首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
Li P  He QP  Ouyang YB  Liu CL  Hu BR  Siesjö BK 《Brain research》2001,896(1-2):69-76
The mechanisms underlying the aggravating effect of hyperglycemia on brain damage are still elusive. The present study was designed to test our hypothesis that hyperglycemia-mediated damage is caused by mitochondrial dysfunction with mitochondrial release of cytochrome c (cyt c) to the cytoplasm, which leads to activation of caspase-3, the executioner of cell death. We induced 15 min of forebrain ischemia, followed by 0.5, 1, and 3 h of recirculation in sham, normoglycemic and hyperglycemic rats. Release of cyt c was observed in the neocortex and CA3 in hyperglycemic rats after only 0.5 h of reperfusion, when no obvious neuronal damage was observed. The release of cyt c persisted after 1 and 3 h of reperfusion. Activation of caspase-3 was observed after 1 and 3 h of recovery in hyperglycemic animals. No cyt c release or caspase-3 activation was observed in sham-operated controls while a mild increase of cyt c was observed in normoglycemic ischemic animals after 1 and 3 h of reperfusion. The findings that there is caspase activation and cyt c relocation support a notion that the biochemical changes that constitute programmed cell death occur after ischemia and contribute, at least in part, to hyperglycemia-aggravated ischemic neuronal death.  相似文献   

3.
Hyperglycemia and hypercapnia aggravate intra-ischemic acidosis and subsequent brain damage. However, hyperglycemia causes more extensive post-ischemic damage than hypercapnia, particularly in the cingulate cortex. We investigated the changes in the subcellular distribution of protein kinase Cgamma (PKCgamma) and the Ca2+/calmodulin-dependent protein kinase II (CaMKII), as well as changes in protein tyrosine phosphorylation during and following 10 min normoglycemic, hyperglycemic (plasma glucose approximately 20 mM) and hypercapnic (paCO2) approximately 300 mm Hg) global cerebral ischemia. During reperfusion period, the translocation to cell membranes of PKCgamma, but not CaMKII, was prolonged by intra-ischemic hyperglycemia, while it was only marginally affected by hypercapnia. The tyrosine-phosphorylation of proteins in the synaptosomal membranes, as well as the extracellular signal-regulated kinase (ERK) in the cytosol, markedly increased during reperfusion following hyperglycemic ischemia, but to a lesser degree following hypercapnic ischemia. Our data suggest that PKCgamma, tyrosine kinase and ERK systems are involved in the process of ischemic damage in the cingulate cortex, where hyperglycemia may affect these kinases through an additional mechanism other than exaggerated acidosis.  相似文献   

4.
Li PA  He QP  Siesjö BK 《Brain research》2001,890(2):306-313
A recent study showed that a single intracarotid arterial injection of cyclosporin A (CsA) can dramatically reduce infarct volume in rats subjected to transient focal ischemia. The present experiments were undertaken to investigate whether intracarotid arterial injection of CsA reduces brain damage after global ischemia. Since hypothermia is also an efficacious factor in preventing ischemic brain damage, in the second part of the experiments we tested whether a combination of hypothermia and CsA would provide additional brain protection. Global ischemia of a 30-min duration was induced in the rat. CsA (10 mg/kg) was injected into the carotid artery immediately after reperfusion. Hypothermia was instituted after ischemia by allowing spontaneous head temperature to fall to 30–32°C, while body temperature was upheld at 37°C. The results demonstrated that vehicle-treated animals could not survive beyond 1–2 days after reperfusion, and the histopathological outcome in a separate group of rats perfusion-fixed after 1 day reperfusion showed 80–100% brain damage in the caudoputamen, and in the hippocampal CA1, CA3, CA4 and dentate gyrus subregions. Microinfarction and grade 3 damage were frequently observed in the cingulate and parietal cortex and in the thalamus. CsA moderately prolonged animal survival to 3 days after reperfusion and reduced brain damage to grade 2 in the cortical areas and the thalamus. Hypothermia further increased animal survival to at least 6 days after reperfusion and reduced brain damage to 30% in the caudoputamen, to close to zero in the CA3, CA4, and dentate gyrus, and to grade 1–2 in the cortical areas and the thalamus. The combination of hypothermia and CsA did not give additional protection.  相似文献   

