首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Williams–Beuren syndrome (WBS; OMIM no. 194050) is a multisystemic neurodevelopmental disorder caused by a hemizygous deletion of 1.55 Mb on chromosome 7q11.23 spanning 28 genes. Haploinsufficiency of the ELN gene was shown to be responsible for supravalvular aortic stenosis and generalized arteriopathy, whereas LIMK1, CLIP2, GTF2IRD1 and GTF2I genes were suggested to be linked to the specific cognitive profile and craniofacial features. These insights for genotype–phenotype correlations came from the molecular and clinical analysis of patients with atypical deletions and mice models. Here we report a patient showing mild WBS physical phenotype and normal IQ, who carries a shorter 1 Mb atypical deletion. This rearrangement does not include the GTF2IRD1 and GTF2I genes and only partially the BAZ1B gene. Our results are consistent with the hypothesis that hemizygosity of the GTF2IRD1 and GTF2I genes might be involved in the facial dysmorphisms and in the specific motor and cognitive deficits observed in WBS patients.  相似文献   

2.
Williams–Beurens syndrome (WBS) is a rare genetic disorder caused by a recurrent 7q11.23 microdeletion. Clinical characteristics include typical facial dysmorphisms, weakness of connective tissue, short stature, mild to moderate intellectual disability and distinct behavioral phenotype. Cardiovascular diseases are common due to haploinsufficiency of ELN gene. A few cases of larger or smaller deletions have been reported spanning towards the centromeric or the telomeric regions, most of which included ELN gene. We report on three patients from two unrelated families, presenting with distinctive WBS features, harboring an atypical distal deletion excluding ELN gene. Our study supports a critical role of CLIP2, GTF2IRD1, and GTF2I gene in the WBS neurobehavioral profile and in craniofacial features, highlights a possible role of HIP1 in the autism spectrum disorder, and delineates a subgroup of WBS individuals with an atypical distal deletion not associated to an increased risk of cardiovascular defects.  相似文献   

3.
KCNE1 encodes a regulatory subunit of the KCNQ1 potassium channel‐complex. Both KCNE1 and KCNQ1 are necessary for normal hearing and cardiac ventricular repolarization. Recessive variants in these genes are associated with Jervell and Lange‐Nielson syndrome (JLNS1 and JLNS2), a cardio‐auditory syndrome characterized by congenital profound sensorineural deafness and a prolonged QT interval that can cause ventricular arrhythmias and sudden cardiac death. Some normal‐hearing carriers of heterozygous missense variants of KCNE1 and KCNQ1 have prolonged QT intervals, a dominantly inherited phenotype designated Romano‐Ward syndrome (RWS), which is also associated with arrhythmias and elevated risk of sudden death. Coassembly of certain mutant KCNE1 monomers with wild‐type KCNQ1 subunits results in RWS by a dominant negative mechanism. This paper reviews variants of KCNE1 and their associated phenotypes, including biallelic truncating null variants of KCNE1 that have not been previously reported. We describe three homozygous nonsense mutations of KCNE1 segregating in families ascertained ostensibly for nonsyndromic deafness: c.50G>A (p.Trp17*), c.51G>A (p.Trp17*), and c.138C>A (p.Tyr46*). Some individuals carrying missense variants of KCNE1 have RWS. However, heterozygotes for loss‐of‐function variants of KCNE1 may have normal QT intervals while biallelic null alleles are associated with JLNS2, indicating a complex genotype‐phenotype spectrum for KCNE1 variants.  相似文献   

