首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In a recent study of focal cerebral ischemia in rats, pre-ischemic administration of the synthetic allosteric hemoglobin modifier RSR13 (2-[4-[[3,5-dimethylanilino) carbonyl] methyl] phenoxy]-2-methylproprionic acid) reduced cerebral infarct size when combined with the NMDA receptor antagonist dizocilpine (MK-801) but not when given alone. We hypothesized that post-ischemic RSR13 administration would enhance neuroprotection afforded by NMDA receptor antagonism in a rat model of transient middle cerebral artery occlusion (MCAO). Fasted normothermic Wistar rats underwent 75 min of temporary MCAO. At onset of reperfusion, rats randomly received: (1) 0.9% NaCl (vehicle) i.v. alone (n=16); (2) 0.9% NaCl+dizocilpine (0.25 mg/kg) i.v. (n=16); or (3) RSR13 (150 mg/kg)+dizocilpine (0.25 mg/kg) i.v. (n=17). Seven days later, neurologic deficit and cerebral infarct size were determined. Dizocilpine alone compared to vehicle reduced mean+/-S.D. subcortical (52+/-24 mm(3) vs. 122+/-64 mm(3), P=0.003) and cortical (35+/-35 mm(3) vs. 125+/-72 mm(3), P=0.00074) infarct volumes. When compared to dizocilpine alone, the combination of RSR13+dizocilpine further reduced subcortical (37+/-14 mm(3) vs. 52+/-24 mm(3), P=0. 034) and cortical (8+/-19 mm(3) vs. 35+/-35 mm(3), P=0.018) infarct size. RSR13+dizocilpine improved neurologic scores vs. either dizocilpine alone (P=0.0014) or vehicle (P=10(-7)). The combination of NMDA receptor antagonism and a RSR13 mediated rightward shift of the oxy-hemoglobin dissociation curve improved outcome from MCAO. Because this occurred after reperfusion, our results suggest that the post-ischemic brain continues to suffer from hypoperfusion defects, which are amenable to therapy by enhanced O(2) delivery. The results also support the concept that neuroprotective strategies, which combine drugs with different mechanisms of action, may yield cumulative benefits.  相似文献   

2.
High-dose aspirin is neuroprotective in a rat focal ischemia model   总被引:4,自引:0,他引:4  
Acetylsalicylic acid (ASA) is neuroprotective through various pharmacological action sites. We used a temporary middle cerebral artery occlusion (tMCAO) model in 56 Wistar rats to assess whether repeated ASA injections at 30 min, 6 h, 1, 2, 3, and 4 days after stroke onset are neuroprotective. Animals were sacrificed 5 days after MCAO; infarct size was analyzed with 2,3,5-triphenyltetrazolium chloride staining. As compared to saline (164+/-13 mm(3), n=14), only repeated injections of 40 mg/kg ASA (79+/-18 mm(3), n=14, P=0.0029), but not of 20 mg/kg ASA (129+/-19 mm(3), n=15), reduced infarct volume significantly. No significant change was noted with 40 mg/kg ASA injected only once at 30 min after MCAO (117+/-16 mm(3), n=13).  相似文献   

3.
To assess the effects of acetylsalicylic acid (ASA) on glutamate and interleukin-6 (IL-6) release in the striatum of rats suffering from cerebral ischemia, we used the microdialysis technique with probes implanted 2 h prior to stroke onset. A total of 36 rats were randomly assigned to either temporary (90 min, n=18) or permanent (n=18) middle cerebral artery occlusion (MCAO). Animals received either a bolus of 40 mg/kg ASA or saline as control 30 min after stroke onset. Permanent MCAO led to large infarct volumes with no differences between treatment with ASA (239.8+/-4.1 mm3) and saline (230.1+/-3.9 mm3, p=0.15). In contrast, ASA therapy in temporary ischemia (87.2+/-6.2 mm3) reduced infarct size significantly compared to placebo (155.6+/-4.8 mm3, p<0.0001). Only in temporary ischemia, ASA application reduced glutamate significantly at the time points 90, 120, and 150 min after MCAO. Pooled post-ischemic microdialysate concentrations of IL-6 in temporary MCAO were significantly higher after ASA treatment (215+/-81 pg/mL, p=0.0297) than in saline-treated rats (80+/-13 pg/mL). In the permanent MCAO group, no difference in IL-6 between the ASA (125+/-21 pg/mL) and saline group (68+/-34 pg/mL) was noted. No differences were seen for c-fos positive neurons in the penumbra and hippocampus between all groups. These results suggest that the neuroprotective effect of ASA is reflected by glutamate attenuation and IL-6 induction even if given after stroke onset, but only if reperfusion is achieved.  相似文献   

