首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of neuropathic pain is an area of largely unmet medical need. Therefore, this pain may require the development of novel drug entities. In the search for alternatives, B vitamins have been found to be a clinically useful pharmacological tool for patients with neuropathic pain. However, preclinical studies supporting this use are lacking. In this study, we assessed the possible antiallodynic effects of thiamine, pyridoxine, and cyanocobalamin as well as dexamethasone and their combination on spinal nerve ligation induced allodynia. Sub cutaneous administration of thiamine (75-600 mg/kg), pyridoxine (75-600 mg/kg), cyanocobalamin(0.75-6 mg/kg), and dexamethasone (4-32 mg/kg) significantly reduced tactile allodynia in rats. Maximal antiallodynic effects were reached with 600 mg/kg of thiamine (approximately 58%), 600 mg/kg of pyridoxine (approximately 22%), 6 mg/kg of cyanocobalamin (approximately 73%), and 32 mg/kg of dexamethasone (approximately 68%). Since a small antiallodynic effect was observed with pyridoxine, this drug was not further analyzed in the combinations. Coadministration of thiamine or cyanocobalamin and dexamethasone remarkably reduced spinal nerve ligation induced allodynia (approximately 90%), showing a synergistic interaction between either thiamine or cyanocobalamin and dexamethasone. Our data indicate that thiamine and pyridoxine as well as the combination of B vitamins and dexamethasone are able to reduce tactile allodynia in rats and suggest the possible clinical use of these drugs in the treatment of neuropathic pain in human beings.  相似文献   

2.
Preclinical Research
Treatment of neuropathic pain is an area of largely unmet medical need. Pregabalin and gabapentin are anticonvulsants widely used for the treatment of neuropathic pain. Unfortunately, these drugs are only effective in 50–60% of the treated patients. In addition, both drugs have substantial side effects. Several studies have reported that ultralow doses of opioid receptor antagonists can induce analgesia and enhance the analgesic effect of opioids in rodents and humans. The objective of the present study was to assess the antiallodynic synergistic interaction between gabapentinoids and naltrexone in rats. Oral administration of pregabalin (ED50 = 2.79 ± 0.16 mg/kg) or gabapentin (ED50 = 21.04 ± 2.87 mg/kg) as well as intrathecal naltrexone (ED50 = 0.11 ± 0.02 ng) reduced in a dose‐dependent manner tactile allodynia in rats. Maximal antiallodynic effects (∼100%) were reached with 30 mg/kg of pregabalin, 300 mg/kg of gabapentin or 0.5 ng of naltrexone. Co‐administration of pregabalin or gabapentin and naltrexone in a fixed‐dose ratio (1:1) remarkably reduced spinal nerve ligation‐induced tactile allodynia showing a synergistic interaction. The data indicate that combinations of pregabalin or gabapentin and ultra‐low doses of naltrexone are able to reduce tactile allodynia in neuropathic rats with lower doses that those used when drugs are given individually and with an improved side effects profile. Drug Dev Res 78 : 371‐380, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

