首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Acute respiratory infections are significant causes of morbidity, mortality, and economic burden worldwide. An accurate, early differential diagnosis may alter individual clinical management as well as facilitate the recognition of outbreaks that have implications for public health. Here we report on the establishment and validation of a comprehensive and sensitive microarray system for detection of respiratory viruses and subtyping of influenza viruses in clinical materials. Implementation of a set of influenza virus enrichment primers facilitated subtyping of influenza A viruses through the differential recognition of hemagglutinins 1 through 16 and neuraminidases 1 through 9. Twenty-one different respiratory virus species were accurately characterized, including a recently identified novel genetic clade of rhinovirus.  相似文献   

2.
基因芯片技术检测鉴定临床常见致病真菌的初步研究   总被引:4,自引:0,他引:4  
目的为了快速、简便、高通量地鉴定临床常见致病真菌,建立了一种采用基因芯片技术对临床常见的致病真菌鉴定的分子生物学方法。方法以5.8S rDNA与28S rDNA间的内转录间区2(internal transcribed spacer-2,ITS-2)为靶标,针对待检的临床常见致病真菌设计合成一系列寡核苷酸探针,制成寡核苷酸芯片。待检真菌DNA经通用引物扩增标记后,与芯片杂交,对杂交图谱分析归纳,得到一套种特异性的典型杂交图谱。待检的样品菌与基因芯片杂交,得到的杂交结果与典型图谱比对即可判断出样品的种类。结果以涉及8个属20个种的标准致病真菌菌株对芯片的特异性、重复性、灵敏度进行考察,结果表明,该研究建立的基因芯片技术可以有效地区分20种临床常见致病真菌,特异性良好,重复性良好(信噪比CV<10%),灵敏度为15 pg/ml真菌DNA。收集从临床分离的84株致病真菌菌株对基因芯片进行试用,结果显示基因芯片的鉴定结果与常规鉴定方法的鉴定结果一致。结论这项技术的建立可以稳定、特异性地实现临床常见致病真菌的高通量鉴定,为进一步检测研究奠定了基础。  相似文献   

3.
基因芯片技术检测环境中常见致病菌的初步研究   总被引:22,自引:0,他引:22  
目的:为了快速,准确地检测环境中存在的致病菌,建立一种采用基因芯片技术对环境中常见致病检测和鉴定的实验方法。方法:采用合成后点样的方法把自行设计合成的一系列寡核苷酸探针固定在经过醛基化修饰的显微镜载玻片上,制成用于致病菌检测的基因芯片。结果:在相同的条件下,扩增了涉及12个菌属的151株细菌的165rDNA基因片段并与基因芯片杂交,经Scan-Array3000芯片阅读仪扫描得到特异性的交杂图,归纳这些杂交图,得到一套属(种)特异的典型杂交图谱。待检的样品菌与基因芯片进行杂交,得到的杂交结果与典型图谱比对即可判断出样品的种类。用这样的方法对从实际样品中分离的细菌进行检测,准确率表达了96.2%(25/26)。结论:该项技术的建立为今后更大规模的检测研究奠定了基础,可以推广应用于感染性疾病诊断,环境监测,食品卫生监督,商品检验检疫等领域。  相似文献   

4.
Here we report the development of an oligonucleotide microarray method that can identify fungal pathogens in a single reaction. Specific oligonucleotide probes targeted to internal transcribed spacer 2 were designed and synthesized. Fungal DNA was amplified by universal primers, and the PCR product was hybridized with the oligonucleotide microarray. A series of specific hybridization profiles corresponding to species were obtained. The 122 strains of fungal pathogens, including standard and clinically isolated strains, used to test the specificity, stability, and sensitivity of the microarray system belonged to 20 species representing 8 genera. We found that the microarray system can successfully discriminate among the fungal pathogens to the species level, with high specificity and stability. The sensitivity was 15 pg/ml of DNA. This oligonucleotide microarray system represents a rapid, simple, and reliable alternative to conventional methods of identifying common clinical fungal isolates.  相似文献   