4.
This experiment evaluated the potential for ketamine HCl, a non-competitive glutamate antagonist, to minimize injury resulting from temporary focal cerebral ischemia. Male spontaneously hypertensive rats were randomly assigned to receive either ketamine (n = 13) or halothane anesthesia (n = 12) during 2 h of reversible middle cerebral artery occlusion (MCAO). Ketamine was administered as a 50 mg/kg i.v. loading dose followed by a continuous 1.25 mg/kg/min i.v. infusion beginning 25 min prior to ischemia and continued until 30 min after reperfusion. An additional group of rats (ketamine-shams, n = 8) underwent craniectomy and ketamine administration (as above) but the middle cerebral artery was not ligated. Physiologic values were similar between groups with the exception of plasma glucose which was elevated in the halothane-MCAO group. After 4 days recovery, rats in all groups were neurologically evaluated. There were no differences between the two groups undergoing MCAO for neurologic grading or open field behavior, although both groups performed worse than did ketamine-shams (P less than 0.05). In contrast, motor performance revealed more severe deficits in the ketamine-MCAO rats vs either the halothane-MCAO or ketamine-sham groups (P less than 0.05). Cerebral infarct volume was then planimetrically measured after triphenyl tetrazolium chloride (TTC) staining of fresh brain sections. Mean +/- S.D. infarct volume was not different between the halothane-MCAO (134 +/- 51 mm3) and ketamine-MCAO (131 +/- 64 mm3) groups. Seven of 8 sham rats were free of TTC demarcated injury and in the remaining rat injury was minimal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Zhao Z  Cheng M  Maples KR  Ma JY  Buchan AM 《Brain research》2001,909(1-2):46-50
Free radicals have gained wide acceptance as mediators of cerebral ischemic injury. It has previously been reported that a spin trap nitrone, alpha-phenyl-N-tert-butyl nitrone (PBN), can reduce infarct volumes in rats subjected to either permanent or transient focal cerebral ischemia. A recent study has demonstrated that NXY-059, a novel free radical trapping nitrone compound, has a neuroprotective effect against transient focal cerebral ischemia. This study was designed to determine the effect of NXY-059 in a rodent model of permanent focal cerebral ischemia. Male spontaneously hypertensive rats were subjected to permanent middle cerebral artery occlusion (MCAO) by placement of a microaneurysm clip on the middle cerebral artery (MCA). Animals were divided into three groups: (1) physiological saline given as a 1 ml/kg i.v. bolus administered 5 min post MCAO followed immediately by a continuous i.v. infusion of 0.5 ml/h of physiological saline for 24 h (n=10); (2) 30 mg/kg, 1 ml/kg, i.v. bolus of NXY-059 dissolved in physiological saline administered 5 min post MCAO followed immediately by a continuous i.v. infusion of 30 mg/kg/h, 0.5 ml/h, of NXY-059 for 24 h (n=9); (3) 60 mg/kg, 1 ml/kg, i.v. bolus of NXY-059 dissolved in physiological saline administered 5 min post MCAO followed immediately by a continuous i.v. infusion of 60 mg/kg/h, 0.5 ml/h, of NXY-059 for 24 h (n=12). Infarction was quantified after a survival period of 24 h. Differences in infarct volume were examined with one-way ANOVA following Dunnet's multiple comparison test. The percentage of cortical infarction in the saline control group was 22.6 +/- 6.8% (mean+/-S.D.) of contra-lateral hemisphere, and in the 30 mg/kg/h NXY-059-treated group was 17.4% +/- 6.8% (NS). Plasma concentration (microM/l) of NXY-059 in the 30 mg/kg/h group was 80.2 +/- 52.2 (n=9), while in the 60 mg/kg/h group plasma concentration (microM/l) of NXY-059 was 391.0 +/- 207.0 (n=10). Infarction in the 60 mg/kg/h NXY-059-treated group was significantly reduced (P=0.009) to 14.5 +/- 5%. Our preliminary data demonstrate that administration of NXY-059 (60 mg/kg/h for 24 h) ameliorates cortical infarction in rats subjected to permanent focal cerebral ischemia with 24 h survival.  相似文献   