3.
This study was designed to evaluate the possible antiallodynic interaction between metamizol and gabapentin in rats submitted to L5/L6 spinal nerve ligation. Metamizol, gabapentin, or a combination of both drugs were assessed after oral and intrathecal administration in neuropathic rats. Metamizol partially reduced tactile allodynia after intrathecal, but not oral, administration. Conversely, gabapentin reduced tactile allodynia in a dose‐dependent manner after both administration routes. Oral administration of a constant dose of metamizol (600 mg/kg) significantly increased the gabapentin‐induced antiallodynic effect. Moreover, the gabapentin ED50 value was lower in the presence than in the absence of metamizol. Intrathecal co‐administration of metamizol and gabapentin in a dose‐fixed ratio (0.5:0.5) reduced tactile allodynia in rats. The theoretical ED30 value for the spinal combination estimated from the isobologram was 118.4±12 µg, whereas that experimental ED30 value was 66.2±10.1 µg indicating a synergistic interaction. Results indicate that metamizol, a cyclo‐oxygenase 2 inhibitor, is able to reduce tactile allodynia as well to increase the antiallodynic effect of gabapentin in the neuropathic rat. This combination could be useful to treat neuropathic pain in humans. Drug Dev Res 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Benfotiamine relieves inflammatory and neuropathic pain in rats   总被引:3,自引:0,他引:3  
Benfotiamine has shown therapeutic efficacy in the treatment of painful diabetic neuropathy in human beings. However, so far there is no evidence about the efficacy of this drug in preclinical models of pain. The purpose of this study was to assess the possible antinociceptive and antiallodynic effect of benfotiamine in inflammatory and neuropathic pain models in the rat. Inflammatory pain was induced by injection of formalin in non-diabetic and diabetic (2 weeks) rats. Reduction of flinching behavior was considered as antinociception. Neuropathic pain was induced by either ligation of left L5/L6 spinal nerves or administration of streptozotocin (50 mg/kg, i.p.) in Wistar rats. Benfotiamine significantly reduced inflammatory (10-300 mg/kg) and neuropathic (75-300 mg/kg) nociception in non-diabetic and diabetic rats. Results indicate that oral administration of benfotiamine is able to reduce tactile allodynia from different origin in the rat and they suggest the use of this drug to reduce inflammatory and neuropathic pain in humans.  相似文献   

5.
Previous studies suggested that combining N-methyl-d-aspartate (NMDA) receptor antagonists with either mu-opioid agonist morphine or alpha2-adrenoreceptor agonist clonidine results in the significant synergistic enhancement of analgesic activity in the animal models of acute and neuropathic pain. When given alone, NMDA receptor antagonists, morphine and clonidine are capable of attenuating tactile allodynia associated with chronic nerve injury. The present study aimed to assess anti-allodynic effects of these compounds and to test additivity of these interactions using isobolographic analysis. Adult male Wistar rats with unilateral loose ligation of sciatic nerve developed significant tactile allodynia (between-paw difference of about 18-20 g). In separate groups of animals, dose-dependent anti-allodynic activity was confirmed for memantine (1.8-17.8 mg/kg), neramexane (1.8-17.8 mg/kg), morphine (1-10 mg/kg) and clonidine (0.01-0.1 mg/kg). In a subsequent series of experiments, memantine (or neramexane) and morphine (or clonidine) were co-administered at the fixed equi-effective dose ratios (six dose levels per drug combination). None of the tested combinations produced supra-additive, synergistic effects. In fact, memantine+clonidine, neramexane+clonidine and morphine+neramexane were producing simple additive effects, while morphine+memantine was characterized as the infra-additive combination. Thus, despite expectations based on previous studies, NMDA receptor channel blockers, memantine and neramexane, produce no synergistic interactions with either morphine or clonidine when administered acutely to rats with nerve injury-induced tactile allodynia.  相似文献   

6.
The chronic constriction injury model is a rat model of neuropathic pain based on a unilateral loose ligation of the sciatic nerve. The aim of the present study was to test its sensitivity to various clinically validated and experimental drugs. Mechanical allodynia and thermal hyperalgesia developed within one week post-surgery and were reliably present for at least 7 weeks. Mechanical allodynia was strongly attenuated by morphine (minimal effective dose in brackets: 8 mg/kg, p.o.) and the cannabinoids Delta9-tetrahydrocannabinol (3 mg/kg, p.o.) and (-)-cis-3-[2-hydroxy-4(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl) cyclohexanol (CP 55,940; 0.05 mg/kg, i.p.), and weakly/moderately attenuated by the anticonvulsants gabapentin (50 mg/kg, i.p.) and carbamazepine (32 mg/kg, i.p.), the muscle relaxant baclofen (3 mg/kg, i.p.), and the adenosine kinase inhibitor 4-amino-5-(3-bromophenyl)-7-(6-morpholino-pyridin-3-yl)pyrido[2,3-d]pyrimidine (ABT-702; 30 mg/kg, i.p.). Thermal hyperalgesia was strongly attenuated by morphine (16 mg/kg, p.o.), Delta9-tetrahydrocannabinol (6 mg/kg, p.o.), CP 55,940 (0.025 mg/kg, i.p.), carbamazepine (32 mg/kg, i.p.) and the antidepressant amitriptyline (32 mg/kg, p.o.), and weakly/moderately attenuated by gabapentin (50 mg/kg, i.p.), the anti-inflammatory cyclooxygenase-2 inhibitor rofecoxib (30 mg/kg, i.p.) and the adenosine A1 receptor positive allosteric modulator 2-amino-4,5,6,7-tetrahydrobenzo(b)thiophen-3-yl 4-chlorophenylmethanone (T62; 30 mg/kg, i.p.). Both symptoms were hardly or not affected by the nonselective N-methyl-d-aspartate receptor antagonists ketamine and dizocilpine, and the N-methyl-d-aspartate receptor NR2B-selective antagonists ifenprodil and R-(R*,S*)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenyl-methyl)-1-piperidine propranol (Ro 25-6981). The finding that mechanical allodynia and/or thermal hyperalgesia are attenuated by various established compounds further supports the validity of the chronic constriction injury model for the study of neuropathic pain and its use for the identification of novel treatments.  相似文献   

