic degradation. Here, we show that overexpression of Nrdp1 in human breast cancer cells results in the suppression of ErbB3 levels, accompanied by the inhibition of cell growth and motility and the attenuation of signal transduction pathways. In contrast, either Nrdp1 knockdown or the overexpression of a dominant-negative form enhances ErbB3 levels and cellular proliferation. Additionally, Nrdp1 expression levels inversely correlate with ErbB3 levels in primary human breast cancer tissue and in a mouse model of ErbB2 mammary tumorigenesis. Our observations suggest that Nrdp1-mediated ErbB3 degradation suppresses cellular growth and motility, and that Nrdp1 loss in breast tumors may promote tumor progression by augmenting ErbB2/ErbB3 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号