首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Continuous flow ventricular assist devices (CFVADs) are thought to be the next generation of circulatory assist devices. With many now in various stages of development or clinical trial, it is important that the physiologic aspects of these pumps be critically analyzed. In this study, 15 calves were divided into two groups. One group received a CFVAD, and the other a sham implant. Two additional animals were used in an acute study to examine aortic blood flow patterns from a CFVAD. Tissue perfusion was measured on all animals before surgery and then weekly thereafter. Before surgery, there was no difference in hemodynamics or tissue perfusion between studied animals. Postoperatively, CFVAD animals had statistically significant increased diastolic pressure. Significantly decreased pulse pressure, pulse index, and tissue perfusion were also observed in CFVAD animals. Results from the flow pattern studies suggested that at moderate levels of pump support (40-75%), the amount of blood flow distal to the outflow graft anastomosis decreased approximately 25% because of increased regurgitant blood flow in the aorta. These results suggest that the diminished tissue perfusion is likely due to changes in aortic hemodynamics and provide some insight into the distribution of flow from CFVADs.  相似文献   

2.
研究轴流式左心辅助泵的出口管道内血流流场的分布情况,根据流动特性与血栓形成的关系,分析轴流血泵管道内的血栓形成风险。用二维粒子成像测速(PIV)系统测试轴流式左心辅助泵的出口管道中心截面内血液沿管道的流动情况,用三维粒子成像测速系统测试整个管道内的血液流动情况,实验过程中辅助泵的转速为(10 000±20)r/min,流量为8.05 L/min,通过分析出口管道内的血液流场结果,预测左心辅助泵管道内的血栓形成可能。结果表明,辅助泵的出口附近血液存在螺旋流动和明显的垂直于管壁的流动,但在流动中逐渐降低,整个管道内不存在回流、涡流和低速流动区域,管道内血液沿管道的流动速度在管壁边界层外由0 m/s迅速增大到极大值1.0 m/s以上。沿管道方向,管道内的血液流速分布范围由0.7 ~2.2 m/s降低至1.0 ~1.5 m/s。泵的出口附近紊流度为0.31,距离泵的出口较远处的紊流度降低至0.15,血液流动趋于平稳。由于管道内的流动平稳且不存在回流、涡流和低速流动区域,因此不易形成血栓。出口管道有助于消除轴流式左心辅助泵流出血液的螺旋流动和紊流,使血流平稳,减少对人主动脉的损伤。  相似文献   

3.
In the early 1990s, Yamazaki et al. developed a partly intra-ventricular pump, which was inserted into the left ventricle via the apex and then into the aorta through the aortic valve. The pump delivered blood flow directly from the left ventricle to the aorta, like a natural heart, and needed no inflow and outflow connecting tubes; it could be weaned off after the left ventricle had been recovered. The shortcomings were that the driving DC motor remained outside of the ventricle, causing an anatomic space problem, and the sealing and bearing were not appropriate for a durable device. Recently, a totally implantable trans-ventricular pump has been developed in the authors' laboratory. The device has a motor and a pump entirely contained within one cannula. The motor has a motor coil with iron core and a rotor with four-pole magnet; the pump has an impeller and an outflow guide vane. The motor part is 60 mm in length and 13 mm in diameter; the pump part is 55 mm in length and 11 mm in diameter. The total length of the device is therefore 115 mm. The total weight of the device is 53 g. The motor uses rolling bearing with eight needles on each side of the rotor magnets. A special purge system is devised for the infusion of saline mixed with heparin through bearing to the pump inlet (30 - 50 cc per hour). Thus neither mechanical wear nor thrombus formation along the bearing will occur. In haemodynamic testing, the pump can produce a flow of 4 l min-1 with 60 mmHg pressure increase, at a pump rotating speed of 12,500 rpm. At zero flow rate, corresponding to the diastolic period of the heart, the pump can maintain aortic blood pressure over 80 mmHg at the same rotating speed. This novel pump can be quickly inserted in an emergency and easily removed after recovery of natural heart. It will be useful for patients with acute left ventricular failure.  相似文献   