7.
In the search for more efficacious drugs to treat neuropathic pain states, a series of phenoxyphenyl pyridines was designed based on 4-(4-flurophenoxy)benzaldehyde semicarbazone. Through variation of the substituents on the pyridine ring, several potent state-dependent sodium channel inhibitors were identified. From these compounds, 23 dose dependently reversed tactile allodynia in the Chung model of neuropathic pain. Administered orally at 10 mg/kg the level of reversal was ca. 50%, comparable to the effect of carbamazepine administered orally at 100 mg/kg.  相似文献   

8.
The present study investigated the regional distribution of the N-methyl-D-aspartate (NMDA) receptor containing the NR2B subunit protein in rat lumbar spinal cord and examined whether selective NR2B antagonists would exhibit antinociception with reduced side-effect liability than subtype non-selective NMDA antagonists and anticonvulsants. Immunocytochemical studies showed the NR2B subunit had a restricted distribution, with moderate labelling of fibres in laminas I and II of the dorsal horn suggesting a presynaptic location on primary afferent fibers and possible involvement in pain transmission. In the in vivo studies, the NMDA/glycine antagonists (MK-801, 0.02-1 mg/kg i.p., L-687,414 10-300 mg/kg i.p., and L-701,324 1-10 mg/kg i.p.) and the anticonvulsant, gabapentin (10-500 mg/kg p.o.), induced rotarod deficits at antinociceptive doses. In contrast, the selective NR2B antagonists, (+/-)-CP-101,606 (1-100 mg/kg p.o.) and (+/-)-Ro 25-6981 (3-100 mg/kg i.p.) showed a significant dose window. (+/-)-CP-101,606 caused no motor impairment or stimulation in rats at doses up to 100 mg/kg p.o., which is far in excess of those inhibiting allodynia in neuropathic rats (ID50 4.1 mg/kg, p.o.). (+/-)-Ro 25-6981 also showed a significant separation (ID50 allodynia 3.8 mg/kg, i.p.), however, some disruption of rotarod performance was observed at 100 mg/kg. The anticonvulsant lamotrigine (3-500 mg/kg p.o.) also showed a good dose window. These findings demonstrate that NR2B antagonists may have clinical utility for the treatment of neuropathic and other pain conditions in man with a reduced side-effect profile than existing NMDA antagonists.  相似文献   

