首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Three overlapping plasmids were isolated from a YEp24 library, which restore Rad+ functions to rad6-1 and rad6-3 mutants. Different subclones were made and shown to integrate by homologous recombination at the RAD6 site on chromosome VII, thus verifying the cloned DNA segments to be the RAD6 gene and not a suppressor. The gene resides in a 1.15 kb fragment, which restores Rad+ levels of resistance to U.V., MMS and -rays to both rad6-1 and rad6-3 strains. It also restores sporulation ability to rad6-1 diploids.Integrative deletion of the RAD6 gene was shown not to be completely lethal to the yeast. Our results suggest that the RAD6 gene has some cell cycle-specific function(s), probably during late S phase.  相似文献   

2.
Summary The gene FUR4, coding for the uracil permease in Saccharomyces cerevisiae, was mapped on chromosome II, at a distance of 7.8 cM from the centromere on the right arm of the chromosome. In a first step, we used the chromosome loss mapping method developed by Falco and Botstein (1983) to determine on which chromosome the gene mapped. After the observation that FUR4 was closely linked to GAL10, one of the three genes forming the gal cluster (Bassel and Mortimer 1971), we could determine precisely the position of the gene on chromosome II.  相似文献   

3.
Summary The nucleotide sequence of the ERG12 gene, encoding mevalonate kinase, from Saccharomyces cerevisiae is presented. The longest open reading frame may code for a protein containing 443 amino acids with a deduced relative molecular mass of 48 500. The analysis of the nucleotide sequence reveals a complete identity with the yeast gene RAR1, isolated elsewhere by complementation of a rar1 mutation involved in the stability of plasmids with weak ARS. In addition, we show that mevalonate kinase is not a rate-limiting enzyme; however its sensitivity to FFP could be a key regulatory mechanism in the sterol pathway of yeast.  相似文献   

4.
Nine members, MEL2–MEL10, of the MEL gene family coding for -galactosidase were physically mapped to the ends of the chromosomes by chromosome fragmentation. Genetic mapping of the genes supported the location of all the MEL genes in the left arm of their resident chromosomes.  相似文献   

5.
Summary The DNA of Saccharomyces exiguus was analyzed by Southern hybridization using cloned MATa, MAT, and HO genes of Saccharomyces cerevisiae as probes. It was shown that S. exiguus has a DNA sequence homologous with the HO gene of S. cerevisiae and that this DNA sequence is on a chromosome of about 940 kb of DNA in S. exiguus. However, there is no DNA sequence in S. exiguus that is homologous with the MAT genes of S. cerevisiae.  相似文献   

6.
Summary A DNA fragment containing the CYS4 gene of Saccharomyces cerevisiae was isolated from a genomic library. The cloned fragment hybridized to the transverse-alternating-field-electrophoresis band corresponding to chromosomes VII and XV. According to the 2 m DNA chromosome-loss procedure, the cys2 and cys4 mutations, which are linked together and co-operatively confer cysteine dependence, were assigned to chromosome VII. By further mapping involving tetrad analysis, the cys2-cys4 pair was localized between SUP77 (SUP166) and ade3 on the right arm of chromosome VII.  相似文献   

7.
Summary The SPR6 gene of Saccharomyces cerevisiae encodes a moderately abundant RNA that is present at high levels only during sporulation. The gene contains a long open reading frame that could encode a hydrophilic protein approximately 21 kDa in size. This protein is probably produced by the yeast, because the lacZ gene of Escherichia coli is expressed during sporulation when fused to SPR6 in the expected reading frame. SPR6 is inessential for sporulation; mutants that lack SPR6 activity sporulate normally and produce viable ascospores. Nonetheless, the SPR6 gene encodes a function that is relevant to sporulating cells; the wild-type allele can enhance sporulation in strains that are defective for several SPR functions. SPR6 is located on chromosome V, 14.4 centimorgans centromere-distal to MET6.  相似文献   

8.
Summary A plasmid, pYsup1-1, containing a DNA fragment able to suppress the recessive mutant phenotype of the suppressor locus sup1 (allele sup1-ts36) of Saccharomyces cerevisiae was isolated from a bank of yeast chromosomal DNA cloned in cosmid p3030. The complementing gene was localized on a 2.6 kb DNA fragment by further subcloning. Evidence is presented that the cloned DNA segment codes for the sup1 structural gene (chromosome IIR).  相似文献   

9.
Summary A screening of haploid yeast strains for enhanced resistance to nitrogen mustard (HN2) yielded a recessive mutant allele, hnm1, that conferred hyper-resistance (HYR) to HN2. Diploids, homo- or heterozygous for the HNM1 locus, exhibit normal wild-type like resistance while homozygosity for hnm1 leads to the phenotype HYR to HN2. The hnm1 mutation could be found in yeast strains proficient or deficient in different DNA repair systems. In these mostly HN2-sensitive haploid repair-deficient mutants, hnm1 acted as a partial suppressor of HN2 sensitivity. All isolated recessive mutations conferring hyper-resistance belonged to a single complementations group. The HYR to HN2 phenotype was maximally expressed in growing cells and was associated with reduced mutability by HN2. HNM1 most probably controls uptake of HN2 which would be impaired in the hnm1 mutants.  相似文献   