5.
目的研究脑缺血大鼠缺血后适应模型中大脑皮质的ERK1/2通路表达特点及应用ERK1/2特异性抑制剂PD98059后对缺血后适应神经保护作用的影响,研究缺血后适应是否通过ERK1/2信号通路介导对急性缺血性脑梗死再灌注后的神经保护作用。方法将20只SD大鼠随机分为假手术组、缺血2h再灌注组、缺血2h后适应组以及PD98059+缺血2h后适应组(PD+2h后适应组),每组5只,用线栓法建立急性大脑中动脉闭塞的缺血性脑梗死模型,4组分别进行不同形式的实验。对比4组大鼠再灌注1h、24h的神经功能评分及再灌注24h后的梗死体积。每组另增加15只大鼠,分别于再灌注后2h、6h、24h留取缺血大脑皮质;Western blot检测再灌注2h、6h、24h后总T-ERK1/2、P-ERK1/2表达。结果 PD+2h后适应组与缺血2h再灌注组神经功能缺损评分高于缺血2h后适应组,脑梗死体积大于缺血2h后适应组。缺血后适应组再灌注2h、6h、24h后P-ERK1/2表达明显高于缺血2h再灌注组及PD+2h后适应组;以上表明,缺血后适应通过ERK1/2信号通路减轻大鼠缺血性脑损伤,应用P-ERK1/2的阻滞剂PD98059后,阻断了缺血后适应的脑保护作用。结论通过对本实验研究数据的分析后发现,缺血后适应对大鼠急性缺血性脑梗死具有神经保护作用,应用ERK1/2特异性抑制剂PD98059后,缺血后适应神经保护效应减弱,说明缺血后适应对急性缺血性脑梗死再灌注损伤的保护作用与MAPK/ERK信号通路具有深层次紧密关系。  相似文献   

6.
7.
Transient ischemia in normoglycemic animals leads to delayed neuronal damage which is confined to selectively vulnerable regions. In at least one of these, the CA1 sector of the hippocampus, cell death is preceded by neuronal hyperactivity, presumed to be caused by loss of inhibitory control. Hyperglycemic subjects develop postischemic seizures, and show enhanced damage. The ATP-sensitive K+ channel, which may be important in inhibitory control, is the target of antidiabetic sulfonylureas. We determined densities of sulfonylurea binding sites in rat brain after forebrain ischemia. Normoglycemic animals showed a decrease of glibenclamide receptor binding in the CA3 field, hilus and dentate gyrus of the hippocampus after 1 day of recovery. After 4 days of recovery, levels of sulfonylurea binding sites decreased mainly in the CA1 field and in the hilus, as well as in the substantia nigra. After 1 day of recovery, hyperglycemic animals did not show any significant variations of densities of sites compared to control animals. It is proposed that reduction of inhibitory control by ATP-sensitive K+ channels may be associated with delayed neuronal death.  相似文献   

8.
探讨脑缺血再灌流不同时程及不同程度缺血对海马及皮层胶质源性神经营养因子(glialcellline derived neurotrophic factor, GDNF)基因表达的影响,以及N甲基D天冬氨酸(Nm ethylDsapartate, NMDA)受体拮抗剂,钙离子通道阻断剂是否能调节缺血病态下GDNFm RNA的表达。参照Sm ith 等方法建立大鼠前脑缺血再灌流动物模型。用DIGOligonucleotide 3′end labeling Kit,标记51 m er的GDNF寡核苷酸探针在含有海马结构的冰冻组织切片上进行原位杂交检测GDNFm RNA的表达。10 m in 缺血再灌流2 h,齿状回GDNFm RNA表达上调。再灌流6 h,CA1,CA3 和皮层PAR区GDNFm RNA表达亦见增多,24 h 达高峰。Ketam ine 可使GDNF的基因表达在海马结构及皮层PAR区明显低于相应的缺血再灌流组,统计学差异显著(P< 005)。脑缺血再灌流时GDNF基因表达增加,对缺血神经元可能起保护作用。Ketam ine可阻断缺血后GDNFm RNA 的表达增加,提示NMDA谷氨酸受体很可能参与介导了缺  相似文献   