6.
We previously reported that during pro-estrus (high endogenous estrogen levels), brain damage after middle cerebral artery occlusion (MCAO) was reduced in stroke-prone spontaneously hypertensive rats (SHRSP) but not in normotensive Wistar Kyoto rat (WKY). In the present study, we examined the effect of exogenous estrogen on brain damage after MCAO in SHRSP and WKY. A 17beta-estradiol (0.025 mg or 0.25 mg, 21 day release) or matching placebo pellet was implanted into ovariectomized WKY and SHRSP (3 to 4 months old) who then underwent distal diathermy-induced MCAO 2 weeks later. Plasma 17beta-estradiol levels for placebo and 17beta-estradiol groups were as follows: WKY 0.025 mg 16.4 +/- 8.5 (pg/mL, mean +/- SD) and 25.85 +/- 12.6; WKY 0.25 mg 18.2 +/- 9.0 and 69.8 +/- 27.4; SHRSP 0.25 mg 20.7 +/- 8.8 and 81.0 +/- 16.9. In SHRSP, infarct volumes at 24 hours after MCAO were similar in placebo and 17beta-estradiol groups: SHRSP 0.025 mg 126.7 +/- 15.3 mm (n = 6) and 114.0 +/- 14.1 mm (n = 8) (not significant); SHRSP 0.25 mg 113.5 +/- 22.3 mm (n = 8) and 129.7 +/- 26.2 mm (n = 7) (not significant), respectively. In WKY, 17beta-estradiol significantly increased infarct volume by 65% with 0.025 mg dose [36.1 +/- 20.7 mm (n = 8) and 59.7 +/- 19.3 mm (n = 8) (P = 0.033, unpaired t-test)] and by 96% with 0.25 mg dose [55.9 +/- 36.4 mm (n = 8) and 109.7 +/- 6.7 mm (n = 4) (P = 0.017)]. Thus, 17beta-estradiol increased stroke damage in normotensive rats with no significant effect in stroke-prone rats. Despite being contrary to our hypothesis, our findings add substance to the recently reported negative effects of 17beta-estradiol in clinical studies.  相似文献   

7.
Moderate hypothermia and application of brain-derived neurotrophic factor (BDNF) have separately been identified as neuroprotective strategies in experimental cerebral ischemia. To assess their separate and combined effects on striatal glutamate release in the hyperacute phase of stroke, we inserted microdialysis probes into the striatum of rats 2 h before permanent middle cerebral artery occlusion (MCAO). The animals (N = 28) were randomly assigned to one of four treatment strategies commencing 30 min after MCAO: (1) hypothermia at 33 degrees C (n = 7); (2) intravenous BDNF infusion [300 microg/(kg/h) for 2 h, n = 7]; (3) combination of hypothermia and BDNF (n = 7); (4) control group (saline, n = 7). Infarct size at 5 h after MCAO was assessed with the silver-staining method. Total infarct volume was significantly reduced in the hypothermia (202.7 +/- 3.5 mm(3), P = 0.0002) and BDNF group (206.5 +/- 6.9 mm(3), P = 0.0006) as compared to control group (254.4 +/- 9.3 mm(3)). In the combination group, infarct size was further reduced with overall significance in post hoc tests (157.3 +/- 6.2 mm(3), P < 0.0001). Postischemic glutamate concentrations in the control group constantly remained significantly higher than in all other treatment groups. At 255 and 270 min after MCAO, striatal glutamate in the combination group decreased significantly more than in animals treated with hypothermia or BDNF alone.Combining hypothermia and BDNF therapy in the acute stage of ischemia has a synergistic effect in attenuating striatal glutamate release and reducing early infarct size.  相似文献   