9.
1. Current analgesic therapy is dominated by NSAIDs and opiates, however these agents have limited efficacy in the treatment of neuropathic pain. The novel anticonvulsant agent gabapentin (Neurontin) has been shown to be an effective treatment for neuropathic pain in the clinic. Recent studies have demonstrated that gabapentin selectively interacts with the alpha(2)delta subunit of voltage dependent calcium channels (VDCCs) which may be important in its mechanism of action. 2. Previous studies have identified a gabapentin analogue, 3-methyl gabapentin, that stereoselectively interacts with the alpha(2)delta subunit of VDCCs. Thus, whilst (1S, 3R) 3-methyl gabapentin binds to the alpha(2)delta protein with high affinity (IC(50)=42 nM), the corresponding (1R,3R) isomer is 300 times weaker (Bryans et al., 1998: J. Med. Chem., 41, 1838 - 1845). The present study examines the activity of diastereoisomers of 3-methyl gabapentin in two rat models of neuropathic pain to assess the importance of an interaction with the alpha(2)delta subunit of VDCCs. 3. (1S,3R) 3-methyl-gabapentin dose-dependently (10 - 100 mg kg(-1), p.o.) blocked the maintenance of static allodynia in the rat streptozocin and Chung models of neuropathic pain with MEDs of 30 mg kg(-1). This isomer also dose-dependently blocked the maintenance of dynamic allodynia in both models with respective MEDs of 30 and 100 mg kg(-1). In contrast, (1R,3R) 3-methyl gabapentin (100 mg kg(-1), p.o.) failed to block either static or dynamic allodynia in the streptozocin model. 4. It is concluded that these data further support the hypothesis that the alpha(2)delta subunit of VDCCs plays an important role in the maintenance of mechanical hypersensitivity in models of neuropathic pain.  相似文献   

10.
In this study, we examined whether several types of non-opioid agents would inhibit the pain-related responses of melanoma-bearing mice. Orthotopic inoculation with melanoma into the hind paw induced marked tactile allodynia and mechanical hyperalgesia. A peroral injection (p.o.) of gabapentin (100-300 mg/kg) inhibited the allodynia and hyperalgesia, without effects on gross behaviors. An intraperitoneal injection (i.p.) of ketamine hydrochloride (30 mg/kg) produced partial inhibition in allodynia and hyperalgesia and prostate posture at 15 min after injection. Diclofenac sodium (10 and 30 mg/kg, i.p), mexiletine hydrochloride (20 mg/kg, i.p.), clonidine hydrochloride (0.1 mg/kg, i.p.) and suramin (100 mg/kg, i.p.) were without effects on allodynia and hyperalgesia. Subcutaneous injections of baclofen (3 mg/kg) and N(G)-nitro-L-arginine methyl ester (100 mg/kg) were also without effects. Repeated administration of gabapentin (150 mg/kg, p.o.) produced constant inhibitions, suggesting no analgesic tolerance. Gabapentin may be useful for the management of cancer pain.  相似文献   

11.
Pain is the most common physical symptom of cancer patients, with most patients experiencing more than one site of pain. Current treatments lack full efficacy. Based on the need for new approaches in that field the effect of systemic administration of lacosamide (SPM 927, (R)-2-acetamido-N-benzyl-3-methoxypropionamide, previously referred to as harkoseride or ADD 234037), a member of a series of functionalized amino acids that were specifically synthesized as anticonvulsive drug candidates, was examined in rats in a tumor-induced bone cancer pain model and in a chemotherapy-induced neuropathic pain model. Lacosamide inhibited tactile allodynia (20, 40 mg/kg, i.p.), thermal hyperalgesia (30 mg/kg) and reduced weight-bearing differences (40 mg/kg) in the rat model of bone cancer pain induced by injection of MRMT-1 cells into the tibia. Morphine (5 mg/kg, s.c) was effective inhibiting tactile allodynia and weight bearing but could not reduce thermal hyperalgesia. In the vincristine-induced neuropathic pain model, lacosamide attenuated thermal allodynia, on the cold plate (4 degrees C), at 10 and 30 mg/kg, and in the warm (38 degrees C) and hot plate (52 degrees C) even at 3 mg/kg. Tactile allodynia and mechanical hyperalgesia were inhibited by lacosamide at 10 and 30 mg/kg. In contrast to lacosamide, morphine (3 mg/kg, s.c.) had no effect on mechanical hyperalgesia. Lacosamide is effective as an analgesic in a bone cancer pain model as well as chemotherapy-induced neuropathic pain model in animals and even reduced hyperalgesia where morphine did not (3 or 5 mg/kg, s.c.).  相似文献   