4.
A pulsatile pediatric ventricular assist device (PVAD) is being developed at The Pennsylvania State University to provide mechanical circulatory support in infants and children. The PVAD is based on the design of the adult-sized Pierce-Donachy VAD (Thoratec VAD). The infant-sized PVAD has a dynamic stroke volume of approximately 13 ml. A larger 25-ml size for children is also planned. The stroke volumes, beat rates, and pulsatility are comparable to normal physiologic values. The expected maximum duration of use is 6 months. The PVAD is intended to be placed paracorporeally, although the pump may be implanted for bridge-to-transplant applications. The pneumatically actuated PVAD uses a full-to-empty control mode, which allows maximum flexibility in its application for left, right, or biventricular assistance. The device may be used with atrial or ventricular inlet cannulation, with blood return to the aorta or pulmonary artery. In vitro testing is underway to measure hydrodynamic performance, hemolysis, and flow velocities using particle image velocimetry. In vivo implantation studies will be performed in juvenile goats or sheep after the completion of baseline studies to assess hematology and surgical fit.  相似文献   

5.
Thousands of pediatric patients suffering from heart failure would benefit from longer-term mechanical circulatory support. There are, however, few support systems available in the United States as viable mechanical assist alternatives for these patients. Therefore, we have designed and developed an axial flow pediatric ventricular assist device (PVAD) with an impeller that is fully suspended by magnetic bearings. This blood pump is designed to generate 0.5-4 L/min for pressure rises of 50-95 mm Hg over 6,000-9,000 rpm. We have performed four major design iterations. Building upon the third design phase, we made improvements to create the PVAD4 model. Numerical simulations of the PVAD4 under steady flow simulations were performed to compare the predictions of the latest PVAD4 model to the earlier PVAD3 design. The PVAD4 design resulted in lower fluid stress levels and an increase in pressure generation. A blood damage analysis was also completed. As compared with the earlier PVAD3 design, the damage analysis of the PVAD4 indicated a reduction in the mean and maximum damage index for the new design. All of these numerical findings are encouraging and demonstrate progress toward achieving a superior pump design.  相似文献   

6.
In the early 1990s, Yamazaki et al. developed a partly intra-ventricular pump, which was inserted into the left ventricle via the apex and then into the aorta through the aortic valve. The pump delivered blood flow directly from the left ventricle to the aorta, like a natural heart, and needed no inflow and outflow connecting tubes; it could be weaned off after the left ventricle had been recovered. The shortcomings were that the driving DC motor remained outside of the ventricle, causing an anatomic space problem, and the sealing and bearing were not appropriate for a durable device. Recently, a totally implantable trans-ventricular pump has been developed in the authors' laboratory. The device has a motor and a pump entirely contained within one cannula. The motor has a motor coil with iron core and a rotor with four-pole magnet; the pump has an impeller and an outflow guide vane. The motor part is 60 mm in length and 13 mm in diameter; the pump part is 55 mm in length and 11 mm in diameter. The total length of the device is therefore 115 mm. The total weight of the device is 53 g. The motor uses rolling bearing with eight needles on each side of the rotor magnets. A special purge system is devised for the infusion of saline mixed with heparin through bearing to the pump inlet (30 – 50 cc per hour). Thus neither mechanical wear nor thrombus formation along the bearing will occur. In haemodynamic testing, the pump can produce a flow of 4 l min?1 with 60 mmHg pressure increase, at a pump rotating speed of 12 500 rpm. At zero flow rate, corresponding to the diastolic period of the heart, the pump can maintain aortic blood pressure over 80 mmHg at the same rotating speed. This novel pump can be quickly inserted in an emergency and easily removed after recovery of natural heart. It will be useful for patients with acute left ventricular failure.  相似文献   