4.
《Genetics in medicine》2023,25(1):37-48
PurposeBiallelic PIGN variants have been described in Fryns syndrome, multiple congenital anomalies-hypotonia-seizure syndrome (MCAHS), and neurologic phenotypes. The full spectrum of clinical manifestations in relation to the genotypes is yet to be reported.MethodsGenotype and phenotype data were collated and analyzed for 61 biallelic PIGN cases: 21 new and 40 previously published cases. Functional analysis was performed for 2 recurrent variants (c.2679C>G p.Ser893Arg and c.932T>G p.Leu311Trp).ResultsBiallelic-truncating variants were detected in 16 patients—10 with Fryns syndrome, 1 with MCAHS1, 2 with Fryns syndrome/MCAHS1, and 3 with neurologic phenotype. There was an increased risk of prenatal or neonatal death within this group (6 deaths were in utero or within 2 months of life; 6 pregnancies were terminated). Incidence of polyhydramnios, congenital anomalies (eg, diaphragmatic hernia), and dysmorphism was significantly increased.Biallelic missense or mixed genotype were reported in the remaining 45 cases—32 showed a neurologic phenotype and 12 had MCAHS1. No cases of diaphragmatic hernia or abdominal wall defects were seen in this group except patient 1 in which we found the missense variant p.Ser893Arg to result in functionally null alleles, suggesting the possibility of an undescribed functionally important region in the final exon.For all genotypes, there was complete penetrance for developmental delay and near-complete penetrance for seizures and hypotonia in patients surviving the neonatal period.ConclusionWe have expanded the described spectrum of phenotypes and natural history associated with biallelic PIGN variants. Our study shows that biallelic-truncating variants usually result in the more severe Fryns syndrome phenotype, but neurologic problems, such as developmental delay, seizures, and hypotonia, present across all genotypes. Functional analysis should be considered when the genotypes do not correlate with the predicted phenotype because there may be other functionally important regions in PIGN that are yet to be discovered.  相似文献   

5.
Williams-Beuren syndrome (WBS) is a developmental disorder with characteristic physical, cognitive and behavioural traits caused by a microdeletion of approximately 1.5 Mb on chromosome 7q11.23. In total, 24 genes have been described within the deleted region to date. We have isolated and characterised a novel human gene, GTF2IRD2, mapping to the WBS critical region thought to harbour genes important for the cognitive aspects of the disorder. GTF2IRD2 is the third member of the novel TFII-I family of genes clustered on 7q11.23. The GTF2IRD2 protein contains two putative helix-loop-helix regions (I-repeats) and an unusual C-terminal CHARLIE8 transposon-like domain, thought to have arisen as a consequence of the random insertion of a transposable element generating a functional fusion gene. The retention of a number of conserved transposase-associated motifs within the protein suggests that the CHARLIE8-like region may still have some degree of transposase functionality that could influence the stability of the region in a mechanism similar to that proposed for Charcot-Marie-Tooth neuropathy type 1A. GTF2IRD2 is highly conserved in mammals and the mouse ortholgue (Gtf2ird2) has also been isolated and maps to the syntenic WBS region on mouse chromosome 5G. Deletion mapping studies using somatic cell hybrids show that some WBS patients are hemizygous for this gene, suggesting that it could play a role in the pathogenesis of the disorder.  相似文献   

6.
Co‐occurrence of primordial dwarfism and microcephaly together with particular skeletal findings are seen in a wide range of Mendelian syndromes including microcephaly micromelia syndrome (MMS, OMIM 251230), microcephaly, short stature, and limb abnormalities (MISSLA, OMIM 617604), and microcephalic primordial dwarfisms (MPDs). Genes associated with these syndromes encode proteins that have crucial roles in DNA replication or in other critical steps of the cell cycle that link DNA replication to cell division. We identified four unrelated families with five affected individuals having biallelic or de novo variants in DONSON presenting with a core phenotype of severe short stature (z score < ?3 SD), additional skeletal abnormalities, and microcephaly. Two apparently unrelated families with identical homozygous c.631C > T p.(Arg211Cys) variant had clinical features typical of Meier‐Gorlin syndrome (MGS), while two siblings with compound heterozygous c.346delG p.(Asp116Ile*62) and c.1349A > G p.(Lys450Arg) variants presented with Seckel‐like phenotype. We also identified a de novo c.683G > T p.(Trp228Leu) variant in DONSON in a patient with prominent micrognathia, short stature and hypoplastic femur and tibia, clinically diagnosed with Femoral‐Facial syndrome (FFS, OMIM 134780). Biallelic variants in DONSON have been recently described in individuals with microcephalic dwarfism. These studies also demonstrated that DONSON has an essential conserved role in the cell cycle. Here we describe novel biallelic and de novo variants that are associated with MGS, Seckel‐like phenotype and FFS, the last of which has not been associated with any disease gene to date.  相似文献   