5.
A single-colour microarray hybridization system was designed and evaluated for the detection of viruses infecting grapevine. Total RNA (≥0.5μg) from infected plants was converted to cDNA and labelled with Cy3 using two different strategies. While amine-modified and labelled cDNA was adequate for the detection of nepoviruses, the 3DNA technique, a post-hybridization detection method that uses intensely fluorescent dendrimer reagents, was required for the detection of closteroviruses in infected plants. Threshold detection levels were based on the ratio between viral specific and 18S rRNA positive control signal intensities. Oligonucleotides between 27 and 75 nucleotides in length were evaluated and compared. Viruses detected include eight nepoviruses, two vitiviruses, and one each of closterovirus, foveavirus, ampelovirus, maculavirus and sadwavirus. Results of this work demonstrate the potential of microarray technique to detect viral pathogens without sequence bias amplification of template RNA.  相似文献   

6.
目的 建立流感/禽流感病毒及其致病力鉴别的基因芯片检测技术.方法 以血凝素(HA)、神经氨酸酶(NA)、核蛋白(NP)基冈作为靶片段,设计病毒检测和致病力特异性鉴别探针,建立基因芯片鉴别检测技术,采用单引物扩增法(SPA)处理样本核酸,分别对此芯片进行特异性、敏感性和符合率评价.结果 此芯片能够特异性的检测H1N1、H3N2、B型流感病毒及H5N1、H9N2禽流感病毒,敏感性分别为8HAU、16HAU、32HAU及8HAU、8HAU.致病力鉴别探针敏感性为32HAU.同RT-PCR方法比较,检测灵敏度为83.9%.结论 建立的常见流感病毒检测基因芯片特异性高、敏感性高、灵敏度高,更能够对致病力进行有效甄别,可作为临床诊断、传染病防控等方面的有益补充.  相似文献   

7.
A novel strain of influenza A (H1N1) virus was isolated in Mexico and the US in March and April 2009. This novel virus spread to many countries and regions in a few months, and WHO raised the level of pandemic alert from phase 5 to phase 6 on June 11, 2009. The accurate identification of H1N1 virus and other human seasonal influenza A viruses is very important for further treatment and control of their infections. In this study, we developed an oligonucleotide microarray to subtype human H1N1, H3N2 and H5N1 influenza viruses, which could distinguish the novel H1N1 from human seasonal H1N1 influenza viruses and swine H1N1 influenza viruses. The microarray utilizes a panel of primers for multiplex PCR amplification of the hemagglutinin (HA), neuraminidase (NA) and matrix (MP) genes of human influenza A viruses. The 59-mer oligonucleotides were designed to distinguish different subtypes of human influenza A viruses. With this microarray, we accurately identified and correctly subtyped the reference virus strains. Moreover, we confirmed 4 out of 39 clinical throat swab specimens from suspected cases of novel H1N1.  相似文献   

8.
A rapid and reliable method for the identification of five clinically relevant G genotypes (G1 to G4 and G9) of human rotaviruses based on oligonucleotide microarray hybridization has been developed. The genotype-specific oligonucleotides immobilized on the surface of glass slides were selected to bind to the multiple target regions within the VP7 gene that are highly conserved among individual rotavirus genotypes. Rotavirus cDNA was amplified in a PCR with primers common to all group A rotaviruses. A second round of nested PCR amplification was performed in the presence of indodicarbocyanine-dCTP and another pair of degenerate primers also broadly specific for all genotypes. The use of one primer containing 5'-biotin allowed us to prepare fluorescently labeled single-stranded hybridization probe by binding of another strand to magnetic beads. The identification of rotavirus genotype was based on hybridization with several individual genotype-specific oligonucleotides. This approach combines the high sensitivity of PCR with the selectivity of DNA-DNA hybridization. The specificity of oligonucleotide microchip hybridization was evaluated by testing 20 coded rotavirus isolates from different geographic areas for which genotypes were previously determined by conventional methods. Analysis of the coded specimens showed that this microarray-based method is capable of unambiguous identification of all rotavirus strains. Because of the presence of random mutations, each individual virus isolate produced a unique hybridization pattern capable of distinguishing different isolates of the same genotype and, therefore, subgenotype differentiation. This strain information indicates one of several advantages that microarray technology has over conventional PCR techniques.  相似文献   