7.
The possibility of achieving effective mechanical ventricular assistance without the need for thoracotomy provides great clinical advantages. Two in vitro systems were used to assess left ventricular unloading by means of a small-diameter cannula inserted retrograde into the left ventricle by cannulation of the femoral artery. This cannula is connected to the inlet of a centrifugal blood pump (CP) that delivers the blood into the contralateral femoral artery. Steady-flow test circulation was used to pump fluid in a closed loop from a reservoir through the test cannula back into the reservoir. Pressure drops over cannulae with inner diameters of 4, 5, 6, 7, and 8 mm at flows of 2, 2.5, 3 L/min, against a pressure of 60, 80, 100, and 120 mmHg were calculated. A stationary pressure drop of 120 mmHg was measured at a flow of 3 L/min through a 100 cm cannula with an inner diameter of 6 mm. The second system was a pulsatile mock circulation composed of an atrial and an arterial reservoir linked by a pneumatic prosthetic ventricle. This system was coupled with a 100 cm cannula, 6.1 mm inner diameter, which was passed across the outflow valve of the pulsatile prosthetic ventricle and connected to a CP. Fluid was withdrawn from the ventricle and pumped back into the arterial reservoir. Pulsatile pressure drop over the cannula was measured at different CP flows for increasing systolic ventricular pressure; heart unloading was quantified as a function of CP flow under baseline and failing conditions of the prosthetic left ventricle model. At a constant CP flow the pressure drop over the cannula increased with the pulsatility inside the ventricle. The work of the prosthetic ventricle was reduced by more than 50% when the CP pump was set to 3 L/min; at the same flow setting, when the situation of a failing left ventricle was simulated, the CP was able to take over all the work of the prosthetic ventricle, establishing a stationary flow and a 25% higher mean aortic pressure. This approach to left ventricular assistance may have significant clinical relevance.  相似文献   

8.
We evaluated the short- and mid-term in vivo performance of the Innovamedica ventricular assist device (VAD), a new, low-cost, paracorporeal, pneumatically actuated, pulsatile blood pump. We implanted the VAD in six healthy sheep by inserting the stainless-steel inflow cannula into the left ventricular apex and suturing the outflow graft to the descending thoracic aorta. The anesthetized animals were supported for 6 hours, and pump performance, hemodynamic parameters, and hemolysis were monitored. The pump maintained a blood flow of 4.4 ± 0.8 L/min and an arterial blood pressure of 76 ± 15 mm Hg. At 6 hours, the plasma free hemoglobin concentration was 5.11 ± 0.6 mg/dl (baseline value, 4.52 ± 0.7 mg/dl). The VAD was easy to implant and deair and performed well during the 6 hour period. After successful short-term results, we similarly implanted the VAD in two healthy sheep for 30 days. The animals reached the scheduled end point without device-related problems. Postmortem examination of the explanted organs revealed small infarcted areas in the kidneys of one animal, but renal function was unaffected; the animal also had two thrombi (3 and 7 mm) on the outlet valve. This device may offer a simple, economical alternative to currently available VADs.  相似文献   

9.
Design of a continuous flow centrifugal pediatric ventricular assist device   总被引:1,自引:0,他引:1  
Thousands of pediatric patients suffering from cardiomyopathy or single ventricular physiologies secondary to debilitating heart defects may benefit from long-term mechanical circulatory support due to the limited number of donor hearts available. This article presents the initial design of a fully implantable centrifugal pediatric ventricular assist device (PVAD) for 2 to 12 year olds. Conventional pump design equations, including a nondimensional scaling approach, enabled performance estimations of smaller scale versions (25 mm and 35 mm impeller diameters) of our adult support VAD. Based on this estimated performance, a computational model of the PVAD with a 35 mm impeller diameter was generated. Employing computational fluid dynamics (CFD) software, the flow paths through the PVAD and overall performance were analyzed for steady state flow conditions. The numerical simulations involved flow rates of 2 to 5 LPM for rotational speeds of 2750 to 3250 RPM and incorporated a k-epsilon fluid turbulence model with a logarithmic wall function to characterize near-wall flow conditions. The CFD results indicated best efficiency points ranging from 25% to 28%, which correlate well with typical values of blood pumps. The results further demonstrated that the pump could deliver 2 to 5 LPM at 70 to 95 mmHg for desired physiologic conditions in resting 2 to 12 year olds. Scalar stress levels remained below 300 Pa, thereby signifying potentially low levels of hemolysis. Several flow regions in the pump exhibited signs of vortices, retrograde flow, and stagnation points, which require optimization and further study. This CFD model represents a reasonable starting point for future model enhancements, leading to prototype manufacturing and experimental validation.  相似文献   

