首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
BackgroundIn the brain, inflammation occurs following a variety of types of brain damage, including epileptic seizures. Proinflammatory cytokines, like IL-1β or TNFα, can increase neuronal excitability and initiate spontaneous seizures or epileptogenesis. Recent studies indicate that the effects can be attenuated or even abolished in animals subjected to inflammation-inducing treatments at earlier developmental stages, termed “preconditioning”. Immunocompetent microglial cells display particular sensitivity to subtle brain pathologies showing a morphological continuum from resting to reactive forms. Following inflammation, multiple ramified processes of resting microglia become gradually shorter, and the cells transform into macrophages. Parameters of the morphological variations were used here as indicators of the nervous tissue reactivity to seizures in adult rats experiencing inflammation at earlier stages of postnatal development.MethodsSystemic inflammation was induced with lipopolysaccharide (LPS) in 6-day-old or 30-day-old rats. In two-month-old survivors of the inflammatory status, seizures were evoked with pilocarpine injection. The seizure intensity was scored during a six-hour continuous observation period following the injection. Brain sections were immunostained for Iba1 to visualize microglia. Thereafter, morphology of microglial cells located in the hippocampal formation was analyzed using parameters such as solidity, circularity, ramification index, and area.ResultsIn naïve rats, seizure-induced transformations of microglial cells were reflected by strong changes in the parameters of their morphology. However, in the adult rats pretreated with LPS on their 6th or 30th postnatal days, the seizure-induced changes were significantly reduced, and microglial morphology remained significantly closer to normal. Significant amelioration of the acute phase of seizures was observed only when inflammation was induced in 30-day-old, but not in 6-day-old, rats.ConclusionsThe results confirm previous reports that moderate inflammation protects the nervous tissue from subsequent damage by reducing influences of proinflammatory factors on reactive glial cells. The young-age inflammation may have age-dependent effects on susceptibility to seizures induced in adulthood.This article is part of a Special Issue entitled “Status Epilepticus”.  相似文献   

2.
An exposure of rats to gamma-radiation at different stages of prenatal development produces brain dysplasias of different degree displaying also different susceptibility to pilocarpine-induced seizures. Following irradiation on prenatal day 13 (E13), the susceptibility is minimal and significantly lower even in relation to non-irradiated rats [Setkowicz, Z., Janeczko, K., 2003. Long-term changes in susceptibility to pilocarpine-induced status epilepticus following neocortical injuries in the rat at different developmental stages. Epilepsy Res. 53, 216-224]. On the other hand, the rat brain injured on postnatal day 30 presents very high susceptibility to seizures in the same pilocarpine model of epilepsy [Setkowicz, Z., Kluk, K., Janeczko, K., 2003. Long-term changes in postnatal susceptibility to pilocarpine-induced seizures in rats exposed to gamma radiation at different stages of prenatal development. Epilepsia 44, 1267-1273]. It could, therefore, be hypothesised that the congenital brain dysplasia produced by irradiation on E13 would minimize the highly increased susceptibility to seizures observed in the injured brain. Wistar rats were exposed to gamma-rays on E13 and they received a mechanical brain injury on postnatal day 30 (P30). On postnatal day 60, pilocarpine was injected to evoke status epilepticus. During a 6-h period following the injection, motor manifestations of seizure activity were recorded and rated. Seven days after pilocarpine injection, the animals were sacrificed and their brains were fixed. Pilocarpine injections in non-irradiated rats with brains injured on P30 evoked seizures of very high intensity and extremely high mortality in relation to non-injured controls. This high susceptibility to seizures following the brain injury was considerably decreased in rats irradiated on E13. The data provide evidence that the brain dysplasia in the rat acquired at this stage of prenatal development can significantly reduce the increased susceptibility to seizures evoked by the postnatal brain injury.  相似文献   