9.
Calcium channel blockers such as nicardipine improve outcome after global cerebral ischemia and may attenuate ischemic neuronal injury by preventing calcium influx and binding to calmodulin. We followed the temporal and regional sequence of neuronal calcium-calmodulin binding in normal rats (n = 6), untreated ischemic rats (n = 15), and ischemic rats treated with 0.05 mg/kg/hr s.c. nicardipine (n = 13). After 30 minutes of four-vessel occlusion, 40-microns brain sections were incubated in an anti-calmodulin antibody specific for calmodulin not bound to calcium and brain protein. Light-microscopic sections were examined immediately after ischemia and after 2 and 24 hours of reperfusion. Extensive staining of unbound calmodulin was seen in all hippocampal regions and in the cortex in normal rats. In untreated ischemic control rats, staining was lost, indicating calcium-calmodulin binding immediately after ischemia in all regions. However, after 24 hours, staining returned to normal in the cortex and dentate, and minimal staining returned in CA1 and CA3. Nicardipine-treated animals had significantly less calcium-calmodulin binding in CA1 and in the dentate after 2 hours of reperfusion. This study demonstrates that in clinically relevant doses nicardipine has a limited effect on calcium-calmodulin binding in selectively vulnerable regions after severe ischemia.  相似文献   

10.
Ca2+-ATPase is one of the most powerful modulators of intracellular calcium levels. In this study, we focused on chronological changes in the immunoreactivity and protein levels of Ca2+-ATPase in the hippocampus after 5 min of transient forebrain ischemia. Ca2+-ATPase immunoreactivity was significantly altered in the hippocampal CA1 region and in the dentate gyrus, but not in the CA2/3 region after ischemic insult. In the sham-operated group, Ca2+-ATPase immunoreactivity was detected in the hippocampus. Ca2+-ATPase immunoreactivity in the CA1 region and in the dentate gyrus, and its protein levels peaked 3 h after ischemic insult. At this time, CA1 pyramidal cells and dentate polymorphic cells showed strong Ca2+-ATPase immunoreactivity. Thereafter, Ca2+-ATPase immunoreactivity reduced in the CA1 region and in the dentate gyrus. One day after ischemic insult, Ca2+-ATPase immunoreactivity was observed in some CA1 non-pyramidal cells, and 4 days after ischemic insult, Ca2+-ATPase immunoreactivity was detected in astrocytes throughout the CA1 region, but Ca2+-ATPase immunoreactivity in the dentate gyrus had nearly disappeared. Our results suggest that Ca2+-ATPase changes may be associated with a response to ischemic damage in hippocampal CA1 pyramidal cells, and that increased Ca2+-ATPase immunoreactivity in the reactive astrocytes may be associated with the maintenance of intracellular calcium levels.  相似文献   

11.
Ding C  He Q  Li PA 《Experimental neurology》2004,188(2):421-429
Mitochondria play a critical role in the pathogenesis of cerebral ischemia. Acute hyperglycemia has been shown to activate the mitochondria-initiated cell death pathway after an intermediate period of ischemia. The objective of the present study was to determine if diabetic hyperglycemia induced by streptozotocin activates the cell death pathway after a brief period of global ischemia. Five minutes of global ischemia was induced in nondiabetic and diabetic rats. Brain samples were collected after 30 min, 6 h, 1, 3, and 7 days of recirculation as well as from sham-operated controls. Histopathological examination in the hippocampal CA1, CA3, hilus, and dentate gyrus regions, as well as in the cortical and thalamic areas, showed that neuronal death in diabetic animals increased compared to nondiabetic ischemic controls. Neuronal damage maturation occurred after 7 days of recovery in nondiabetic rats, while it was shortened to 3 days of recovery in diabetic animals. Western blot analyses revealed that release of cytochrome c markedly increased after 1 and 3 days of reperfusion in diabetic rats. Caspase-3 activation was evident in the nuclear fraction of the cortex of diabetic rats after 3 days recovery and it was preceded by activation of caspase-9, but not activation of caspase-8. Electron microscopy demonstrated that chromatin condensation and mitochondrial swelling were features of the diabetes-mediated ischemic neuronal damage. However, no apoptotic bodies were observed in any sections examined. These results suggest that a brief period of global ischemia in diabetic animals activates a neuronal cell death pathway involving cytochrome c release, caspase-9 activation, and caspase-3 cleavage, all of which are most likely initiated by early mitochondria damage.  相似文献   