10.
The aim of this study was to examine whether pulsatility by intraaortic balloon counterpulsation (IABP) is an important adjunct to the treatment of profound cardiogenic shock (CS) with a widely used, nonpulsatile centrifugal pump (CP). In each of 18 anesthetized, open chest pigs, the outflow cannula of the CP was inserted in the aortic arch through the right external carotid artery, and the inflow cannula of the CP was placed in the left atrium. A 40 cc IABP was subsequently placed in the descending aorta through the left external carotid artery. CS was induced by occlusion of coronary arteries and the infusion of propranolol and crystalloid fluid. Mean aortic pressure, pulse pressure, aortic end diastolic pressure, left ventricular end diastolic pressure, right atrial pressure, and heart rate were monitored. Cardiac output and left anterior descending artery flow were measured with a transit time ultrasound flowmeter. During profound CS, life sustaining hemodynamics were maintained only with the support of the assist devices. Hemodynamic support with the CP was associated with a nearly nonpulsatile flow and a pulse pressure of 7 +/- 4 mm Hg, which increased to 33 +/- 10 mm Hg (p = 0.000) after combining the CP with the IABP. Compared with the hemodynamic support offered by the CP alone, addition of the IABP increased mean aortic pressure from 40 +/- 15 to 50 +/- 16 mm Hg (p = 0.000), cardiac output from 810 +/- 194 to 1,200 +/- 234 ml/min (p = 0.003), and left anterior descending artery flow from 26 +/- 10 to 39 +/- 14 ml/min (p = 0.001). In profound CS, mechanical support provided by a continuous flow CP is enhanced by the added pulsatility of the IABP.  相似文献   

11.
We compared the coronary artery blood flow and hemodynamic energy between pulsatile extracorporeal life support (ECLS) and a centrifugal pump (CP)/intra-aortic balloon pump (IABP) combination in cardiac arrest. A total cardiopulmonary bypass circuit was constructed for six Yorkshire swine weighing 30 to 40 kg. The outflow cannula of the CP or a pulsatile ECLS (T-PLS) was inserted into the ascending aorta, and the inflow cannula of the CP or T-PLS was placed into the right atrium. A 30-ml IABP was subsequently placed in the descending aorta. Extracorporeal circulation was maintained for 30 minutes with a pump flow of 75 ml/kg per minute by a CP with an IABP or T-PLS. Pressure and flow were measured in the right internal carotid artery. The energy equivalent pressure (EEP) and surplus plus hemodynamic energy (SHE) were recorded. The left anterior descending coronary artery flow was measured with an ultrasonic coronary artery flow measurement system. The percent change of the mean arterial pressure to EEP was effective in both groups (23.3 +/- 6.1 in CP plus IABP vs. 19.8 +/- 6.2% in T-PLS, p = NS). The SHE was high enough in the CP/IABP and the T-PLS (20,219.8 +/- 5824.7 vs. 13,160.2 +/- 4028.2 erg/cm3, respectively, p = NS). The difference in the coronary artery flow was not statistically significant at 30 minutes after bypass was initiated (28.2 +/- 9.79 ml/min in CP plus IABP vs. 27.7 +/- 9.35 ml/min in T-PLS, p = NS).  相似文献   