9.
10.
Molecular evolution of influenza viruses   总被引:12,自引:0,他引:12  
There are two different mechanisms by which influenza viruses might evolve: (1) Because the RNA genome of influenza viruses is segmented, new strains can suddenly be produced by reassortment, as happens, for example, during antigenic shift, creating new pandemic strains. (2) New viruses evolve relatively slowly by stepwise mutation and selection, for example, during antigenic or genetic drift. Influenza A viruses were found in various vertebrate species, where they form reservoirs that do not easily mix. While human influenza A viruses do not spread in birds and vice versa, the species barrier to pigs is relatively low, so that pigs might function as mixing vessels for the creation of new pandemic reassortants in Southeast Asia, where the probability is greatest for double infection of pigs by human and avian influenza viruses. Phylogenetic studies revealed that about 100 years ago, an avian influenza A virus had crossed the species barrier, presumably first to pigs, and from there to humans, forming the new stable human and classical swine lineages. In 1979, again, an avian virus showed up in the North European swine population, forming another stable swine lineage. The North European swine isolates from 1979 until about 1985 were genetically extremely unstable. A hypothesis is put forward stating that a mutator mutation is necessary to enable influenza virus to cross the species barrier by providing the new host with sufficient variants from which it can select the best fitting ones. As long as the mutator mutation is still present, such a virus should be able to cross the species barrier a second time, as happened about 100 years ago. Although the most recent swine isolates from northern Germany are again genetically stable, we nevertheless should be on the lookout to see if a North European swine virus shows up in the human population in the near future.  相似文献   

11.
The aim of the study was to develop a multiplex PCR-based DNA microarray technology for simultaneous detection and species identification of seven human herpes viruses, namely herpes simplex virus type 1, type 2 (HSV-1, HSV-2), varicella-zoster virus (VZV), Epstein-Barr virus (EBV), cytomegalovirus (CMV), and human herpes virus 6 (HHV-6A, HHV-6B), and to apply this technology to accurate diagnosis of herpesvirus-associated diseases. Primers and oligonucleotide probes were designed and synthesized based on the highly conserved regions of the DNA polymerase gene in human herpes viruses. DNA microarrays were made by printing the oligonucleotide probes onto special glass slides. After amplification and labeling with CY5, the PCR products were hybridized with the DNA microarrays and species identified. Sixty-one cerebrospinal fluid (CSF) and 132 blood specimens were analyzed by this technique, and the results were compared with those of TaqMan PCR. Several specimens were sequenced further after cloning. The PCR products of the seven human herpes viruses ranged from 224 to 252 bp, and could be species identified with DNA microarrays. The detection limits were 10(1) copies/microl for each virus. And the test showed no cross-reaction to DNA extracted from S. aureus, E. coli, hepatitis B virus, Cryptococcus neoformans, Candida albicans and human genome. Among 132 blood and 61 CSF specimens, 55 were tested positive for human herpes virus DNA. Compared with the results of TaqMan PCR, the sensitivity and specificity of the DNA microarray technology was 96.2% and 99.3%, respectively. This multiplex PCR-based DNA microarray technology, which is rapid, specific and sensitive, serves as an effective technique for simultaneous detection and species identification of seven human herpes viruses.  相似文献   

12.
BACKGROUND: We cannot predict when an influenza pandemic will occur or which variant of the virus will cause it. Little information is currently available on the ability of laboratories to detect and subtype influenza viruses including the avian influenza viruses. OBJECTIVES: To assess the ability of laboratories to detect and subtype influenza viruses. STUDY DESIGN: In 2006 QCMD distributed an External Quality Assessment panel for the molecular detection and haemagglutinin subtyping of influenza viruses to 87 laboratories in 34 countries Worldwide, which were given 6 weeks to return results. These data were analysed to assess laboratory performance. RESULTS: Influenza virus positive panel samples were correctly identified by 35-98% of laboratories. The correct haemagglutinin subtype was reported by 32-87% of laboratories that detected the virus: incorrect subtyping results included the reporting of avian influenza viruses as human strains and vice versa. Twelve laboratories reported false positives with some avian influenza viruses reported. CONCLUSIONS: These data suggest that improvements are needed in the molecular detection of influenza viruses and influenza virus A haemagglutinin subtyping. Only rapid and accurate identification of circulating pandemic influenza virus will ensure that the maximum time is available for intervention.  相似文献   