3.
Developmental PCB exposure impairs hearing and induces brainstem audiogenic seizures in adult offspring. The degree to which this enhanced susceptibility to seizure is manifest in other brain regions has not been examined. Thus, electrical kindling of the amygdala was used to evaluate the effect of developmental exposure to an environmentally relevant PCB mixture on seizure susceptibility in the rat. Female Long-Evans rats were dosed orally with 0 or 6 mg/kg/day of the PCB mixture dissolved in corn oil vehicle 4 weeks prior to mating and continued through gestation and up until postnatal day (PND) 21. On PND 21, pups were weaned, and two males from each litter were randomly selected for the kindling study. As adults, the male rats were implanted bilaterally with electrodes in the basolateral amygdala. For each animal, afterdischarge (AD) thresholds in the amygdala were determined on the first day of testing followed by once daily stimulation at a standard 200 μA stimulus intensity until three stage 5 generalized seizures (GS) ensued. Developmental PCB exposure did not affect the AD threshold or total cumulative AD duration, but PCB exposure did increase the latency to behavioral manifestations of seizure propagation. PCB exposed animals required significantly more stimulations to reach stage 2 seizures compared to control animals, indicating attenuated focal (amygdala) excitability. A delay in kindling progression in the amygdala stands in contrast to our previous finding of increased susceptibility to brainstem-mediated audiogenic seizures in PCB-exposed animals in response to a an intense auditory stimulus. These seemingly divergent results are not unexpected given the distinct source, type, and mechanistic underpinnings of these different seizure models. A delay in epileptogenesis following focal amygdala stimulation may reflect a decrease in neuroplasticity following developmental PCB exposure consistent with reductions in use-dependent synaptic plasticity that have been reported in the hippocampus of developmentally PCB exposed animals.  相似文献   

4.
Seizure incidence varies significantly with age, with seizure susceptibility particularly high during the first few years of life. Of significant concern is what effects do brief, repetitive seizures have on the developing brain. We approached this issue by examining the change in seizure threshold, and related markers of neuronal activity and metabolic activity (c-fos mRNA and 2-deoxyglucose [2DG]), as a function of repetitive seizure episodes in immature and mature rats. Starting on postnatal day 15 (P15) (immature) or P60 (adult) rats were given two flurothyl seizures a day for 5 days (nine or ten seizures). The seizure latency profile, our measure of threshold, in immature versus adult rats across the 5-day testing period was different. In immature rats, threshold for the second seizure on each day was significantly lower than for the first seizure, suggesting that there was little refractoriness after the first seizure of the day. In contrast, the mature animal had a significantly longer threshold latency to the second seizure for the first 3 days of testing. The immature animal was also more likely than the adult to exhibit tonic extension as a feature of the first seizure of the day. Following repetitive seizures, more regions of the CNS showed c-fos mRNA expression in the immature animal than adults, suggesting that repetitive seizures in the immature animal activated a greater percentage of the brain. Compared with the effects of a single seizure, repetitive seizures resulted in less 2DG labeling in most regions of the brain (except the hippocampus); in the immature brain this difference was more distinct than in adults. The consequences of repetitive seizures in the immature animal results in distinctly different seizure behavior and neuronal activity pattern (c-fos expression) than that observed in the mature animal.  相似文献   

5.
Setkowicz Z  Kłak K  Janeczko K 《Epilepsia》2003,44(10):1267-1273
PURPOSE: To determine whether brains irradiated at different stages of prenatal development also have different postnatal susceptibility to seizures evoked by pilocarpine. METHODS: Pregnant Wistar rats were exposed to a single 1.0-Gy dose of gamma rays on gestation days 13, 15, 17, or 19 (E13, E15, E17, and E19, respectively). On postnatal day 60, their offspring received i.p. pilocarpine injections to evoke status epilepticus. Behavior of the animals was observed continuously for 6 h after the injection, and motor manifestations of seizure activity were rated, and survival times recorded. After 7-day survival, the animals were killed, and their brains were weighed. RESULTS: The average brain weight of animals exposed to irradiation at earlier prenatal stages (E13 or E15) was significantly lower than that after irradiation on E17 or E19. However, effects of the irradiation on the susceptibility to pilocarpine-induced seizures were quite opposite. The intensity of status epilepticus evoked in rats irradiated on E13 or E15 was significantly lower than that in nonirradiated controls or in those irradiated on E17 or E19. Moreover, after irradiation on E13 or E15, survival of the animals was significantly higher in relation not only to other irradiated groups but also to the controls. CONCLUSIONS: The results suggest than the extent of neuronal deficit, even if relatively greater, cannot always lead to higher susceptibility of the dysplastic brain to seizures. Functional consequences of the deficit, even if its magnitude is relatively smaller but involving specific brain areas, appear to be critical for the epileptogenesis.  相似文献   