12.
The effect of K+ channel inhibitors on the antiallodynic activity induced by spinal gabapentin was assessed in rats. Ligation of L5 and L6 spinal nerves made the rats allodynic, whereas that intrathecal administration of gabapentin (25-200 microg) reduced tactile allodynia in a dose-dependent manner. Spinal pretreatment with glibenclamide (12.5-50 microg, ATP-sensitive K+ channel inhibitor), charybdotoxin (0.01-1 ng) or apamin (0.1-3 ng, large-and small-conductance Ca2+-activated K+ channel blockers, respectively), but not margatoxin (0.01-10 ng, voltage-dependent K+ channel inhibitor), significantly prevented gabapentin-induced antiallodynia. Pinacidil (1-30 microg, K+ channel opener) significantly reduced nerve ligation-induced allodynia. Intrathecal glibenclamide (50 microg), charybdotoxin (1 ng) and apamin (3 ng), but not margatoxin (10 ng), significantly reduced pinacidil-induced antiallodynia. K+ channel inhibitors alone did not modify allodynia produced by spinal nerve ligation. Results suggest that gabapentin and pinacidil may activate Ca2+-activated and ATP-sensitive K+ channels in order to produce part of its spinal antiallodynic effect in the Chung model.  相似文献   

13.
Diabetic neuropathic pain remains an unmet clinical problem and is poorly relieved by conventional analgesics. N-methyl-d-aspartate (NMDA) receptors play an important role in central sensitization in neuropathic pain. Although NMDA antagonists are highly effective in reducing neuropathic pain, these agents cause severe side effects at therapeutic doses, which limit their clinical uses. Neramexane and memantine are uncompetitive NMDA antagonists with minimal side effects at therapeutic doses. Here we determined the antinociceptive effect of chronic administration of neramexane and compared its effect with that of memantine and gabapentin in a rat model of diabetic neuropathic pain. Mechanical hyperalgesia was measured with a noxious pressure stimulus, and tactile allodynia was assessed with von Frey filaments in diabetic rats induced by streptozotocin. Compared with vehicle-treated rats, treatment with neramexane (12.3, 24.6, and 49.2 mg/kg/day) for 2 weeks via an osmotic minipump produced dose-dependent and sustained effects on mechanical hyperalgesia and allodynia. Administration of memantine (20 mg/kg/day) or gabapentin (50 mg/kg/day) for 2 weeks also produced significant and persistent antinociceptive effects on mechanical hyperalgesia and allodynia. The magnitude of the antinociceptive effect produced by the intermediate and high doses of neramexane was comparable to that of gabapentin and memantine. The plasma level achieved by neramexane at 12.3, 24.6, and 49.2 mg/kg/day was 0.26 ± 0.04, 0.50 ± 0.05, and 1.21 ± 0.16 μM, respectively. These data suggest that neramexane at therapeutically relevant doses attenuates diabetic neuropathic pain. Our study provides valuable information about the therapeutic potential of chronic administration of neramexane and memantine for painful diabetic neuropathy.  相似文献   

14.
Lacosamide was tested in the streptozotocin rat model of diabetic neuropathic pain in comparison to drugs which are commonly used in the treatment of diabetic neuropathic pain, i.e. antidepressants and anticonvulsants. In diabetic rats, lacosamide attenuated cold (10, 30 mg/kg, i.p.), warm (3, 10, 30 mg/kg, i.p.) and mechanical allodynia (30 mg/kg, i.p.). Streptozotocin-induced thermal and mechanical hyperalgesia were reduced by lacosamide at doses of 10 and 30 mg/kg, i.p. Morphine (3 mg/kg) showed similar efficacy on allodynia and hyperalgesia. Amitriptyline (10 mg/kg), venlafaxine (15 mg/kg), levetiracetam (180 mg/kg) and pregabalin (100 mg/kg) exhibited significant effects on thermal allodynia and mechanical hyperalgesia. Only treatment with amitriptyline (30 mg/kg, i.p.) produced full reversal of thermal allodynia comparable to lacosamide. Lamotrigine (45 mg/kg, i.p.) had no effect on both behavioral readouts. Lacosamide's potency and efficacy in reversing pain behavior might be due to its new, yet unknown mechanism of action.  相似文献   