8.
We tested the neuroprotective effects of M40401, a new, low molecular weight (511.4 Da) maganese superoxide dismutase mimetic, against 90 min of middle cerebral artery occlusion (MCAO) in male Wistar rats. Animals received a single injection of vehicle (n=8), 1 mg/kg (n=6), or 3 mg/kg (n=7) 30 min before MCAO. Total lesion volume was reduced only in the group receiving 3 mg/kg M40401 (163.5+/-18.7 versus 43.4+/-7.0 mm(3), for vehicle and M40401, respectively; P<0.05), with almost complete reduction of lesion volume in the cortex but little protection in the basal ganglia. Neurological score was also improved in this group. The dose of 1 mg/kg M40401 had smaller and inconsistent effects on lesion parameters. Administration of a single dose of 3 mg/kg M40401 at 60 min of MCAO or at the end of MCAO (90 min) failed to significantly reduce lesion volume. A single dose of M40401 plus prolonged infusion into the post-MCAO period also failed to decrease lesion volume significantly. These data indicate that M40401 protects cerebral tissue from ischemic insult when administered before MCAO, probably by limiting damage mediated by detrimental actions of superoxide anion.  相似文献   

9.
We assessed the effect of a novel calmodulin antagonist, DY-9760e (3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate) in a spontaneously hypertensive rat (SHR) permanent focal cerebral ischemia. In experiment I, the left middle cerebral artery was permanently occluded in 62 SHRs. DY-9760e (0.5 mg kg(-1) h(-1)) or vehicle alone were administered continuously i.v. for 6 h, beginning 0, 30, or 60 min after the arterial occlusion. The infarct volume was measured 24 h of ischemia. In experiment II, the effect of DY-9760e on CBF was assessed in 10 SHRs. Administration without a delay resulted in a mean infarct volume of 166.7 +/- 21.0 mm3 (vehicle; n = 10) and 125.1 +/- 31.8 mm3 (DY-9760e; n = 9). Administration with a 30 min delay resulted in a mean infarct volume of 173.2 +/- 32.4 mm3 (vehicle; n = 12) and 143.3 +/- 35.3 mm3 (DY-9760e; n = 11). Dy-9760e significantly reduced the infarct under these conditions (p < 0.05). The administration with a 60 min delay failed to reduce the infarct. DY-9760e had no effect on the CBF. Continuous i.v. administration of DY-9760e reduced infarct volume in a SHR permanent focal ischemia without affecting ischemic CBF.  相似文献   

10.
The goal of the present study was to test the impact of administration time of the angiotensin II type 1-receptor blocker candesartan on cerebral blood flow (CBF), infarct size, and neuroscore in transient cerebral ischemia. Therefore, 1-hour middle cerebral artery occlusion (MCAO) was followed by reperfusion. Rats received 0.5-mg/kg candesartan intravenously 2 hours before MCAO (pretreatment), 24 hours after MCAO, every 24 hours after MCAO, or 2 hours before and every 24 hours after MCAO. Infarct size (mm3) and a neuroscore at day 7 were compared with controls. CBF was quantified by radiolabeled microspheres and laser-Doppler flowmetry. Compared with controls (95 +/- 8), infarct size in candesartan-treated groups was smaller (59 +/- 5, 68 +/- 10, 28 +/- 3, and 15 +/- 3, respectively; P<0.05). Although there was no difference in neuroscore between pretreatment and controls (1.55 +/- 0.18, 1.80 +/- 0.13), other treatment regimens resulted in improved neuroscores (1.33 +/- 0.16, 1.11 +/- 0.11, 0.73 +/- 0.15; P<0.05). CBF in pretreated animals at 0.5 hours after MCAO was significantly higher than in controls (0.58 +/- 0.09 mL x g(-1) x min(-1) and 44% +/- 7% of baseline compared with 0.49 +/- 0.06 mL x g(-1) x min(-1) and 37% +/- 6%, microspheres and laser-Doppler flowmetry; P<0.05). Thus, candesartan reduces infarct size even if administered only during reperfusion. Apart from pretreatment, other treatment regimens result in significantly improved neuroscores. In the acute phase of cerebral ischemia, candesartan increases CBF.  相似文献   