6.
This study was conducted to characterize the post-pubertal developmental aspects on seizure susceptibility and severity as well as calcium/calmodulin protein kinase type II (CaM kinase II) activity in status epilepticus (SE). Thirty- to ninety-day-old rats, in 10-day increments, were studied. This corresponds to a developmental age group that has not received thorough attention. The pilocarpine model of SE was characterized both behaviorally and electrographically. Seven criteria were analyzed for electrographical characterization: seizure severity, SE susceptibility, the average number of discrete seizures, average time until first seizure, average time to SE, average time from first discrete seizure to SE, and death. After 1 h of SE, specific brain regions were isolated for biochemical study. Phosphate incorporation into a CaM kinase II-specific substrate, autocamtide III, was used to determine kinase activity. There was no developmental effect on the average number of discrete seizures, average time until first seizure, average time to SE, average time from first discrete seizure to SE, and death; however, there was a significant effect on SE probability and seizure severity. Once SE was expressed, all animals showed a decrease in both cortical and hippocampal CaM kinase II activities. Conversely, seizure activity in the absence of SE did not result in a decrease in CaM kinase II activity. The data suggest that there is a gradual age-dependent modulation of SE susceptibility and seizure severity within the developmental stages studied. Additionally, once status epilepticus is observed at any age, there is a corresponding SE-induced inhibition of CaM kinase II.  相似文献   

7.
In the brain, injury-induced gliosis and axonal sprouting have been regarded as age-dependent repairing processes with, unfortunately, epileptogenic effects. The present study examines whether brains injured at different developmental stages become more or less susceptible to experimentally-induced status epilepticus. In 6- and 30-day-old Wistar rats (P6s and P30s, respectively), a mechanical injury was performed in the cortex of the left cerebral hemisphere. On postnatal day 60, all the animals and na?ve controls received single intraperitoneally pilocarpine injections to evoke status epilepticus. During a 6-h period following the injection, the animals were observed continuously and motor manifestations of seizure activity were recorded and rated. Seven days after pilocarpine injection, the animals were perfused and their body and brain weights recorded. When compared to controls, P6s showed neither significant variations in their epileptic behavior nor in brain and body weights. In relation to controls and to P6s, P30s presented an extremely high mortality, a significant loss of body weight and much longer-lasting seizures of much higher intensity. The data provide evidence that the long-term variations in susceptibility to experimentally-induced status epilepticus are determined by differences in the brain response to injury at different stages of postnatal development.  相似文献   

8.
Interruption of neurogenesis and/or neuronal migration produces brain dysplasia modifying susceptibility to epileptic seizures in adulthood. The course of neurogenesis has a strictly defined time-table. Consequently, the developmental stage at which the interruption occurs determines what functional subsystem potentially involved in epileptogenesis will suffer from irreversible neuronal deficit. The present study attempts to verify a hypothesis that brain dysplasias of different genesis should also lead to different susceptibility to seizures evoked by receptor agonists of different functional specificity, like kainic acid or pilocarpine, a cholinergic or glutaminergic agonist, respectively. Pregnant Wistar rats were exposed to gamma-rays on gestation days 13, 15, 17 or 19 (E13, E15, E17 or E19). Sixty-day-old offsprings of the females were injected with kainic acid or pilocarpine to evoke status epilepticus. During a 6-h period following the injection, motor manifestations of seizure activity were recorded. Generally, the intensity of pilocarpine-induced symptoms was relatively low in rats irradiated on E13 or E15 but high in rats irradiated on E17 or E19. In rats treated with kainic acid, the trend was opposite, viz. the later the prenatal irradiation was performed, the less intense epileptic symptoms were induced in adulthood. The data provide evidence that dysplasias acquired during prenatal development may significantly amplify or reduce the brain susceptibility to seizures. However, this relation depends not only on the developmental stage at which the dysplasias were produced but also on the functional specificity of epileptogenic stimuli used in the experimental model of epilepsy.  相似文献   