12.
Spatial distribution of theta activity was investigated in the dorsal hippocampal formation and overlying neocortex of the urethane-anesthetized rat. Laminar phase profiles from semi-microelectrode penetartions showed approximately 180 degrees phase shifts combined with small amplitude values in stratum radiatum of CA1, instratum moleculare of the dentate gyrus and in layer V/VI of the cingulate cortex at theta peak frequency. Evidence has been presented that layers of neurons in CA1, in the dorsal granular layer and in the cingulate cortex are the sources of dipole-like theta field potentials. A strong linear relationship between the neuronal theta sources in hippocampal CA1, dentate area and cingulate cortex was found.  相似文献   

13.
Summary This study explores how hyperglycemia and enhanced tissue lactic acidosis influence the density and distribution of ischemic brain damage. Ischemia of 10-min duration was produced in glucose-infused rats by bilateral carotid clamping combined with hypotension, and the brains were perfusion-fixed with formaldehyde following recirculation of 3, 6, 12 and 18 h. After about 24 h the hyperglycemic animals developed seizures, and at that time two groups were added, one fixed prior to, and one after the onset of seizures. Similar experiments were made on normoglycemic animals with recirculation times of 1.5 to 96 h. After fixation the brains were embedded in paraffin, subserially sectioned and stained with celestine blue/acid fuchsin. In both normo- and hyperglycemic animals, neurons in the dentate hilus of the hippocampal formation and in the thalamic lateral reticular nucleus showed early and dense neuronal necrosis. In neocortex, hippocampal CA1 sector and caudoputamen, hyperglycemia shortened the delay before damage occurred and markedly enhanced the damage. Specific for the hyperglycemic animals was damage of the substantia nigra, pars reticulata (SNPR), manifest already at the earliest recovery periods studied; this finding is discussed in relationship to the role SNPR is assumed to play in preventing spread of seizure discharge.Supported by the Swedish Medical Research Council (Grants No. 14X-263 and 12X-7123), the National Institutes of Health of the United States Public Health Service (Grant No. 5 R01 NS-07838) and Finnish Medical Research Council  相似文献   

14.
Since ionic Ca2+ binds with intracellular calmodulin (CaM) before activating proteases, kinases, and phospholipases, demonstration of persistent Ca2+-CaM binding in neurons destined to show ischemic cellular injury would support the concept that elevated intracellular Ca2+ plays a causative role in ischemic neuronal damage. In order to characterize Ca2+-CaM binding, we used a sheep anti-CaM antibody (CaM-Ab) which recognizes CaM that is not bound to Ca2+ or brain target proteins. Therefore, immunohistochemical staining of brain sections by labeled CaM-Ab represented only unbound CaM. Six normal rats were compared to 15 animals rendered ischemic for 30 min by a modification of the four-vessel occlusion model. Animals were killed immediately after ischemia, and after 2 and 24 h of reperfusion. Brain sections through hippocampus were incubated in CaM-Ab, and a diaminobenzadiene labeled anti-sheep secondary antibody was added to stain the CaM-Ab. Staining in the endal limb of dentate, dorsal CA1, lateral CA3, and parietal cortex was graded on a 4-point scale. All normal animals had grade 4 staining indicating the presence of unbound CaM in all four brain regions. Ischemic animals demonstrated reduced (grade 0 to 2) staining in the CA1 and CA3 regions immediately and 2 and 24 h after ischemia (p less than 0.01 for both regions at all three time intervals) indicating persistent binding of CaM with Ca2+ and target proteins in these regions. Staining decreased in dentate and cortex up to 2 h after ischemia (p = 0.02 for both regions) but returned toward normal by 24 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
目的探讨脑缺血再灌流后海马氨基酸递质变化与神经元损害的关系。方法建立大鼠前脑缺血再灌流模型,测定海马CA1区和CA3/齿状回区游离氨基酸含量,观察阻断隔-海马通路对海马神经元损害和氨基酸水平的影响。结果(1)海马结构中仅CA1区神经元明显损害,但CA1区和CA3/齿状回区的Glu、Asp和GABA含量无差异。(2)阻断隔-海马通路可明显减轻海马神经元损害,但对海马氨基酸水平变化无影响。结论脑缺血再灌流后,氨基酸递质水平的异常变化不是海马CA1区神经元选择性易损的唯一决定因素,隔-海马通路末梢释放的神经递质也参与海马神经元损害过程。  相似文献   