11.
Liu Y  Belayev L  Zhao W  Busto R  Ginsberg MD 《Brain research》2000,862(1-2):111-119
The purpose of this study was to evaluate the effects of MRZ 2/579, an uncompetitive N-methyl-D-aspartate antagonist, on infarct size, extent of swelling and neurological deficit in a model of transient middle cerebral artery occlusion in rats. Physiologically controlled Sprague-Dawley rats received 2 h MCAo by retrograde insertion of an intraluminal suture coated with poly-L-lysine. The agent (MRZ 2/579) or vehicle (sodium chloride 0.9%) was administered i.v. immediately after suture removal following a 2-h period of MCAo. Two experimental groups were studied: group A was treated by vehicle (bolus infusion:1 ml/kg for 10 min followed by infusion of 6 ml/kg/h over 6 h). Group B was treated by MRZ 2/579 (bolus infusion:10 mg/kg for 10 min followed by infusion of 6 mg/kg/h over 6 h). The neurological status was evaluated during occlusion (at 60 min) and daily for 3 days after MCAo. Brains were then perfusion-fixed, and infarct volumes and brain swelling were determined. MRZ 2/579 significantly improved the neurological score compared to vehicle-treated rats at 48 h (6.2+/-0.6 and 8.7+/-0.5, respectively; P<0.004) and 72 h after MCAo (5.2+/-0.6 and 8.4+/-0.5, respectively; P<0.001). Treatment with MRZ 2/579 also significantly reduced total infarct volume (29.3+/-11.1 and 83.2+/-16.5 mm(3), respectively; P<0. 01), cortical infarct volume (24.8+/-11.2 and 70.0+/-18.0 mm(3), respectively; P<0.04) and subcortical infarction (21.2+/-4.1 and 49. 6+/-4.5 mm(3), respectively; P<0.0002). Brain swelling was also markedly reduced compared with vehicle-treated rats (4.7+/-1.3 and 10.8+/-2.1%, respectively; P<0.02). These results demonstrate that treatment with MRZ 2/579, when administered promptly after reperfusion, confers neuroprotective effects on infarct volume, brain swelling, and neurological score compared to the vehicle group.  相似文献   

12.
The aim of the present study was to characterize neuroprotective activity of NS- 7, a mixed voltage-gated sodium and calcium channel blocker in a model of transient focal ischaemia in rats. Ischaemia was induced by a 75 min reversible occlusion of middle cerebral artery (MCAo) using a nylon filament. NS-7 (0.5 mg/kg i.v.) or 0.9% NaCl (1 ml/kg i.v.) were infused over 3 min. starting 30 min after the MCAo. Infarct analysis was performed 72 h after ischaemia. Application of NS- 7 produced significant protection seen in neurological tests and diminished brain damage by 37% in total infarct (17.7+/- 3.0% vs. 27.9 +/- 3.2% control; [p < 0.01]; t-test), 47.8% in cortical infarct size by (8.5 +/- 2.4% vs. 16.2 +/- 2.4% control; [p < 0.01]), and by 21.5% in striatal infarction (9.2 +/- 0.8% vs. 11.7 +/- 0.9% control; [p < 0.05]). The results indicate that NS- 7 has potential for neuroprotection against transient ischaemic insult.  相似文献   

