首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Intellectual disability (ID) is a neurodevelopmental disorder characterized by limitations in both intellectual and behavioral functioning. It can occur in non-syndromic and syndromic forms involving multiple organs. While the majority of genetic variants linked to ID are de novo, inherited variants are also detected in some forms. Here, we report a consanguineous Lebanese family presenting with an autosomal recessive syndromic ID characterized by neurodevelopmental delay, mild dysmorphic features, hearing impairment and endocrine dysfunction. Whole exome sequencing enabled the detection of the homozygous nonsense mutation in BOD1, p.R151X, in the proband. BOD1 is required for chromosomes biorientation during cell division. It also contributes to the regulation of cell survival and to the modulation of fatty acid metabolism. Another nonsense mutation in BOD1 was linked to ID in a consanguineous Iranian family. This is the second report of BOD1 mutations in humans and the first in a syndromic ID including gonadal dysfunction and high-frequency hearing impairment. Our findings confirm the involvement of BOD1 in cognitive functioning and expand the clinical spectrum of BOD1 deficiency.  相似文献   

3.
Marfanoid habitus (MH) combined with intellectual disability (ID) is a genetically and clinically heterogeneous group of overlapping disorders. We performed exome sequencing in 33 trios and 31 single probands to identify novel genes specific to MH‐ID. After the search for variants in known disease‐causing genes and non‐disease‐causing genes with classical approaches, we searched for variants in non‐disease‐causing genes whose pLI was above 0.9 (ExAC Consortium data), in which truncating variants were found in at least 3 unrelated patients. Only DLG4 gene met these criteria. Data from the literature and various databases also indicated its implication in ID. DLG4 encodes post‐synaptic density protein 95 (PSD‐95), a protein expressed in various tissues, including the brain. In neurons, PSD‐95 is located at the post‐synaptic density, and is associated with glutamatergic receptor signaling (NMDA and AMPA). PSD‐95 probably participates in dendritogenesis. Two patients were heterozygous for de novo frameshift variants and one patient carried a a consensus splice site variant. Gene expression studies supported their pathogenicity through haploinsufficiency and loss‐of‐function. Patients exhibited mild‐to‐moderate ID, similar marfanoid features, including a long face, high‐arched palate, long and thin fingers, pectus excavatum, scoliosis and ophthalmological manifestations (nystagmus or strabismus). Our study emphasizes the role of DLG4 as a novel post‐synaptic‐associated gene involved in syndromic ID associated with MH.  相似文献   

4.
Although whole‐exome sequencing (WES) is the gold standard for the diagnosis of neurodevelopmental disorders (NDDs), it remains expensive for some genetic centers. Commercialized panels comprising all OMIM‐referenced genes called “medical exome” (ME) constitute an alternative strategy to WES, but its efficiency is poorly known. In this study, we report the experience of 2 clinical genetic centers using ME for diagnosis of NDDs. We recruited 216 consecutive index patients with NDDs in 2 French genetic centers, corresponded to the daily practice of the units and included non‐syndromic intellectual disability (NSID, n = 33), syndromic ID (NSID = 122), pediatric neurodegenerative disorders (n = 7) and autism spectrum disorder (ASD, n = 54). We sequenced samples from probands and their parents (when available) with the Illumina TruSight One sequencing kit. We found pathogenic or likely pathogenic variants in 56 index patients, for a global diagnostic yield of 25.9%. The diagnosis yield was higher in patients with ID as the main diagnosis (32%) than in patients with ASD (3.7%). Our results suggest that the use of ME is a valuable strategy for patients with ID when WES cannot be used as a routine diagnosis tool.  相似文献   

5.
Female‐restricted syndromic intellectual disability (ID) is a neurodevelopmental disorder with developmental delay (DD)/ID, facial dysmorphism, and diverse congenital anomalies comprising heart defects, anal anomalies, choanal atresia, postaxial polydactyly, scoliosis, and brain abnormalities. Loss‐of‐function mutations in the USP9X gene inherited as X‐linked dominance were identified as its etiology in females of different ethnic groups. Here, we report a 15‐year‐old Thai girl harboring a novel de novo heterozygous one‐base pair deletion (c.3508delG, p.Val1170TrpfsX9) in exon 23 of USP9X. Her profound DD, dysmorphic face including attached earlobes, short stature, and congenital malformations including s‐shaped thoracolumbar scoliosis, hip dislocation, and generalized brain atrophy shared common characteristics of X‐linked syndromic ID. We have observed severely malformed oro‐dental organs and a choledochal cyst, which have never been reported. Our study presents the first patient from Thailand expanding the phenotypic and mutational spectra of the syndrome.  相似文献   