7.
8.
Cartilage hair hypoplasia (CHH), anauxetic dysplasia 1, and anauxetic dysplasia 2 are rare metaphyseal dysplasias caused by biallelic pathogenic variants in RMRP and POP1, which encode the components of RNAse‐MRP endoribonuclease complex (RMRP) in ribosomal biogenesis pathway. Nucleolus and neural progenitor protein (NEPRO), encoded by NEPRO (C3orf17), is known to interact with multiple protein subunits of RMRP. We ascertained a 6‐year‐old girl with skeletal dysplasia and some features of CHH. RMRP and POP1 did not harbor any causative variant in the proband. Parents‐child trio exomes revealed a candidate biallelic variant, c.435G>C, p.(Leu145Phe) in NEPRO. Two families with four affected individuals with skeletal dysplasia and a homozygous missense variant, c.280C>T, p.(Arg94Cys) in NEPRO, were identified from literature and their published phenotype was compared in detail to the phenotype of the child we described. All the five affected individuals have severe short stature, brachydactyly, skin laxity, joint hypermobility, and joint dislocations. They also have short metacarpals, broad middle phalanges, and metaphyseal irregularities. Protein modeling and stability prediction showed that the mutant protein has decreased stability. Both the reported variants are in the same domain of the protein. Our report delineates the clinical and radiological characteristics of an emerging ribosomopathy caused by biallelic variants in NEPRO.  相似文献   

9.
ZNF335 plays an essential role in neurogenesis and biallelic variants in ZNF335 have been identified as the cause of severe primary autosomal recessive microcephaly in 2 unrelated families. We describe, herein, 2 additional affected individuals with biallelic ZNF335 variants, 1 individual with a homozygous c.1399 T > C, p.(Cys467Arg) variant, and a second individual with compound heterozygous c.2171_2173delTCT, p.(Phe724del) and c.3998A > G, p.(Glu1333Gly) variants with the latter variant predicted to affect splicing. Whereas the first case presented with early death and a severe phenotype characterized by anterior agyria with prominent extra‐axial spaces, absent basal ganglia, and hypoplasia of the brainstem and cerebellum, the second case had a milder clinical presentation with hypomyelination and otherwise preserved brain structures on MRI. Our findings expand the clinical spectrum of ZNF335‐associated microcephaly.  相似文献   

10.
Homozygosity for nonsense variants in CEP55 has been associated with a lethal condition characterized by multinucleated neurons, anhydramnios, renal dysplasia, cerebellar hypoplasia, and hydranencephaly (MARCH syndrome) also known as Meckel‐like syndrome. Missense variants in CEP55 have not previously been reported in association with disease. Here we describe seven living individuals from five families with biallelic CEP55 variants. Four unrelated individuals with microcephaly, speech delays, and bilateral toe syndactyly all have a common CEP55 variant c.70G>A p.(Glu24Lys) in trans with nonsense variants. Three siblings are homozygous for a consensus splice site variant near the end of the gene. These affected girls all have severely delayed development, microcephaly, and varying degrees of lissencephaly/pachygyria. Here we compare our seven patients with three previously reported families with a prenatal lethal phenotype (MARCH syndrome/Meckel‐like syndrome) due to homozygous CEP55 nonsense variants. Our series suggests that individuals with compound heterozygosity for nonsense and missense variants in CEP55 have a different viable phenotype. We show that homozygosity for a splice variant near the end of the CEP55 gene is also compatible with life.  相似文献   