10.
11.
5-Bromodeoxyuridine (BrdU) is known to modulate expression of particular genes, and eventually arrest cell division in mammalian and yeast cells. To study a molecular basis for these phenomena, we adopted a genetic approach with a yeast cell system. We screened multicopy suppressor genes that confer resistance to BrdU with a thymidine-auxotrophic strain of the yeast Saccharomyces cerevisiae. One of such genes was found to encode Ham1 protein, which was originally identified as a possible triphosphatase for N-6-hydroxylaminopurine triphosphate. Consistent with this, overexpression of the HAM1 gene reversed growth arrest caused by BrdU, and blocked incorporation of BrdU into genomic DNA. On the contrary, disruption of the gene sensitized cells to BrdU. A crude extract from Ham1-overproducing cells showed a high activity to hydrolyze BrdUTP to BrdUMP and pyrophosphate in addition to abnormal purine nucleotides. Purified recombinant Ham1 protein showed the same activity. These results demonstrate that Ham1 protein detoxifies abnormal pyrimidine as well as purine nucleotides.  相似文献   

12.
13.
Summary We have identified a mutant strain of the yeast Saccharomyces cerevisiae which overproduces killer toxin. This strain contains a single mutation which fails to complement defects in both the SKI3 and SKI5 genes, while a cloned copy of this gene complements both the ski3 and ski5 defects. The level of secreted toxin from a cDNA based plasmid is not increased in a ski3 strain, showing that the overproduction phenotype is dependent upon an increased level of M1 dsRNA.  相似文献   

14.
Summary The ERG9 gene of Saccharomyces cerevisiae has been cloned by complementation of the erg9-1 mutation which affects squalene synthetase. From the 5kkb insert isolated, the functional gene has been localized on a DNA fragment of 2.5 kb. The presence of squalene synthetase activity in E. coli bearing the yeast DNA fragment isolated, indicates that the structural gene encoding squalene synthetase has been cloned. The sequence of the 2.5 kb fragment contains an open reading frame which could encode a protein of 444 amino acids with a deduced relative molecular mass of 51 600. The amino acid sequence reveals one to four potential transmembrane domains with a hydrophobic segment in the C-terminal region. The N-terminus of the deduced protein strongly resembles the signal sequence of yeast invertase suggesting a specific mechanism of integration into the membranes of the endoplasmic reticulum.  相似文献   

15.
Summary In Saccharomyces cerevisiae, the HGS2-1 allele confers sensitivities to inorganis mercury (Ono and Sakamoto 1985) and to excess fermentable sugars such as glucose (Sakamoto et al. 1985); exogenous tyrosine antagonizes both inorganic mercury and excess glucose. In this sutdy, the inorganic mercury sensitive strain has been shown to have about twice more glucose-1,6-bisphosphate and slightly less pyruvate than the normal strains, suggesting that the inorganic mercury sensitive strain has the reduced aldolase activity. It has been also shown that the growth retarded cells accumulate trehalose, by which the lower level of glucos-6-phosphate in the inorganic mercury sensitive strain is accounted for, and that inorganic mercury, presumably excess glucose also, causes growth inhibition via depletion of cellular tyrosine. The mechanism how cellular tyrosine is depleted by inorganic mercury or excess glucose is accounted for by the facts that (1) the tyrosine uptake activity is decreased with increase of glucose concentration in growth medium, (2) HGS2-1 enhances the effect of glucose on the tyrosine uptake activity, and (3) inorganic mercury inhibits the tyrosine uptake system by binding to its SH-group(s). Thus, it is concluded that the role of tyrosine is not to detoxify inorganic mercury nor excess fermentable sugars but simply to counteract depletion of cellular tyrosine induced by them.  相似文献   

16.
Summary Saccharomyces cerevisiae strains sensitive to inorganic mercury (Ono and Sakamoto 1985) did not grow well on the medium rich in glucose and poor in peptone. This growth inhibition, like growth inhibition caused by inorganic mercury, was relieved by exogenous tyrosine. Sugars such as fructose and mannose were as inhibitory as glucose, but glycerol was not at all. Galactose was inhibitory but not so much as glucose. Agal2l mutation (defective in galactose uptake) partly relieved growth inhibition caused by excess galactose. Moreover, it was found that some of revertants which gained ability to grow well in the presence of excess glucose were defective in the glucose uptake. From these observations, we conclude that growth inhibition of the inorganic mercury sensitive strains by excess sugar is a consequence of the catabolite regulation. In other words, the inorganic mercury sensitive strains are hyper-sensitive to the catabolite regulation due to the presence of theHGS2-1 allele.  相似文献   

17.
Growth inhibition and cell killing caused by sulphite were reduced in seven Saccharomyces cerevisiae sulphite-resistant independent mutants, compared to their parental strains. Genetic analysis showed that in the seven mutants resistance was inherited as a single-gene dominant mutation and that all the analyzed mutations were allelic, thus identifying a major gene responsible for sulphite resistance in S. cerevisiae. Two of the mutants, MBS20-9 and MBS30, were further characterized. 35S-sulphite uptake experiments showed that the ability to accumulate sulphite was markedly reduced in the two resistant strains. No difference between resistant and sensitive strains with respect to glyceraldehyde-3-phosphate dehydrogenase sensitivity to sulphite, or to intracellular glutathione content, were revealed. In contrast, the extracellular acetaldehyde concentration was higher in the resistant mutants, both in the presence and in the absence of sulphite.  相似文献   

18.
19.
20.
The effect of the Escherichia coli RecA protein on mitotic recombination in the diploid D7 strain of Saccharomyces cerevisiae damaged by UV radiation was investigated. The D7 strain was transformed by two modified versions of the pNF2 plasmid: one, containing the ADH-1 promoter, and the other containing the recA gene tandemly arranged behind the ADH-1 promoter region. Immunological analysis proved the presence of the 38-kDa RecA protein in D7/pNF2ADHrecA transformants. We observed a positive effect of recA gene expression on mitotic gene conversion, mainly at higher doses of UV radiation. The results indicate that a RecA-like activity could participate in steps preceeding mitotic conversion events in yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号