6.
A 0.8kb intronic duplication in MAGT1 and a single base pair deletion in the last exon of ATRX were identified using a chromosome X‐specific microarray and exome sequencing in a family with five males demonstrating intellectual disability (ID) and unusual skin findings (e.g., generalized pruritus). MAGT1 is an Mg2+ transporter previously associated with primary immunodeficiency and ID, whereas mutations in ATRX cause ATRX‐ID syndrome. In patient cells, the function of ATRX was demonstrated to be abnormal based on altered RNA/protein expression, hypomethylation of rDNA, and abnormal cytokinesis. Dysfunction of MAGT1 was reflected in reduced RNA/protein expression and Mg2+ influx. The mutation in ATRX most likely explains the ID, whereas MAGT1 disruption could be linked to abnormal skin findings, as normal magnesium homeostasis is necessary for skin health. This work supports observations that multiple mutations collectively contribute to the phenotypic variability of syndromic ID, and emphasizes the importance of correlating clinical phenotype with genomic and cell function analyses.  相似文献   

7.
Intellectual disability (ID) is the hallmark of an extremely heterogeneous group of disorders that comprises a wide variety of syndromic and non‐syndromic phenotypes. Here, we report on mutations in two aminoacyl‐tRNA synthetases that are associated with ID in two unrelated Iranian families. In the first family, we identified a homozygous missense mutation (c.514G>A, p.Asp172Asn) in the cytoplasmic seryl‐tRNA synthetase (SARS) gene. The mutation affects the enzymatic core domain of the protein and impairs its enzymatic activity, probably leading to reduced cytoplasmic tRNASer concentrations. The mutant protein was predicted to be unstable, which could be substantiated by investigating ectopic mutant SARS in transfected HEK293T cells. In the second family, we found a compound heterozygous genotype of the mitochondrial tryptophanyl‐tRNA synthetase (WARS2) gene, comprising a nonsense mutation (c.325delA, p.Ser109Alafs*15), which very likely entails nonsense‐mediated mRNA decay and a missense mutation (c.37T>G, p.Trp13Gly). The latter affects the mitochondrial localization signal of WARS2, causing protein mislocalization. Including AIMP1, which we have recently implicated in the etiology of ID, three genes with a role in tRNA‐aminoacylation are now associated with this condition. We therefore suggest that the functional integrity of tRNAs in general is an important factor in the development and maintenance of human cognitive functions.  相似文献   

8.
Identification of rare genetic variants in patients with intellectual disability (ID) has been greatly accelerated by advances in next generation sequencing technologies. However, due to small numbers of patients, the complete phenotypic spectrum associated with pathogenic variants in single genes is still emerging. Among these genes is ZBTB18 (ZNF238), which is deleted in patients with 1q43q44 microdeletions who typically present with ID, microcephaly, corpus callosum (CC) abnormalities, and seizures. Here we provide additional evidence for haploinsufficiency or dysfunction of the ZBTB18 gene as the cause of ID in five unrelated patients with variable syndromic features who underwent whole exome sequencing revealing separate de novo pathogenic or likely pathogenic variants in ZBTB18 (two missense alterations and three truncating alterations). The neuroimaging findings in our cohort (CC hypoplasia seen in 4/4 of our patients who underwent MRI) lend further support for ZBTB18 as a critical gene for CC abnormalities. A similar phenotype of microcephaly, CC agenesis, and cerebellar vermis hypoplasia has been reported in mice with central nervous system‐specific knockout of Zbtb18. Our five patients, in addition to the previously described cases of de novo ZBTB18 variants, add to knowledge about the phenotypic spectrum associated with ZBTB18 haploinsufficiency/dysfunction.  相似文献   

9.
Intellectual disability (ID) varies in severity and is often associated with a variety of other clinical features. In consanguineous populations ID is usually inherited in an autosomal recessive fashion. Many genes are known for the condition, but many more are yet to be identified. By linkage analysis and exome sequencing we identified homozygous early truncating variant c.115G > T (p.Glu39*) in FAM160B1 in a 38-year-old woman with severe ID, microcephaly, behavioral abnormalities, speech problems, mild ataxia and mild facial dysmorphism. Recently homozygous missense c.248 T > C (p.Leu83Pro) was reported to underlie the ID syndrome in a 7-year-old boy and his two younger siblings. Some findings for those siblings overlap with those for our patient, but our patient does not have cutis laxa. Our findings confirm FAM160B1, with unknown function, as a syndromic ID gene and indicate that FAM160B1 is not essential for survival but is vital for proper functioning of the nervous system, delineate the FAM160B1-related ID, and describe the disease in a much older age.  相似文献   