9.
N-Methyl-D-aspartate (NMDA) receptor antagonists inhibit both the kindling process and the expression of seizures in previously kindled adult rats. Experimental seizures are more readily produced in infant than adult rats, possibly related to a developmental predominance of NMDA receptor-mediated effects. If so, reduction of seizure susceptibility by NMDA receptor antagonists should be more dramatic in infant rats than in adults. We studied the effect of ketamine and MK-801 on kindling epileptogenesis and seizure expression in 15-day-old rats. Ketamine (5, 10, and 20 mg/kg) and MK-801 (0.033 and 0.1 mg/kg) both significantly increased the latency to stage 3 or 4 seizures in dose-dependent fashion. These results were similar to those found in adults but occurred at slightly lower doses. Ketamine 20 mg/kg and MK-801 0.33 mg/kg totally eliminated clinical seizure activity and nearly abolished afterdischarge in previously kindled infant rats, effects exceeding those reported in adults using doses up to 6 times as great. These results support the hypotheses that NMDA receptor-mediated neurotransmission plays an important role in seizure production and the increased seizure susceptibility in immature brain and raise the possibility that NMDA receptor antagonists could be useful antiepilepsy agents in young children.  相似文献   

10.
The cholinergic system modulates cerebral excitability. We recently reported that immunolesions of the basal forebrain (BF) cholinergic neurons in adult rats increase the susceptibility to generalized seizures. In this study we investigated the effects of lesions of the BF cholinergic neurons in neonatal rats on seizure susceptibility and cognitive function. Neonatal rats at postnatal day (P) 7 received intracerebroventricular (i.c.v.) injections of 192 IgG-saporin (SAP) or phosphate-buffered saline. Following 3 weeks after the injection the first group of rats was implanted with hippocampal electrodes for electroencephalogram (EEG) recordings while the second group of rats was tested for visual spatial memory using the hidden platform version of the water maze test. The first group of rats was then tested for seizure susceptibility using flurothyl 1 week after the electrode implantation. Rats that received immunolesions of the BF cholinergic neurons at P7 had significantly shorter latencies to onset of myoclonic jerks and tonic-clonic seizures than controls. However, no significant differences were found in the duration of seizures, or EEG ictal duration. No significant deficits in spatial learning were found between rats that received i.c.v. injections of SAP at P7 and controls. As in adult rats, lesions of the BF cholinergic system in rat pups result in subsequent increase in seizure susceptibility.  相似文献   

11.
Gliosis, axonal sprouting and remodelling of nerve connections in the injured brain have been regarded as epileptogenic processes dependent on the age when the injury was inflicted. The present study examines whether brains injured at different developmental stages may acquire different susceptibility to experimental status epilepticus induced in adulthood. In 6- and 30-day-old Wistar rats (P6s and P30s, respectively), a mechanical injury was performed in the left cerebral hemisphere. On postnatal day 60, all the animals and controls received single injections of kainic acid to evoke status epilepticus. During a 6-h period following the injection, the animals were observed continuously and motor symptoms of seizure activity were recorded and rated. P6s showed significantly lower intensity of kainic acid-induced epileptic symptoms and significantly longer survival than controls or P30s. In P30s, no significant change was detected. The data provide evidence that the developmental stage when the brain is injured determines epileptogenecity of the lesion. However, a considerable discrepancy between these data and those obtained previously following pilocarpine administration in the same experimental models of brain injury shows that each of the two models of epilepsy may display different aspects of the same age-dependent process triggered by the brain injury.  相似文献   