15.
Neuropathic pain is caused by a lesion or disease of the somatosensory nervous system and treatment of neuropathic pain remains a challenge. The purpose of the present study was to examine the effect of ethosuximide, an anti-epileptic and relatively selective T-type calcium blocker and morphine, a prototypical opioid in the behavioral responses following the chronic constriction injury (CCI) model of neuropathic pain. Experiments were performed on eight groups (n=8) of male Sprague-Dawley rats (230-280 g). The animals were injected with saline, ethosuximide (100, 200, 300 mg/kg), morphine (4 mg/kg), and a combination of morphine (4 mg/kg) plus ethosuximide (100mg/kg, i.p.). The cold-and mechano-allodynia and thermal hyperalgesia were measured prior to surgery (the day 0) and 3, 5, 7, 14 and 21 days post surgery. Ethosuximide and morphine significantly decreased cold and mechano allodynia and thermal hyperalgesia. However, the co-administration of both drugs seems to be more effective than the ethosuximide or morphine alone on cold and mechano allodynia and thermal hyperalgesia .Our results suggest that ethosuximide block tactile and thermal hypersensitivity after the CCI model, also, ethosuximide potentiates the analgesic effects of morphine in neuropathic pain conditions and behavioral responses.  相似文献   

16.
Topiramate, unlike gabapentin, lamotrigine and tiagabine, resembles phenytoin and carbamazepine since it had been used as an antinociceptive drug in empirical treatment of neuropathic pain in humans, before its systemic and planned research was conducted in animal models of pain. Chronic administration of topiramate, at the dose of 50 mg/kg/day, significantly diminished the mechanical sensitivity and shortened the period of allodynia in the Seltzer mononeuropathy model in rats.  相似文献   

17.
The tibial nerve injury model is a novel, surgically uncomplicated, rat model of neuropathic pain based on a unilateral transection (neurotomy) of the tibial branch of the sciatic nerve. The aim of the present study was to describe some behavioral and molecular features of the model, and to test its sensitivity to a number of drugs which are currently used for the treatment of neuropathic pain. The model was characterized by a pronounced mechanical allodynia which was present in all subjects and a less robust thermal hyperalgesia. Mechanical allodynia developed within 2 weeks post-surgery and was reliably present for at least 9 weeks. Neurotomized rats showed no autotomy and their body weight developed normally. Gene expression in ipsilateral L5 dorsal root ganglia, analyzed by quantitative polymerase chain reaction (PCR), showed a pronounced up-regulation of galanin and vasointestinal peptide (VIP). This up-regulation developed rapidly (within 1 to 2 days following neurotomy) and remained present for at least 12 days. On the other hand, expression of calcitonin gene-related peptide (CGRP) and substance P mRNA was down-regulated 12 days following neurotomy. Mechanical allodynia was completely reversed by morphine [minimal effective dose (MED): 8 mg/kg, i.p.] and partially reversed by carbamazepine (MED: 64 mg/kg, i.p.), baclofen (MED: 3 mg/kg, i.p.) and amitriptyline (trend for efficacy at 32 mg/kg, i.p.), but not by gabapentin (50-100 mg/kg, i.p.). The finding that the tibial nerve injury model shows a robust and persistent mechanical allodynia which is sensitive to a number of established analgesics, as well as a gene expression profile which is compatible with that obtained in other models of neuropathic pain, further supports its validity as a reliable and surgically uncomplicated model for the study of neuropathic pain.  相似文献   

18.
Tactile allodynia, the enhanced perception of pain in response to normally non-painful stimulation, represents a common complication of diabetic neuropathy. The activation of endothelin ET(A) receptors has been implicated in diabetes-induced reductions in peripheral neurovascularization and concomitant endoneurial hypoxia. Endothelin receptor activation has also been shown to alter the peripheral and central processing of nociceptive information. The present study was conducted to evaluate the antinociceptive effects of the novel endothelin ET(A) receptor-selective antagonist, 2R-(4-methoxyphenyl)-4S-(1,3-benzodioxol-5-yl)-1-(N, N-di(n-butyl)aminocarbonyl-methyl)-pyrrolidine-3R-carboxylic acid (ABT-627), in the streptozotocin-induced diabetic rat model of neuropathic pain. Rats were injected with 75 mg/kg streptozotocin (i. p.), and drug effects were assessed 8-12 weeks following streptozotocin treatment to allow for stabilization of blood glucose levels (>/=240 mg/dl) and tactile allodynia thresholds (相似文献   