10.
11.
Intellectual disability (ID) is frequent in the general population, with 1 in 50 individuals directly affected worldwide. The multiple etiologies include X-linked ID (XLID). Among syndromic XLID, few syndromes present severe ID associated with postnatal microcephaly and midline stereotypic hand movements. We report on three male patients with ID, midline stereotypic hand movements, hypotonia, hyperkinesia, strabismus, as well as seizures (2/3), and non-inherited and postnatal onset microcephaly (2/3). Using array CGH and exome sequencing we characterised two truncating mutations in IQSEC2, namely two de novo intragenic duplication mapped to the Xp11.22 region and a nonsense mutation in exon 7. We propose that truncating mutations in IQSEC2 are responsible for syndromic severe ID in male patients and should be screened in patients without mutations in MECP2, FOXG1, CDKL5 and MEF2C.  相似文献   

12.
Intellectual disability (ID) refers to deficits in mental abilities, social behavior, and motor skills to perform activities of daily living as compared to peers. Numerous genetic and environmental factors may be responsible for ID. We report on elucidation of molecular basis for syndromic ID associated with ptosis, polydactyly, and MRI features suggestive of Joubert syndrome using homozygosity mapping followed by exome sequencing. The analysis revealed a novel synonymous variation p.T293T (c.879G>A) which leads to a splicing defect in ARMC9 gene. The variant is present in conserved region of ARM domain of ARMC9 protein, which is predicted to form a platform for protein interaction. This domain is likely to be altered in patient due to splicing defect caused by this synonymous variation. Our report of variant in ARMC9 Leading to Joubert syndrome phenotype (JS30), elucidates the genetic heterogeneity of Joubert syndrome, and expands the gene list for ciliopathies.  相似文献   

13.

Background  

Intellectual disability (ID) is a serious disorder of the central nervous system with a prevalence of 1-3% in a general population. In the past decades, the research focus has been predominantly on X-linked ID (68 loci and 19 genes for non syndromic X linked ID) while for autosomal recessive nonsyndromic ID (NSID) only 30 loci and 6 genes have been reported to date.  相似文献   

14.
Wiedemann‐Steiner syndrome (WSS) is a rare syndromic condition in which intellectual disability (ID) is associated with hypertrichosis cubiti, short stature, and characteristic facies. Following the identification of the causative gene (KMT2A) in 2012, only 31 cases of WSS have been described precisely in the literature. We report on 33 French individuals with a KMT2A mutation confirmed by targeted gene sequencing, high‐throughput sequencing or exome sequencing. Patients' molecular and clinical features were recorded and compared with the literature data. On the molecular level, we found 29 novel mutations. We observed autosomal dominant transmission of WSS in 3 families and mosaicism in one family. Clinically, we observed a broad phenotypic spectrum with regard to ID (mild to severe), the facies (typical or not of WSS) and associated malformations (bone, cerebral, renal, cardiac and ophthalmological anomalies). Hypertrichosis cubiti that was supposed to be pathognomonic in the literature was found only in 61% of our cases. This is the largest series of WSS cases yet described to date. A majority of patients exhibited suggestive features, but others were less characteristic, only identified by molecular diagnosis. The prevalence of WSS was higher than expected in patients with ID, suggesting than KMT2A is a major gene in ID.  相似文献   

15.
DDX3X (Xp11.4) encodes a DEAD‐box RNA helicase that escapes X chromosome inactivation. Pathogenic variants in DDX3X have been shown to cause X‐linked intellectual disability (ID) (MRX102, MIM: 300958). The phenotypes associated with DDX3X variants are heterogeneous and include brain and behavioral abnormalities, microcephaly, hypotonia, and movement disorders and/or spasticity. The majority of DDX3X variants described are de novo mutations in females with ID. In contrast, most male DDX3X variants are inherited from an unaffected mother, with one documented exception being a recently identified de novo splice site variant. It has been suggested, therefore, that DDX3X exerts its effects through haploinsufficiency in females, and that affected males carry hypomorphic alleles that retain partial function. Given the lack of male de novo DDX3X variants, loss‐of‐function variants in this gene are suspected to be male lethal. Through whole‐exome sequencing, we identified three unrelated males with hemizygous missense DDX3X variants and ID. All three variants were confirmed by Sanger sequencing, with two established as de novo. In silico analyses were supportive of pathogenicity. We report the male phenotypes and compare them to phenotypes observed in previously reported male and female patients. In conclusion, we propose that de novo DDX3X variants are not necessarily male lethal and should be considered as a cause of syndromic ID in both males and females.  相似文献   