16.
Transient focal ischemia of brief duration (15–30 min) gives rise to brain damage. In normoglycemic animals this damage usually consists of selective neuronal necrosis (SNN), and is largely confined to the lateral caudoputamen. In hyperglycemic subjects damage occurs more rapidly, involves also neocortical areas, and is often of the pan-necrotic type (`infarction'). Since experiments on forebrain ischemia of 30 min duration suggest that microcirculatory compromise develops during recirculation, we studied whether focal ischemia of the same duration, followed by reperfusion for 1, 2 or 4 h, leads to microcirculatory dysfunction. To test this possibility, we fixed the tissue by perfusion and counted the number of formed elements (leukocytes, macrophages and erythrocytes) in capillaries and postcapillary venules. Furthermore, capillary patency was evaluated following in vivo injection of Evan's blue. Histopathological examination of tissue fixed by perfusion after 1, 2 and 4 h of recirculation showed an increasing density of SNN in the caudoputamen of normoglycemic animals. Hyperglycemic, but not normoglycemic, animals showed pan-necrotic lesions (`infarction') after 4 h of recirculation. As a result, the total volume of tissue damage (SNN plus infarction) was larger in hyper- than in normoglycemic animals at 2 and 4 h of recirculation. In addition, hyperglycemic animals showed involvement of neocortex which increased with the time of reperfusion. In the ischemic hemisphere, between 5 and 10% of counted capillaries contained formed elements. However, since hyperglycemic animals contained an equal (or smaller) amount of cells the results did not suggest that capillary `plugging' could explain the aggravated damage. Moreover, both normo- and hyperglycemic animals showed close to 100% capillary patency. The results thus fail to support the notion that the aggravation of focal ischemic damage by hyperglycemia is due to obstruction of microvessel by swelling or leukocyte adherence.  相似文献   

17.
Hyperglycemia and focal brain ischemia.   总被引:6,自引:0,他引:6  
The influence of hyperglycemic ischemia on tissue damage and cerebral blood flow was studied in rats subjected to short-lasting transient middle cerebral artery (MCA) occlusion. Rats were made hyperglycemic by intravenous infusion of glucose to a blood glucose level of about 20 mmol/L, and MCA occlusion was performed with the intraluminar filament technique for 15, 30, or 60 minutes, followed by 7 days of recovery. Normoglycemic animals received saline infusion. Perfusion-fixed brains were examined microscopically, and the volumes of selective neuronal necrosis and infarctions were calculated. Cerebral blood flow was measured autoradiographically at the end of 30 minutes of MCA occlusion and after 1 hour of recirculation in normoglycemic and hyperglycemic animals. In two additional groups with 30 minutes of MCA occlusion, CO2 was added to the inhaled gases to create a similar tissue acidosis as in hyperglycemic animals. In one group CBF was measured, and the second group was examined for tissue damage after 7 days. Fifteen and 30 minutes of MCA occlusion in combination with hyperglycemia produced larger infarcts and smaller amounts of selective neuronal necrosis than in rats with normal blood glucose levels, a significant difference in the total volume of ischemic damage being found after 30 minutes of MCA occlusion. After 60 minutes of occlusion, when the volume of infarction was larger, only minor differences between normoglycemic and hyperglycemic animals were found. Hypercapnic animals showed volumes of both selective neuronal necrosis and infarction that were almost identical with those observed in normoglycemic, normocapnic animals. When local CBF was measured in the ischemic core after 30 minutes of occlusion, neither the hyperglycemic nor the hypercapnic animals were found to be significantly different from the normoglycemic group. Brief focal cerebral ischemia combined with hyperglycemia leads to larger and more severe tissue damage. Our results do not support the hypothesis that the aggravated injury is caused by any disturbances in CBF.  相似文献   