12.
Despite continual improvements in ventricular assist device (VAD) therapy, various clinical issues are emerging. Importantly, various types of thromboembolic complications have been reported to date. Recently, we encountered a rare continuous-flow VAD-related thromboembolic event that resulted in acute myocardial infarction. A 26-year-old female who just underwent HeartMate II® VAD implantation suddenly developed widespread anterolateral myocardial infarction on postoperative day 16. Echocardiography and aortography revealed a large thrombus on the left coronary cusp of the aortic valve that almost completely occluded the left coronary ostium. After VAD implantation, her aortic valve did not open, even at relatively low pump speeds; this was thought to be one of the causes for thrombus formation. Continuous suction of blood from the left ventricle and non-pulsatile flow into the ascending aorta resulted in a continuously closed aortic valve and stagnation of blood in the coronary cusp. Furthermore, both small body size (body surface area <1.3 m2) and postoperative right ventricular failure may have exacerbated blood stagnation and thrombus formation in this patient. We should have adjusted the anticoagulation and antiplatelet therapy protocols based on the patient’s condition. She underwent off-pump coronary artery bypass surgery and remained in clinically stable condition afterwards.  相似文献   

13.
Unreliable quantification of flow pulsatility has hampered many efforts to assess the importance of pulsatile perfusion. Generation of pulsatile flow depends upon an energy gradient. It is necessary to quantify pressure flow waveforms in terms of hemodynamic energy levels to make a valid comparison between perfusion modes during chronic support. The objective of this study was to quantify pressure flow waveforms in terms of energy equivalent pressure (EEP) and surplus hemodynamic energy (SHE) levels in an adult mock loop using a pulsatile ventricle assist system (VAD). A 70 cc Pierce-Donachy pneumatic pulsatile VAD was used with a Penn State adult mock loop. The pump flow rate was kept constant at 5 L/min with pump rates of 70 and 80 bpm and mean aortic pressures (MAP) of 80, 90, and 100 mm Hg, respectively. Pump flows were adjusted by varying the systolic pressure, systolic duration, and the diastolic vacuum of the pneumatic drive unit. The aortic pressure was adjusted by varying the systemic resistance of the mock loop EEP (mm Hg) = (integral of fpdf)/(integral of fdt) SHE (ergs/cm3) = 1,332 [((integral of fpdt)/(integral of fdt))--MAP] were calculated at each experimental stage. The difference between the EEP and the MAP is the extra energy generated by this device. This difference is approximately 10% in a normal human heart. The EEP levels were 88.3 +/- 0.9 mm Hg, 98.1 +/- 1.3 mm Hg, and 107.4 +/- 1.0 mm Hg with a pump rate of 70 bpm and an aortic pressure of 80 mm Hg, 90 mm Hg, and 100 mm Hg, respectively. Surplus hemodynamic energy in terms of ergs/cm3 was 11,039 +/- 1,236 ergs/cm3, 10,839 +/- 1,659 ergs/cm3, and 9,857 +/- 1,289 ergs/cm3, respectively. The percentage change from the mean aortic pressure to EEP was 10.4 +/- 1.2%, 9.0 +/- 1.4%, and 7.4 +/- 1.0% at the same experimental stages. Similar results were obtained when the pump rate was changed from 70 bpm to 80 bpm. The EEP and SHE formulas are adequate to quantify different levels of pulsatility for direct and meaningful comparisons. This particular pulsatile VAD system produces near physiologic hemodynamic energy levels at each experimental stage.  相似文献   

14.
Left ventricular assist devices (LVADs), which pump blood from the left ventricle to the aorta are an important therapy option for patients with end-stage cardiovascular diseases. Recent publications show that even with optimized LVADs fatal complications can occur because of the blood deformations around the inflow cannula or through the LVAD outlet graft-aorta anastomosis. This study investigates the effects of the anastomosis geometry on the flow through the aorta, on the pressure and wall shear stress (WSS) distributions on the aortic wall and on the total entropy generation in the anastomosis region. Anastomosis geometry is defined with two angles, one on the coronal plane and the other on the transversal plane. Turbulent flow simulations are performed for each geometry. Results indicate that 3% to 5% of the work given by the LVAD is dissipated because of the viscous losses in the anastomosis region. The entropy generation, as well as the maximum WSS, increases as the inclination angle decreases. Some portion of the blood streaming out of the LVAD conduit flows toward the aortic valve; therefore the reverse-flow region extends up to the aortic valve in some cases, which may be one of the causes of aortic-valve dysfunction. Results of this study provide insight on the importance of the anastomosis geometry on the hemodynamics in the aorta and downstream the aortic valve, stresses on the aortic wall, and viscous losses.  相似文献   