16.
Since the discovery of the FMR1 gene and the clinical and molecular characterization of Fragile X Syndrome in 1991, more than 141 genes have been identified in the X-chromosome in these 28 years thanks to applying continuously evolving molecular techniques to X-linked intellectual disability (XLID) families. In the past decade, array comparative genomic hybridization and next generation sequencing technologies have accelerated gene discovery exponentially. Classically, XLID has been subdivided in syndromic intellectual disability (S-XLID)—where intellectual disability (ID) is always associated with other recognizable physical and/or neurological features—and non-specific or non-syndromic intellectual disability (NS-XLID) where the only common feature is ID. Nevertheless, new advances on the study of these entities have showed that this classification is not always clear-cut because distinct variants in several of these XLID genes can result in S-XLID as well as in NS-XLID. This review focuses on the current knowledge on the XLID genes involved in non-syndromic forms, with the emphasis on their pathogenic mechanism, thus allowing the possibility to elucidate why some of them can give both syndromic and non-syndromic phenotypes.  相似文献   

17.
Ebstein anomaly is an uncommon congenital heart defect (CHD), characterized by downward displacement of the tricuspid valve into the right ventricle. To uncover the genetic associations with Ebstein anomaly, we have searched chromosomal imbalances using standard cytogenetic and array‐CGH analysis, and single gene conditions associated with syndromic Ebstein anomaly (with extracardiac anomalies), and screened GATA4 and NKX2.5 mutations in nonsyndromic patients (without extracardiac anomalies). Between January 1997 and September 2009, 44 consecutive patients with Ebstein anomaly were evaluated in two centers of Pediatric Cardiology. Ebstein anomaly was syndromic in 12 (27%) patients, and nonsyndromic in 32 (73%). A recognizable syndrome or complex was diagnosed by clinical criteria in seven patients. In one syndromic patient an 18q deletion was diagnosed by standard cytogenetic analysis. Array‐CGH analysis performed in 10 of the 12 syndromic patients detected an interstitial deletion of about 4 Mb at 8p23.1 in one patient, and a deletion 1pter > 1p36.32/dup Xpter‐ > Xp22.32 in another patient. In the 28 of 32 nonsyndromic patients who underwent molecular testing, no mutation in GATA4 and NKX2.5 genes were detected. We conclude that Ebstein anomaly is a genetically heterogeneous defect, and that deletion 1p36 and deletion 8p23.1 are the most frequent chromosomal imbalances associated with Ebstein anomaly. Candidate genes include the GATA4 gene (in patients with del 8p23.1), NKX2.5 (based on published patients with isolated Ebstein anomaly) and a hypothetical gene in patients with del 1p36). © 2011 Wiley‐Liss, Inc.  相似文献   

18.
Decreased or increased activity of potassium channels caused by loss-of-function and gain-of-function (GOF) variants in the corresponding genes, respectively, underlies a broad spectrum of human disorders affecting the central nervous system, heart, kidney, and other organs. While the association of epilepsy and intellectual disability (ID) with variants affecting function in genes encoding potassium channels is well known, GOF missense variants in K+ channel encoding genes in individuals with syndromic developmental disorders have only recently been recognized. These syndromic phenotypes include Zimmermann–Laband and Temple–Baraitser syndromes, caused by dominant variants in KCNH1, FHEIG syndrome due to dominant variants in KCNK4, and the clinical picture associated with dominant variants in KCNN3. Here we review the presentation of these individuals, including five newly reported with variants in KCNH1 and three additional individuals with KCNN3 variants, all variants likely affecting function. There is notable overlap in the phenotypic findings of these syndromes associated with dominant KCNN3, KCNH1, and KCNK4 variants, sharing developmental delay and/or ID, coarse facial features, gingival enlargement, distal digital hypoplasia, and hypertrichosis. We suggest to combine the phenotypes and define a new subgroup of potassium channelopathies caused by increased K+ conductance, referred to as syndromic neurodevelopmental K+ channelopathies due to dominant variants in KCNH1, KCNK4, or KCNN3.Subject terms: Paediatric neurological disorders, Genetics research  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号