11.
Congenital disorders of glycosylation (CDGs) comprise a large number of inherited metabolic defects that affect the biosynthesis and attachment of glycans. CDGs manifest as a broad spectrum of disease, most often including neurodevelopmental and skeletal abnormalities and skin laxity. Two patients with biallelic CSGALNACT1 variants and a mild skeletal dysplasia have been described previously. We investigated two unrelated patients presenting with short stature with advanced bone age, facial dysmorphism, and mild language delay, in whom trio‐exome sequencing identified novel biallelic CSGALNACT1 variants: compound heterozygosity for c.1294G>T (p.Asp432Tyr) and the deletion of exon 4 that includes the start codon in one patient, and homozygosity for c.791A>G (p.Asn264Ser) in the other patient. CSGALNACT1 encodes CSGalNAcT‐1, a key enzyme in the biosynthesis of sulfated glycosaminoglycans chondroitin and dermatan sulfate. Biochemical studies demonstrated significantly reduced CSGalNAcT‐1 activity of the novel missense variants, as reported previously for the p.Pro384Arg variant. Altered levels of chondroitin, dermatan, and heparan sulfate moieties were observed in patients’ fibroblasts compared to controls. Our data indicate that biallelic loss‐of‐function mutations in CSGALNACT1 disturb glycosaminoglycan synthesis and cause a mild skeletal dysplasia with advanced bone age, CSGALNACT1‐CDG.  相似文献   

12.
Some variants that cause autosomal‐recessive congenital adrenal hyperplasia (CAH) also cause hypermobility type Ehlers–Danlos syndrome (EDS) due to the monoallelic presence of a chimera disrupting two flanking genes: CYP21A2, encoding 21‐hydroxylase, necessary for cortisol and aldosterone biosynthesis, and TNXB, encoding tenascin‐X, an extracellular matrix protein. Two types of CAH tenascin‐X (CAH‐X) chimeras have been described with a total deletion of CYP21A2 and characteristic TNXB variants. CAH‐X CH‐1 has a TNXB exon 35 120‐bp deletion resulting in haploinsufficiency, and CAH‐X CH‐2 has a TNXB exon 40 c.12174C>G (p.Cys4058Trp) variant resulting in a dominant‐negative effect. We present here three patients with biallelic CAH‐X and identify a novel dominant‐negative chimera termed CAH‐X CH‐3. Compared with monoallelic CAH‐X, biallelic CAH‐X results in a more severe phenotype with skin features characteristic of classical EDS. We present evidence for disrupted tenascin‐X function and computational data linking the type of TNXB variant to disease severity.  相似文献   

13.
Developmental and epileptic encephalopathies are genetic disorders in which both the developmental disability and the frequent epileptic activity are the effect of a specific gene variant. While heterozygous variants in SCN1B have been described in families with generalized epilepsy with febrile seizures plus, Type 1, only three cases of homozygous, missense variants in SCN1B have been reported in association with autosomal recessive inheritance of a severe developmental and epileptic encephalopathy. We present two siblings who are homozygous for a novel, missense variant in SCN1B, c.265C>T, predicting p.Arg89Cys. The proband is an 11‐year‐old female with infantile‐onset, fever‐induced, intractable generalized tonic–clonic seizures, myoclonic seizures, and developmental slowing and autism spectrum disorder occurring later in the course of the disease. Her 4‐year‐old brother had a similar epilepsy phenotype, but still displays normal development. This variant has not been previously reported in the homozygous state in control databases. The variant was predicted to be damaging and occurred in the vicinity of other epileptic encephalopathy‐associated missense variants that are biallelic and located in the extracellular immunoglobulin loop domain of the protein, which mediates interaction of the beta‐1 subunit with cellular adhesion molecules. Our report is the first set of siblings with homozygosity for the p.Arg89Cys variant in SCN1B and further implicates biallelic mutations in this gene as a cause of epileptic encephalopathy mimicking Dravet syndrome. Interestingly, the phenotype we observed was milder compared to that previously described in patients with recessive SCN1B mutations.  相似文献   