19.
Carbenoxolone, the succinyl ester of glycyrrhetinic acid, is an inhibitor of 11beta-hydroxy steroid dehydrogenase and gap junctional intercellular communication. It is currently used in clinical treatment of ulcer diseases. Systemic administration of carbenoxolone (1-40 mg/kg, intraperitoneally (i.p.)) was able to produce a dose-dependent decrease in DBA/2 audiogenic seizure severity score. Glycyrrhizin, an analogue of carbenoxolone inactive at the gap-junction level, was unable to affect audiogenic seizures at doses up to 30 mg/kg. In combination with conventional antiepileptic drugs, carbenoxolone, 0.5 mg/kg, i.p., which per se did not significantly affect the occurrence of audiogenic seizures in DBA/2 mice, potentiated the anticonvulsant activity of carbamazepine, diazepam, felbamate, gabapentin, lamotrigine, phenytoin, phenobarbital and valproate against sound-induced seizures in DBA/2 mice. This effect was not observed after the combination of glycyrrhizin (10 mg/kg, i.p.) with some conventional antiepileptic drugs. The degree of potentiation induced by carbenoxolone was greater for diazepam, felbamate, gabapentin, phenobarbital and valproate, less for lamotrigine, phenytoin and carbamazepine. This increase was associated with a comparable impairment in motor activity; however, the therapeutic index of combined treatment of antiepileptic drugs with carbenoxolone was more favourable than the combination with glycyrrhizin or saline. Since carbenoxolone did not significantly influence the total and free plasma levels of diazepam, felbamate, gabapentin, lamotrigine, phenytoin, phenobarbital, valproate and carbamazepine, pharmacokinetic interactions are not likely. However, the possibility that carbenoxolone can modify the brain clearance of the anticonvulsant drugs studied may not be excluded. In addition, carbenoxolone did not significantly affect the hypothermic effects of the anticonvulsants tested. In conclusion, carbenoxolone showed an additive anticonvulsant effect when administered in combination with some classical anticonvulsants, most notably diazepam, felbamate, gabapentin, phenobarbital, and valproate, implicating a possible therapeutic relevance of such drug combinations.  相似文献   

20.
The purpose of this study was to assess the antinociceptive and antiallodynic effect of melatonin as well as its possible mechanism of action in diabetic rats. Streptozotocin (50 mg/kg) injection caused hyperglycemia within 1 week. Formalin-evoked flinching was increased in diabetic rats as compared to non-diabetic rats. Oral administration of melatonin (10-300 mg/kg) dose-dependently reduced flinching behavior in diabetic rats. In addition, K-185 (a melatonin MT(2) receptor antagonist, 0.2-2 mg/kg, s.c.) completely blocked the melatonin-induced antinociception in diabetic rats, whereas that naltrexone (a non-selective opioid receptor antagonist, 1 mg/kg, s.c.) and naltrindole (a selective delta opioid receptor antagonist, 0.5 mg/kg, s.c.), but not 5'-guanidinonaltrindole (a selective kappa opioid receptor antagonist, 1 mg/kg, s.c.), partially reduced the antinociceptive effect of melatonin. Given alone K-185, naltrexone, naltrindole or 5'-guanidinonaltrindole did not modify formalin-induced nociception in diabetic rats. Four to 8 weeks after diabetes induction, tactile allodynia was observed in the streptozotocin-injected rats. On this condition, oral administration of melatonin (75-300 mg/kg) dose-dependently reduced tactile allodynia in diabetic rats. Both antinociceptive and antiallodynic effects were not related to motor changes as melatonin did not modify number of falls in the rotarod test. Results indicate that melatonin is able to reduce formalin-induced nociception and tactile allodynia in streptozotocin-injected rats. In addition, data suggest that melatonin MT(2) and delta opioid receptors may play an important role in these effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号