18.
Mints (munc18-interacting proteins) are novel multimodular adapter proteins in membrane transport and organization. Mint1, a neuronal isoform, is involved in synaptic vesicle exocytosis. Its potential effects on development of ischemic damage to neurons have not yet been evaluated. The authors examined changes in mint1 and other synaptic proteins by immunohistochemistry after transient global ischemia in mouse hippocampus. In sham-ischemic mice, immunoreactivity for mint1 was rich in fibers projecting from the entorhinal cortex to the hippocampus and in the mossy fibers linking the granule cells of the dentate gyrus to CA3 pyramidal neurons. Munc18-1, a binding partner of mint1, was distributed uniformly throughout the hippocampus, and synaptophysin 2, a synaptic vesicle protein, was localized mainly in mossy fibers. After transient global ischemia, mint1 immunoreactivity in mossy fibers was dramatically decreased at 1 day of reperfusion but actually showed enhancement at 3 days. However, munc18-1 and synaptophysin 2 were substantially expressed in the same region throughout the reperfusion period. These findings suggest that mint1 participates in neuronal transmission along the excitatory pathway linking the entorhinal cortex to CA3 in the hippocampus. Because mint1 was transiently decreased in the mossy fiber projection after ischemia, functional impairment of neuronal transmission in the projection from the dentate gyrus to CA3 pyramidal neurons might be involved in delayed neuronal death.  相似文献   

19.
We investigated the relationship between apoptosis and selective protein expression in brain from rats subjected to 8 (n=10) or 12 min (n=10) of forebrain ischemia and 48 h of reperfusion, and control sham operated (n=2) and normal (n=2). Coronal sections were processed for double staining with DNA fragmentation detection and immunohistochemical staining. In five of ten 8-min ischemic and three of ten 12-min ischemic animals, nearly all dead granule cells within the dentate gyrus exhibited apoptotic morphology. In the remaining animals, no granule cell death was evident. In the pyramidal regions (CA1/2), nearly all dead cells were necrotic with only scattered apoptotic cells present. The immunoreactive expression of wt-p53, p53-response proteins (WAF1, Bax and Gadd45), and a cell cycle protein (cyclin D) were detected and preferentially localized to nuclei of apoptotic granule cells, and were weakly expressed in nuclei of necrotic pyramidal CA1/2 cells. Thus, 48 h after 8 or 12 min of forebrain ischemia in the rat, most pyramidal cells and dentate granule cells undergo distinct cell death pathways of necrosis or apoptosis, respectively. In addition, the selective expression of proteins associated with DNA damage and cell cycle in apoptotic dentate granule cells suggests a role for these proteins in the induction of apoptosis.  相似文献   

20.
目的 :观察脑缺血再灌注损伤后脑皮层、梗塞区和海马神经元脑源性神经营养因子 (BDNF)水平的变化 ,及与脑病理变化的关联性 ;探讨 BDNF在脑缺血再灌注损伤中的可能作用机理。方法 :线栓法复制大鼠大脑中动脉脑缺血再灌注模型 ,原位核酸分子杂交检测脑不同区域 BDNFm RNA,图象分析间接定量其水平。结果 :1.脑缺血及缺血再灌注均能诱导双侧脑皮层、海马和梗塞区及其对侧相应区神经元 BDNFm RNA水平增高。2 .梗塞区因缺血损伤过重 ,神经元 BDNFm RNA水平增高的幅度小。 3.再灌注后神经元 BDNFm RNA的水平继续升高 ;其变化规律在不同脑区大致相似。 4.神经元 BDNFm RNA基础水平与神经元抗损伤力呈正相关。结论 :脑缺血及缺血再灌注损伤均导致双侧大脑 BD-NFm RNA表达的变化 ,BDNFm RNA水平的提高能增强神经元的抗损伤能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号