14.
Multiple morphological anomalies of the sperm flagella (MMAF syndrome) is a severe male infertility phenotype which has so far been formally linked to the presence of biallelic mutations in nine genes mainly coding for axonemal proteins overexpressed in the sperm flagellum. Homozygous mutations in QRICH2, a gene coding for a protein known to be required for stabilizing proteins involved in sperm flagellum biogenesis, have recently been identified in MMAF patients from two Chinese consanguineous families. Here, in order to better assess the contribution of QRICH2 in the etiology of the MMAF phenotype, we analyzed all QRICH2 variants from whole exome sequencing data of a cohort of 167 MMAF-affected subjects originating from North Africa, Iran, and Europe. We identified a total of 14 potentially deleterious variants in 18 unrelated individuals. Two unrelated subjects, representing 1% of the cohort, carried a homozygous loss-of-function variant: c.3501C>G [p.Tyr1167Ter] and c.4614C>G [p.Tyr1538Ter], thus confirming the implication of QRICH2 in the MMAF phenotype and human male infertility. Sixteen MMAF patients (9.6%) carried a heterozygous QRICH2 potentially deleterious variant. This rate was comparable to what was observed in a control group (15.5%) suggesting that the presence of QRICH2 heterozygous variants is not associated with MMAF syndrome.  相似文献   

15.
In 2011, biallelic loss‐of‐function variants in the interleukin receptor 11 alpha gene IL11RA were found to be associated with a Crouzon‐like craniosynostosis syndrome with associated dental anomalies (CRSDA). Since then, a total of 41 similar patients have been reported with IL11RA variants. We report two adult brothers diagnosed with Crouzon syndrome as children, in which the clinical diagnosis of CRSDA was made on reevaluation. Laboratory testing detected biallelic IL11RA variants, c.916_924dup (p.Thr306_Ser308dup) and c.781C > T (p.Arg261Cys), both of which have now been reported in other families. Protein modeling and conservation analysis show that these two mutation sites cluster together near a WSXWS motif that likely plays a significant role in regulating IL11RA protein function. Population analysis from gnomAD shows that Non‐Finnish Europeans (similar to ethnicity of this family), have an allele frequency for p.Thr306_Ser308dup of 0.014% and p.Arg261Cys of 0.008%. We found other ethnicities have functional IL11RA missense variants at higher frequencies. With this report, we provide a summary of the clinical findings including details of middle ear anomalies associated with conductive hearing loss. We also provide data supporting the populations at risk for this condition to increase recognition and diagnosis of this rare autosomal recessive craniosynostosis syndrome.  相似文献   

16.
Boucher–Neuhäuser syndrome (BNHS) is characterized by chorioretinal dystrophy, hypogonadotropic hypogonadism, and cerebellar dysfunction and atrophy. The disorder has been associated with biallelic pathogenic variants in the patatin-like phospholipase domain-containing protein 6 (PNPLA6) gene. We present an individual with a clinical diagnosis consistent with BNHS who lacked any PNPLA6 variants but on quartet family exome sequencing had a de novo variant in the hexokinase 1 (HK1) gene (NM_000188.2 [GRCh37/hg19]: g.71139826G>A, c.1240G>A, p.Gly414Arg), suggesting genetic heterogeneity for BNHS. Longitudinal follow-up indicated neurological deterioration, neuropsychiatric symptoms, and progressive cerebellar atrophy. The BNHS phenotype overlaps and expands the known HK1 genotypic and phenotypic spectrum. Individuals with variants in HK1 should undergo evaluation for hypogonadotropic hypogonadism, potentially amenable to treatment.  相似文献   

17.
Noonan syndrome (NS) is characterised by distinctive facial features, heart defects, variable degrees of intellectual disability and other phenotypic manifestations. Although the mode of inheritance is typically dominant, recent studies indicate LZTR1 may be associated with both dominant and recessive forms. Seeking to describe the phenotypic characteristics of LZTR1-associated NS, we searched for likely pathogenic variants using two approaches. First, scrutiny of exomes from 9624 patients recruited by the Deciphering Developmental Disorders (DDDs) study uncovered six dominantly-acting mutations (p.R97L; p.Y136C; p.Y136H, p.N145I, p.S244C; p.G248R) of which five arose de novo, and three patients with compound-heterozygous variants (p.R210*/p.V579M; p.R210*/p.D531N; c.1149+1G>T/p.R688C). One patient also had biallelic loss-of-function mutations in NEB, consistent with a composite phenotype. After removing this complex case, analysis of human phenotype ontology terms indicated significant phenotypic similarities (P = 0.0005), supporting a causal role for LZTR1. Second, targeted sequencing of eight unsolved NS-like cases identified biallelic LZTR1 variants in three further subjects (p.W469*/p.Y749C, p.W437*/c.-38T>A and p.A461D/p.I462T). Our study strengthens the association of LZTR1 with NS, with de novo mutations clustering around the KT1-4 domains. Although LZTR1 variants explain ~0.1% of cases across the DDD cohort, the gene is a relatively common cause of unsolved NS cases where recessive inheritance is suspected.  相似文献   