15.
We report the first attempt to study with numerical methods ventricular assist device (VAD) models and the effects of various inlet VAD cannulations, coupling physical explanations and numerical investigation conclusions with clinical research results. We compared the hemodynamic response with VAD support by using two distinct VAD-inlet cannulation configurations: left atrium to aorta and left ventricular apex to aorta. Impeller pump and displacement pump VADs are considered. Constant VAD flow rate and counterpulsation motion models are simulated. The native cardiovascular system is modeled using the concentrated-parameter method by considering the flow resistance, vessel elasticity, and inertial effect of blood flow in cardiovascular system individual segments. Impeller and displacement pump dynamic models are represented by corresponding inlet and outlet flow rate changes in the VADs. Results show that the two VAD inlet cannulation configurations produce similar cardiac response (flows, pressures, volumes), except that when the VAD flow approaches the 100% assisting condition, the peak left ventricular systolic pressure and diastolic volume increase slightly in the left atrial cannulation, whereas they drop markedly in the left ventricular apex cannulation, suggesting increased ventricular wall tension and ventricular dilatation in the left atrial cannulation and that hemodynamically the left ventricular apex cannulation is more advantageous.  相似文献   

16.
To investigate the feasibility of a long-term left ventricular assist device (LVAD) placed in the aortic valve annulus, an implantable aortic valve pump (21 mm outer diameter, weighing 27 g) was developed. The device consists of a central rotor and a stator. The rotor assembly incorporates driven magnets and an impeller. The stator assembly has a motor coil with an iron core and outflow guide vanes. The device is to be implanted identically to an aortic valve replacement, occupying no additional anatomic space. The pump delivers the blood directly from left ventricle to the aortic root, like a natural ventricle, therefore causing less physiologic disturbance to the natural circulation. Neither connecting conduits nor 'bypass' circuits are necessary. The pump is designed to cycle between a peak flow and zero net flow to approximate systole and diastole. Bench testing indicates that the pump can produce a blood flow of 5 l min(-1) with 50 mmHg pressure increase at 17,500 rpm. At zero net flow rate, the pump can maintain a diastole aortic pressure against 80 mmHg at the same rotating speed.  相似文献   

17.
The Virginia Artificial Heart Institute continues to design and develop an axial-flow pediatric ventricular assist device (PVAD) for infants and children in the United States. Our research team has created a database to track potential PVAD candidates at the University of Virginia Children's Hospital. The findings of this database aided with need assessment and design optimization of the PVAD. A numerical analysis of the optimized PVAD1 design (PVAD2 model) was also completed using computational fluid dynamics (CFD) to predict pressure-flow performance, fluid force estimations, and blood damage levels in the flow domain. Based on the PVAD2 model and after alterations to accommodate manufacturing, a plastic prototype for experimental flow testing was constructed via rapid prototyping techniques or stereolithography. CFD predictions demonstrated a pressure rise range of 36-118 mm Hg and axial fluid forces of 0.8-1.7 N for flows of 0.5-3 l/min over 7000-9000 rpm. Blood damage indices per CFD ranged from 0.24% to 0.35% for 200 massless and inert particles analyzed. Approximately 187 (93.5%) of the particles took less than 0.14 seconds to travel completely through the PVAD. The mean residence time was 0.105 seconds with a maximum time of 0.224 seconds. Additionally, in a water/glycerin blood analog solution, the plastic prototype produced pressure rises of 20-160 mm Hg for rotational speeds of 5960 +/- 18 rpm to 9975 +/- 31 rpm over flows from 0.5 to 4.5 l/min. The numerical results for the PVAD2 and the prototype hydraulic testing indicate an acceptable design for the pump, represent a significant step in the development phase of this device, and encourage manufacturing of a magnetically levitated prototype for animal experiments.  相似文献   