12.
Epidemiological evidence in human fetuses links inflammation during development with white matter damage. Breakdown of the blood-brain barrier has been proposed as a possible mechanism. This was investigated in the present study by inducing a prolonged inflammatory response in newborn rats, with intraperitoneal injections of lipopolysaccharide (LPS; 0.2 mg/kg) given at postnatal (P) day 0, P2, P4, P6 and P8. An acute phase response was present over the whole period of injections. Changes in blood-brain barrier permeability were determined for small (sucrose and inulin) and large (protein) molecules. During and immediately after the inflammatory response, plasma proteins were detected in the brain only within white matter tracts, indicating an increased permeability of the blood-brain barrier to protein during this period. The alteration in permeability to protein was transient. In contrast, the permeability of the blood-brain barrier to 14C-sucrose and 14C-inulin was significantly higher in adult animals that had received serial LPS injections during development. Adult animals receiving a single 1 mg/kg LPS injection at P0 showed no alteration in blood-brain barrier permeability to either small or larger molecules. A significant decrease in the volume of CNPase immunoreactive presumptive white matter tracts occurred in the external capsule and corpus callosum at P9. These results demonstrate that a prolonged systemic inflammatory response in the early postnatal period in rats causes size selective increases in blood-brain barrier permeability at different stages of brain development and results in changes in white matter volume.  相似文献   

13.
Infantile status epilepticus and future seizure susceptibility in the rat   总被引:3,自引:0,他引:3  
The long-term effects of infantile seizures on the development of seizures in adulthood were studied in rats. Infantile seizures of varying severity were induced with intraperitoneal injections of kainic acid in 15-day-old rats. In adulthood the seizure susceptibility of the rats was determined by kindling the left amygdala and by measuring their ability to resist recurrent seizures. The results suggest that infantile status epilepticus is associated with a very high mortality; however in the surviving rats, infantile seizures even as severe as status epilepticus do not cause neuronal brain damage and do not predispose to the development of convulsions later in life.  相似文献   

14.
In view of previous reports of changes in seizure susceptibility in adult rats exposed to phenobarbital or diazepam as pups, we examined the effects of early life exposure to lamotrigine and phenytoin, two commonly used antiepileptic drugs (AEDs), for their effect on seizure threshold in adult rats. We found that pups exposed to lamotrigine for 6 days during the second postnatal week had a significantly lower threshold for pentylenetetrazole-evoked seizures when tested as adults. In contrast, phenytoin exposure during the second postnatal week was without a significant effect on seizure threshold in adults. Seizure scores at threshold were comparable across all groups tested. The dose of lamotrigine used in our study (20 mg/kg) was below that required to cause developmental neuronal apoptosis, whereas the dose of phenytoin used (50 mg/kg) was above that required for developmental neurotoxicity. Therefore, our findings suggest that neurodevelopmental alterations in seizure susceptibility may occur via mechanisms that are independent of those responsible for neural injury or teratogenesis. Our findings support the possibility that therapy with certain AEDs during pregnancy or infancy may alter seizure susceptibility later in life, a possibility that should be taken into account when examining early life factors that contribute to seizure susceptibility in adulthood.  相似文献   

15.
Epileptogenesis and the Immature Brain   总被引:12,自引:12,他引:0  
S. L. Moshé 《Epilepsia》1987,28(S1):S3-S14
Summary: Epidemiological studies indicate that the incidence of seizures is highest early in life. This report discusses the experimental data derived from studies of focal epileptogenesis of the immature brain in tandem with ongoing maturational changes. During development, neurons have characteristic neurophysiological properties. Local interictal discharges are long in duration, lack a stereotypic morphology, and have limited fields. Yet the immature brain is very susceptible to the development of bilateral, although asynchronous, seizures and status epilepticus induced by amygdala kindling or by convul-sant drugs. This increased seizure susceptibility may be due to a functional immaturity of a substantia nigra, GABA-sensitive output system. The morbidity of convulsions occurring early in life may not be as grave as previously thought in terms of subsequent acquisition of "normal" developmental milestones. The propensity to develop recurrent convulsions in adulthood is not related to the severity of a single seizure in infancy. Although multiple severe seizures may predispose animals to the development of seizures later in life, this is not a unique feature of the immature brain, since it also occurs in the adult brain. Finally, there is evidence that the immature brain may respond to anticonvulsant drugs differently from its mature counterpart; these findings emphasize the need to develop new antiepileptic therapies that take into account the maturational state of the brain.  相似文献   