13.
Jiang ZW  Gong QZ  Di X  Zhu J  Lyeth BG 《Brain research》2000,852(1):37-44
The rat subdural hematoma (SDH) model produces a zone of ischemic brain damage within the hemisphere beneath the SDH. Previous studies have measured large increases in extracellular acetylcholine during cerebral ischemia in the rat. We examined infarct volume after selectively blocking muscarinic M1 receptors with dicyclomine during SDH. Rats were anesthetized with isoflurane (2%), intubated, and femoral artery and vein cannulated. Autologous blood (0.375 ml) was injected (0.05 ml/min) under the dura of the right parietal cortex. Dicyclomine (5 mg/kg, i.v.) was injected at 5 min after and again at 2 h after completion of the subdural blood infusion. Blood pressure and intracranial pressure (ICP) were continuously measured. At 4 h after SDH rats were euthanized, brains sectioned, and immunoreacted with glia fibrillary acidic protein. Cortical infarct volume was quantified in coronal brain sections at 0.7-mm intervals from +1.0 mm to -3.9 mm relative to bregma. Infarct volume in drug-treated rats (n = 10) 22.1 +/- 6.99 mm3 was significantly smaller (p < 0.02) than vehicle treated rats (n = 10) 56.7 +/- 9.59 mm3. ICP, blood pressure and cerebral perfusion pressure were not significantly different between groups. These data suggest that activation of M1 muscarinic receptors during an ischemic event may contribute to the development of subsequent pathology.  相似文献   

14.
Neuroprotection by pravastatin in acute ischemic stroke in rats   总被引:1,自引:0,他引:1  
Pleiotropic mechanisms beyond their cholesterol lowering effect of 3-hydroxy 3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors or statins such as pravastatin are known. We used a temporary middle cerebral artery occlusion (tMCAO) model in 114 Wistar rats to assess i) whether repeated injections of various doses of pravastatin (0.1, 0.5, 1 and 2 mg/kg) at 30 min, 6 h, 1, 2, 3, and 4 days after stroke onset are neuroprotective, ii) whether attenuation of striatal glutamate and interleukin-6 (IL-6) release is part of the neuroprotective mechanism, and iii) how local cerebral blood flow (CBF) is influenced by pravastatin both in the acute and late stage of ischemia. Animals were sacrificed 5 days after MCAO, infarct size was analyzed with 2,3,5-triphenyltetrazolium chloride (TTC) staining. As compared to saline (139+/-14 mm3, n=11), higher doses of pravastatin beyond 0.1 mg/kg significantly reduced infarct size with the greatest effect obtained with 1 mg/kg (60+/-14 mm3, n=11, P=0.0004). Using cerebral microdialyis in this dose group, we demonstrated that striatal glutamate increase in the ischemic hemisphere was attenuated by pravastatin compared to placebo. Likewise, IL-6 release was diminished at 2 h, but not at 6 h after tMCAO. Improvement of local CBF by pravastatin was observed at day 5, but not at 5 h after tMCAO, thus representing a more long term effect of pravastatin. In conclusion, a relatively high dose of pravastatin administered repetitively after stroke onset improved neurological outcome through various cholesterol-independent mechanisms.  相似文献   

15.
Aoki Y  Tamura M  Itoh Y  Ukai Y 《Brain research》2001,890(1):162-169
The effect of a novel Na+/Ca2+ channel blocker NS-7 [4-(4-fluorophenyl)-2-methyl-6-(5-piperidinopentyloxy)pyrimidine hydrochloride] on the cerebral infarction, edema and brain energy metabolism was investigated in rats after permanent middle cerebral artery occlusion (MCAO). The infarction and brain water content were evaluated at 48 h and 24 h after MCAO, respectively. A single bolus injection of NS-7 (0.03125-0.25 mg/kg) immediately after MCAO produced a dose-dependent reduction in the infarct volume as well as edema both in the cerebral cortex and striatum. Glycerol (4 g/kg) also decreased water content both in the occluded and non-occluded brain, but it did not reduce the size of cerebral infarction. Unlike glycerol, NS-7 did not change the water content in non-occluded brain. Moreover, a significant protective action was still observed even when NS-7 was injected once at 12 h after occlusion. In addition, NS-7 significantly reversed the decrease in tissue ATP content observed at 3 h but not at 0.5 h after MCAO. These findings suggest that a Na+/Ca2+ channel blocker NS-7 protects cerebral tissues against ischemic insults by improving the disturbance of cerebral energy metabolism and suppressing the cerebral edema.  相似文献   