18.
A compact and reliable mechanical ventricular assist device is expected for chronic use. A magnetically suspended centrifugal pump (MSCP) is a seal-less, bearingless pump that can be operated for a long time with-out fear of leak or thrombus formation around the shaft. This paper reports recent progress with the MSCP, including pulse-pressure generation: In three sheep with acute heart failure induced by injection of beta-blockers, left ventricular assist was instituted with an inflow cannula into the left atrium (LA) and left ventricle (LV), and the outflow cannula to the descending aorta. The timing of the pulsation was synchronized with the electrocardiogram. Cardiac performance was evaluated by a conductance catheter and a tipped manometer in the LV. As pump speed increased, the pump flow became almost continuous. After application of pulsation, the pulse pressure increased from 5 to 25 mmHg, irrespective of the inflow cannulation site and the timing of pulsation. With LA cannulation, LV pressure at copulsation was slightly higher than at counterpulsation. Chronic animal trial: The MSCP was implanted in three sheep. The inflow cannula was inserted into the LV. The native heart was kept intact. The inner surface was coated with heparin. Continuous hemodynamic monitoring as well as periodic blood sampling was performed. The duration of running of the pump was 60, 140, and 248 days. The causes of termination were infection and failure of magnetic suspension due to electrical short. No thrombus or embolic findings were observed in the whole body after sacrifice. Renal and hepatic functions were within normal range throughout the experiment. It is concluded that the MSCP can produce pulsation irrespective of the inflow cannulation site and timing of synchronization. It is a promising device for chronic ventricular support.  相似文献   

19.
To investigate the feasibility of a long-term left ventricular assist device (LVAD) placed in the aortic valve annulus, an implantable aortic valve pump (21 mm outer diameter, weighing 27 g) was developed. The device consists of a central rotor and a stator. The rotor assembly incorporates driven magnets and an impeller. The stator assembly has a motor coil with an iron core and outflow guide vanes. The device is to be implanted identically to an aortic valve replacement, occupying no additional anatomic space. The pump delivers the blood directly from left ventricle to the aortic root, like a natural ventricle, therefore causing less physiologic disturbance to the natural circulation. Neither connecting conduits nor ‘bypass’ circuits are necessary. The pump is designed to cycle between a peak flow and zero net flow to approximate systole and diastole. Bench testing indicates that the pump can produce a blood flow of 5 l min?1 with 50 mmHg pressure increase at 17 500 rpm. At zero net flow rate, the pump can maintain a diastole aortic pressure against 80 mmHg at the same rotating speed.  相似文献   

20.
BACKGROUND: The enabler circulatory support system is a catheter pump which expels blood from the left or right ventricular cavity and provides pulsatile flow in the ascending aorta or pulmonary artery. It is driven by a bedside installed pulsatile driving console. The device can easily be implanted by a minimal invasive approach, similar to the Hemopump. PURPOSE: To demonstrate the hemodynamic performance of this new intracardiac support system. METHODS: In a series of 9 sheep, hemodynamic evolutions were recorded in various conditions of myocardial contractility (the non-failing, the moderately failing and the severely failing heart). Heart failure was induced by injection of microspheres in the coronary arteries. RESULTS: Introduction of the cannula through the aortic valve was feasible in all cases. Pump flow by the enabler was gradually increased to a maximum of 3.5 L/min. Diastolic (and mean) aortic blood pressure is significantly increased in the non-failing and moderately failing condition (counterpulsation mode). In heart failure, cardiac output is significantly increased by the pump (p < 0.0001). A drop in left atrial pressure (indicating unloading) is achieved in all conditions but reaches significant levels only during heart failure (p=0.0068). CONCLUSIONS: This new circulatory support system contributes to stabilization of the circulation in the presence of cardiac unloading. In heart failure it actually supports the circulation by increasing cardiac output and perfusion pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号