18.
Zellweger spectrum disorder (ZSD) is a group of autosomal recessive disorders caused by biallelic pathogenic variants in any one of the 13 PEX genes essential for peroxisomal biogenesis. We report a cohort of nine infants who presented at birth with severe neonatal features suggestive of ZSD and found to be homozygous for a variant in PEX6 (NM_000287.4:c.1409G > C[p.Gly470Ala]). All were of Mixtec ancestry and identified by the California Newborn Screening (NBS) Program to have elevated C26:0-lysophosphatidylcholine but no reportable variants in ABCD1. The clinical and biochemical features of this cohort are described within. Gly470Ala may represent a founder variant in the Mixtec population of Central California. ZSD should be considered in patients who present at birth with severe hypotonia and enlarged fontanelles, especially in the setting of an abnormal NBS, Mixtec ancestry, or family history of infant death. There is a need to further characterize the natural history of ZSD, the Gly470Ala variant, and expand upon possible genotype–phenotype correlations.  相似文献   

19.
Seckel syndrome is an ultrarare autosomal recessive genetically heterogenous condition characterized by intrauterine and postnatal growth restriction, proportionate severe short stature, severe microcephaly, intellectual disability, and distinctive facial features including a prominent nose. Up to now, 40 patients with molecularly confirmed Seckel syndrome have been reported with biallelic variants in nine genes: ATR, CENPJ, CEP63, CEP152, DNA2, NIN, NSMCE2, RBBP8, and TRAIP. Homozygosity for nonsense variant (c.129G>A, p.43*) in CEP63 was described in three cousins with microcephaly, short stature, mild to moderate intellectual disability and diagnoses of Seckel syndrome. Here, we report a second family with three siblings who are compound heterozygous for loss-of-function variants in CEP63, c.1125T>G, p.(Tyr375*) and c.595del, p.(Glu199Asnfs*11). All siblings present with microcephaly, prominent nose, and intellectual disability but only one has severe short stature. Two siblings have aggressive behavior, a feature previously not reported in Seckel syndrome. This report adds two novel truncating variants in CEP63 and extends the clinical knowledge on CEP63-related conditions.  相似文献   

20.
Inactivating variants in the centrosomal CEP78 gene have been found in cone‐rod dystrophy with hearing loss (CRDHL), a particular phenotype distinct from Usher syndrome. Here, we identified and functionally characterized the first CEP78 missense variant c.449T>C, p.(Leu150Ser) in three CRDHL families. The variant was found in a biallelic state in two Belgian families and in a compound heterozygous state—in trans with c.1462‐1G>T—in a third German family. Haplotype reconstruction showed a founder effect. Homology modeling revealed a detrimental effect of p.(Leu150Ser) on protein stability, which was corroborated in patients' fibroblasts. Elongated primary cilia without clear ultrastructural abnormalities in sperm or nasal brushes suggest impaired cilia assembly. Two affected males from different families displayed sperm abnormalities causing infertility. One of these is a heterozygous carrier of a complex allele in SPAG17, a ciliary gene previously associated with autosomal recessive male infertility. Taken together, our data indicate that a missense founder allele in CEP78 underlies the same sensorineural CRDHL phenotype previously associated with inactivating variants. Interestingly, the CEP78 phenotype has been possibly expanded with male infertility. Finally, CEP78 loss‐of‐function variants may have an underestimated role in misdiagnosed Usher syndrome, with or without sperm abnormalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号