13.
The emergence of pandemic A(H1N1) 2009 influenza showed the importance of rapid assessment of the degree of immunity in the population, the rate of asymptomatic infection, the spread of infection in households, effects of control measures, and ability of candidate vaccines to produce a response in different age groups. A limitation lies in the available assay repertoire: reference standard methods for measuring antibodies to influenza virus are haemagglutination inhibition (HI) assays and virus neutralization tests. Both assays are difficult to standardize and may be too specific to assess possible partial humoral immunity from previous exposures. Here, we describe the use of antigen-microarrays to measure antibodies to HA1 antigens from seven recent and historical seasonal H1, H2 and H3 influenza viruses, the A(H1N1) 2009 pandemic influenza virus, and three avian influenza viruses. We assessed antibody profiles in 18 adult patients infected with A(H1N1) 2009 influenza virus during the recent pandemic, and 21 children sampled before and after the pandemic, against background reactivity observed in 122 persons sampled in 2008, a season dominated by seasonal A(H1N1) influenza virus. We show that subtype-specific and variant-specific antibody responses can be measured, confirming serological responses measured by HI. Comparison of profiles from persons with similar HI response showed that the magnitude and broadness of response to individual influenza subtype antigens differs greatly between individuals. Clinical and vaccination studies, but also exposure studies, should take these findings into consideration, as they may indicate some level of humoral immunity not measured by HI assays.  相似文献   

14.
Similar to other segmented RNA viruses, influenza viruses can exchange genome segments and form a wide variety of reassortant strains upon coreplication within a host cell. Therefore, the mapping of genome segments of influenza viruses is essential for understanding their phenotypes. In this work, we have developed an oligonucleotide microarray hybridization method for simultaneous genotyping of all genomic segments of two highly homologous strains of influenza B virus. A few strain-specific oligonucleotide probes matching each of the eight segments of the viral genomes of the B/Beijing/184/93 and B/Shangdong/7/97 strains were hybridized with PCR-amplified fluorescently labeled single-stranded DNA. Even though there were a few mismatches among the genomes of the studied virus strains, microarray hybridization showed highly significant and reproducible discrimination ability and allowed us to determine the origins of individual genomic segments in a series of reassortant strains prepared as vaccine candidates. Additionally, we were able to detect the presence of at least 5% of mixed genotypes in virus stocks even when conventional sequencing methods failed, for example, for the NS segment. Thus, the proposed microarray method can be used for (i) rapid and reliable genome mapping of highly homologous influenza B viruses and (ii) extensive monitoring of influenza B virus reassortants and the mixed genotypes. The array can be expanded by adding new oligoprobes and using more quantitative assays to determine the origin of individual genomic segments in series of reassortant strains prepared as vaccine candidates or in mixed virus populations.  相似文献   

15.
Vaccinia virus is a member of the orthopoxvirus group, to which also belongs variola virus, one of the most hazardous pathogens known to man. To establish a model system to detect orthopoxviruses, a vaccinia oligonucleotide microarray is designed, produced and tested. Vaccinia virus is used to test the prepared microarrays. The virus DNA samples in different propagation phases are extracted and hybridised with the oligonucleotide microarray. The results showed that the oligonucleotide microarray can detect vaccinia virus with high specificity and sensitivity.  相似文献   

16.
Several viruses, which in some cases can cause severe losses, affect carnation plants. These viruses include carnation mottle virus, carnation etched ring virus (CERV), carnation vein mottle virus, carnation ringspot virus, carnation Italian ringspot virus and carnation latent virus. A non-isotopic molecular hybridization was developed for the detection of these viruses in host plants and the sensitivity of the technique has been compared with enzyme-linked immunosorbent assay and bioassay methods. A procedure was developed to test simultaneously for the five RNA viruses (except CERV). The conditions established for this simultaneous detection did not include the DNA virus CERV due to the necessity of incorporating an additional step of RNase A treatment in the procedure to eliminate background signals. The sensitivity limits obtained for each virus using this multiple detection assay were identical to those obtained with the individual assays. The relative benefits of using this detection procedure for routine diagnosis of carnation viruses are discussed.  相似文献   