16.
Early-life inflammatory stress increases seizure susceptibility later in life. However, possible sex- and age-specific differences and the associated mechanisms are largely unknown. C57BL/6 mice were bred in house, and female and male pups were injected with lipopolysaccharide (LPS; 100 μg/kg, i.p.) or vehicle control (saline solution) at postnatal day 14 (P14). Seizure threshold was assessed in response to pentylenetetrazol (1% solution, i.v.) in adolescence (∼P40) and adulthood (∼P60). We found that adult, but not adolescent, mice treated with LPS displayed ∼34% lower seizure threshold compared with controls. Females and males showed similar increased seizure susceptibility, suggesting that altered brain excitability was age dependent, but not sex dependent. Whole-cell recordings revealed no differences in excitatory synaptic activity onto CA1 pyramidal neurons from control or neonatally inflamed adolescent mice of either sex. However, adult mice of both sexes previously exposed to LPS displayed spontaneous EPSC frequency approximately twice that of controls, but amplitude was unchanged. Although these changes were not associated with alterations in dendritic spines or in the NMDA/AMPA receptor ratio, they were linked to an increased glutamate release probability from Schaffer collateral, but not temporoammonic pathway. This glutamate increase was associated with reduced activity of presynaptic GABAB receptors and was independent of the endocannabinoid-mediated suppression of excitation. Our new findings demonstrate that early-life inflammation leads to long-term increased hippocampal excitability in adult female and male mice associated with changes in glutamatergic synaptic transmission. These alterations may contribute to enhanced vulnerability of the brain to subsequent pathologic challenges such as epileptic seizures.SIGNIFICANCE STATEMENT Adult physiology has been shown to be affected by early-life inflammation. Our data reveal that early-life inflammation increases excitatory synaptic transmission onto hippocampal CA1 pyramidal neurons in an age-dependent manner through disrupted presynaptic GABAB receptor activity on Schaffer collaterals. This hyperexcitability was seen only in adult, and not in adolescent, animals of either sex. The data suggest a maturation process, independent of sex, in the priming action of early-life inflammation and highlight the importance of studying mature brains to reveal cellular changes associated with early-life interventions.  相似文献   

17.
Malnutrition during the earliest stages of life may result in innumerable brain problems. Moreover, this condition could increase the chances of developing neurological diseases, such as epilepsy. We analyzed the effects of early-life malnutrition on susceptibility to epileptic seizures induced by the pilocarpine model of epilepsy. Wistar rat pups were kept on a starvation regimen from day 1 to day 21 after birth. At day 60, 16 animals (8 = well-nourished; 8 = malnourished) were exposed to the pilocarpine experimental model of epilepsy. Age-matched well-nourished (n = 8) and malnourished (n = 8) rats were used as controls. Animals were video-monitored over 9 weeks. The following behavioral parameters were evaluated: first seizure threshold (acute period of the pilocarpine model); status epilepticus (SE) latency; first spontaneous seizure latency (silent period), and spontaneous seizure frequency during the chronic phase. The cell and mossy fiber sprouting (MFS) density were evaluated in the hippocampal formation. Our results showed that the malnourished animals required a lower pilocarpine dose in order to develop SE (200 mg/kg), lower latency to reach SE, less time for the first spontaneous seizure and higher seizure frequency, when compared to well-nourished pilocarpine rats. Histopathological findings revealed a significant cell density reduction in the CA1 region and intense MFS among the malnourished animals. Our data indicate that early malnutrition greatly influences susceptibility to seizures and behavioral manifestations in adult life. These findings suggest that malnutrition in infancy reduces the threshold for epilepsy and promotes alterations in the brain that persist into adult life.  相似文献   