16.
The effect of the free radical spin-trap alpha-phenyl-butyl-tert-nitrone (alpha-PBN) in permanent focal cerebral ischemia in rats was examined in two series of experiments. In the first, rats were subjected to permanent occlusion of the middle cerebral artery (MCAO) and treated 1 h after occlusion with a single dose of alpha-PBN (100 mg/kg) or saline. Body temperature was measured and controlled for the first 24 h to obtain identical temperature curves in the two groups. Cortical infarct volumes were determined on histological sections 7 days later. alpha-PBN did not significantly reduce infarct volume (control: 28.3+/-16.3 mm3 vs. alpha-PBN 23.7+/-7.4 mm3). In the second series of experiments, periinfarct depolarizations (PIDs) were recorded with an extracellular DC electrode at two locations in the ischemic penumbra for the initial 3 h following MCAO. alpha-PBN (100 mg/kg, single dose in conjunction with occlusion) significantly reduced the total number (median value of 3 PIDs in the control groups vs. 1 PID in alpha-PBN groups, p<0.001) and total duration of the PIDs (median value 662 s in the control groups vs. 162 s in the alpha-PBN groups, p<0.006). In spite of this, cortical infarct volumes determined 7 days later in the same rats were not smaller in alpha-PBN-treated rats. The study thus demonstrates that attenuation of PIDs does not always lead to smaller infarcts if permanent arterial occlusion is followed by long survival time and does not support the hypothesis that PIDs per se are critical determinants of infarct size in this situation.  相似文献   

17.
Selective oestrogen receptor modulators (SERMs) may offer improved alternatives to oestrogen as neuroprotectants in experimental stroke. The present study investigated the role of a novel SERM, LY362321, in a rat model of transient middle cerebral artery occlusion (MCAO). Female Sprague-Dawley rats were ovariectomised and began receiving daily s.c. injections of either 1 mg/kg (n = 13), 10 mg/kg (n = 14) of LY362321, or vehicle (n = 13). The left MCA was temporarily occluded (90 min), with cortical blood flow monitoring, at 12 days post ovariectomy. Sensorimotor function was assessed using a neurological score prior to the MCAO and daily for 3 days following the MCAO. Tissue was processed for infarct volume assessment using 2,3,5-triphenyltetra-zolium chloride staining. The results indicated that there were no significant differences amongst groups in cortical blood flow during the MCAO. Furthermore, there was no significant difference in infarct size amongst vehicle, 1, and 10 mg/kg treated animals: 22.9 ± 5.0, 16.7 ± 4.2, and 21.1 ± 4.1, respectively, one-way anova [F(2,32) = 0.542, P = 0.587]. The MCAO induced a significant decline in neurological score in the vehicle group (from 14 to 7 at 24 h post-MCAO) but this was not significantly affected by LY362321 at either dose. In conclusion, pretreatment with a low or high dose of the novel SERM LY362321 did not significantly influence cerebral blood flow, infarct volume, or sensorimotor function in rats exposed to transient MCAO.  相似文献   

18.
OBJECTIVES: Focal cerebral ischemia activates intracellular signaling pathways including the mitogen-activated protein kinase p38, which may be involved in the process of ischemic brain injury. In this study, the effect of pretreatment with the p38-inhibitor SB203580 on infarct size and blood-brain barrier (BBB) breakdown was investigated with magnetic resonance imaging (MRI). MATERIALS AND METHODS: Rats were given SB203580 (n = 6) or vehicle (n = 6) in the right lateral ventricle prior to transient (90 min) middle cerebral artery occlusion (MCAO) on the left side. The rats were examined with serial MRI during MCAO, at reperfusion and after 1 and 4 days. RESULTS: The mean infarct size on T2-weighted images after 1 day was significantly higher in the SB203580-treated group than in controls (300 +/- 95 mm3 vs 126 +/- 75 mm3; P < 0.01). Vascular gadolinium leakage, indicating BBB breakdown, was significantly larger in the SB203580-treated group than in controls after 1 day (median leakage score 18.5; range 15-21 vs 6.5; 4-17; P < 0.05) and 4 days (11; 6-15 vs 3.5; 1-9; P < 0.05), although no significant difference was seen initially. CONCLUSION: Pretreatment with SB203580 may aggravate ischemic brain injury and cerebral vascular leakage in the present model of transient ischemia.  相似文献   