17.
The development of a method in macroarray format for the identification of alphaviruses and orthopoxviruses in samples of concern in biodefense is reported. Capture oligonucleotides designed to bind generic members of the orthopox- or alphavirus families and a collection of additional oligonucleotides to bind specifically nucleic acids from five individual alphaviruses, including Venezuelan equine encephalitis, or DNA from each of four orthopoxviruses, including variola virus (VAR) were deposited onto nylon membranes. Hybridization of digoxigenin labeled PCR products to the macroarray produced results easily observable to the naked eye. Multiplex RT-PCR utilizing both orthopox- and alphavirus-generic primers yielded amplification of DNA corresponding to the expected sizes of the orthopoxvirus and alphavirus fragments, respectively. Hybridization of samples to capture oligonucleotides in the macroarray membranes identified correctly generic orthopox- or alphaviral sequences. The hybridizations correctly identified each of the three alphaviruses and two orthopoxviruses tested. We observed cross-hybridization only once (between two alphaviruses) that was less intense than the spots formed by correct hybridization. The macroarray test described below is easy to perform, inexpensive, relatively fast, uncomplicated to interpret, and its end point is read visually without the need of additional equipment. This nucleic acid hybridization assay onto nylon membranes in macroarray format can help in detecting or excluding the presence of threat viruses in environmental samples and appears promising for a variety of biodefense applications.  相似文献   

18.
DNA microarray assay has become a useful tool for gene expression studies. Less frequent is its application to detection of viruses or diagnostics of virus diseases. Here we show design of a microscope slide-based microarray assay for simultaneous identification of several potato viruses. Different primer pairs were designed or adopted to obtain specific amplicons from six potato viruses: Potato virus A (PVA), Potato virus S (PVS), Potato virus X (PVX), Potato virus Y (PVY), Potato mop-top virus (PMTV) and Potato leaf-roll virus (PLRV). Purified viral DNA probes were spotted on a microscope slide coated with poly-L-lysine. The same primers were used for preparation of fluorochrome-labeled targets. The latter were denatured and hybridized on the microarray slide (chip). An example of simultaneous assay of two pathogens is given and possibilities of practical application of this type of assay are discussed.  相似文献   

19.
A novel solution hybridization method for the diagnosis of a plant virus was evaluated. Synthetic oligonucleotide probes were used for the detection of potato virus X (PVX) in crude leaf sap extracts by hybridization in solution. Three 40-nucleotide-long oligonucleotide probes complementary to RNA sequences of potato virus X near the 3' end were synthesized. Two probes were 32P-labelled and one biotinylated. The three probes were allowed to form hybrids with the target viral nucleic acid in solution, and the formed hybrids were isolated with the aid of the biotinylated capture probe using avidin polystyrene beads after the reaction. Alternatively, hybrids were captured from the poly(A) tail of the viral RNA on oligo(dT) cellulose. The maximum signal was obtained after 4 h hybridization. About 70% of the maximum signal was obtained after 2 h hybridization. Sensitivity with the two 32P-labelled oligonucleotide probes was 1-5 x 10(7) molecules of PVX RNA. This corresponds to 0.6-3 ng of the virus. Crude leaf sap did not interfere with the detection of the virus. These results suggest that this solution hybridization method permits rapid detection of a plant virus in crude plant sap without sample pretreatment and may thus open new avenues for the development of a nucleic-acid-based ELISA-like diagnostic test for the detection of plant viruses.  相似文献   

20.
Microarrays are one of the new emerging methods in plant virology currently being developed by various laboratories. In this study, a new approach is described on the detection of plant viruses using short synthetic single-stranded oligomers (40 nt) instead of PCR products as capture probes. A microchip detecting potato viruses, PVA, PVS, PVM, PVX, PVY and PLRV, in both single and mixed infections was developed and tested. The chip was also designed to distinguish between the main strains of PVY and PVS. Results of initial tests with PVY(NTN) and PVY(O) strains using several different probes for one virus are presented. Possibilities and advantages of the new oligonucleotide-based microarray approach for plant viral diagnosis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号