18.
High-dose treatment with pilocarpine hydrochloride, a cholinergic muscarinic agonist, induces seizures in rodents following systemic or intracerebral administration. Pilocarpine seizures are characterized by a sequential development of behavioral patterns and electrographic activity. Hypoactivity, tremor, scratching, head bobbing, and myoclonic movements of the limbs progress to recurrent myoclonic convulsions with rearing, salivation, and falling, and status epilepticus. The sustained convulsions induced by pilocarpine are followed by widespread damage to the forebrain. The amygdala, thalamus, olfactory cortex, hippocampus, neocortex, and substantia nigra are the most sensitive regions to epilepsy-related damage following convulsions produced by pilocarpine. Spontaneous seizures are observed in the long-term period following the administration of convulsant doses of pilocarpine. Developmental studies show age-dependent differences in the response of rats to pilocarpine. Seizures are first noted in 7-12 day-old rats, and the adult pattern of behavioral and electroencephalographic sequelae of pilocarpine is seen in 15-21-day-old rats. During the third week of life the rats show an increased susceptibility to the convulsant action of pilocarpine relative to older and younger animals. The developmental progress of the convulsive response to pilocarpine does not correlate with evolution of the brain damage. The adult pattern of the damage is seen after a delay of 1-2 weeks in comparison with the evolution of seizures and status epilepticus. The susceptibility to seizures induced by pilocarpine increases in rats aged over 4 months. The basal ganglia curtail the generation and spread of seizures induced by pilocarpine. The caudate putamen, the substantia nigra, and the entopeduncular nucleus govern the propagation of pilocarpine-induced seizures. The antiepileptic drugs diazepam, clonazepam, phenobarbital, valproate, and trimethadione protect against pilocarpine-induced convulsions, while diphenylhydantoin and carbamazepine are ineffective. Ethosuximide and acetazolamide increase the susceptibility to convulsant action of pilocarpine. Lithium, morphine, and aminophylline also increase the susceptibility of rats to pilocarpine seizures. The pilocarpine seizure model may be of value in designing new therapeutic approaches to epilepsy.  相似文献   

19.
Although numerous models are currently used for systematic study of the mechanisms of epileptogenesis in mature brain, few animal models have been developed that allow similar explorations in the developing nervous system. One experimental model of epilepsy supports a premise that perinatal experience can lead to eventual seizure susceptibility, however. Audiogenic seizure (AGS) susceptibility can be induced during a critical developmental period in normal mice by auditory deprivation and therefore by cochlear trauma. We studied the developmental parameters that affect success of both induction and testing of AGS-susceptibility in the rat. Intense high-frequency noise exposure was used as the traumatizing agent. The Wistar rat strain used is inherently seizure-resistant because in greater than 400 trials, untreated rats have never exhibited susceptibility at any age. Although single prolonged exposures to high-intensity noise were administered to groups of rats at ages between postnatal days (PNDs) 12 and 36, PND 14 was the age when exposure was most likely to result in eventual seizure susceptibility. Furthermore, duration of initial exposure on PND 14 determined the rate of susceptibility when measured 2 weeks later. Accordingly, we noted that single noise exposures at an intensity of 125 dB and ranging between 6 and 10 min in duration induced susceptibility in 100% of rats tested on PND 28; nonetheless, seizures among the rats exposed for 8 min were the most severe. Typically, these seizures began as wild running attacks and were followed by tonic/clonic convulsions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The role of catecholamines in mediating the acquisition of amygdala-kindled seizures was investigated in juvenile rats administered intracisternal injections of 6-hydroxydopamine (6-OHDA) on postnatal days 1 and 2. Amygdala kindling was initiated on day 28, using stimulations delivered each hour through two consecutive stage V seizures. The 6-OHDA treatment resulted in a 53% increase in the overall rate of kindling in juvenile rats. This acceleration was confined primarily to the early phases of kindling in that the 6-OHDA-treated rats skipped the early kindling stages, and the later stages of kindling were unaffected. These findings support evidence from adult rats that catecholamines play a role in initially limiting the spread of seizure activity during kindled seizure acquisition; however, when the seizures have begun to generalize, the ability of catecholaminergic systems to inhibit seizure spread diminishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号