19.
Oxygen therapy in permanent brain ischemia: potential and limitations   总被引:4,自引:0,他引:4  
BACKGROUND: Both normobaric (NBO) and hyperbaric (HBO) oxygen therapy are protective in transient cerebral ischemia. In contrast, in permanent ischemia models, which reflect the majority of clinical strokes, the effectiveness of NBO is unknown, and the effectiveness of HBO is controversial. The goals of the present study were to compare both oxygen therapies in 2 models of permanent ischemia, to study the effect of time window, and to evaluate the combination of both oxygen therapies. METHODS: Distal or proximal permanent occlusion of middle cerebral artery (MCAO) was induced by coagulation or filament, respectively. Mice received air, NBO, a single or repeated HBO (3 ata) treatments. Infarct sizes were quantified at 7 days (coagulation) and 24 h (filament), respectively. RESULTS: Following MCA coagulation, infarct volume was 12.9+/-1.6 mm3 in mice breathing air. When started 45 min or 120 min after MCAO, NBO (10.8+/-2.2) and significantly more potently HBO (7.8+/-0.9) reduced infarct size. Repeated HBO treatments had no additional effect (8.3+/-2.3). HBO also significantly decreased TUNEL cell staining at 24 h. Combination of 60 min NBO plus 60 min HBO resulted in smaller cortical infarcts (8.7+/-1.5) than 120 min NBO alone (11.1+/-3.2). In contrast, infarct volumes in filament-induced permanent MCAO did not differ among rodents receiving air (50+/-24 mm3), NBO (48+/-16), or HBO (46+/-21). After filament-induced transient MCAO, however, HBO reduced infarct volume significantly. CONCLUSIONS: NBO and more effectively HBO protect the brain against permanent cortical ischemia. In extensive focal ischemia, however, oxygen therapy is only effective in case of early recanalization.  相似文献   

20.
The purposes of this review are to clarify the effect of hypothermia therapy on focal cerebral ischemia in rats, and to consider the relevancy of its application to human focal cerebral ischemia. Since 1990, 26 reports confirming the brain-protecting effect of hypothermia in rat focal cerebral ischemia models have been published. Seventy-four experimental groups in these 26 reports were classified as having transient middle cerebral arterial occlusion (MCAO) with mild hypothermia (group A; 43 groups), permanent MCAO with mild hypothermia (group B; 14 groups), permanent MCAO with deep hypothermia (group C; 8 groups) and transient or permanent MCAO with mild hyperthermia (group D; 9 groups). The results were evaluated as the % infarct volume change caused by hypothermia or hyperthermia compared with the infarct volume in normothermic animals. The effectiveness was confirmed in 36 (83%) of the 43 groups in group A, 10 (71%) of the 14 in group B, and six (75%) of the eight in group C. The infarct volume of eight of the nine groups in group D was markedly aggravated. The percent infarct volume change was 55.3% +/- 27.1% in group A, 57.6% +/- 24.7% in group B, 60.8% +/- 45.5% in group C, and 189.7% +/- 89.4% in group D. For effective reduction of the infarct volume, hypothermia should be started during ischemia or within 1 h, at latest, after the beginning of reperfusion in the rat transient MCAO model. However, it is not clear whether this neuroprotective effect of hypothermia can also be observed in the chronic stage, such as several months later. Keeping the body temperature normothermic in order to avoid mild hyperthermia seems to be rather important for not aggravating cerebral infarction. Clinical randomized studies on the efficacy of mild hypothermia for focal cerebral ischemia and sophisticated mild hypothermia therapy techniques are mandatory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号