首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The nicotine metabolite cotinine is an abundant long-lived bio-active compound that may contribute to the overall physiological effects of tobacco use. Although its mechanism of action in the central nervous system has not been extensively investigated, cotinine is known to evoke dopamine release in the nigrostriatal pathway through an interaction at nicotinic receptors (nAChRs). Because considerable evidence now demonstrates the presence of multiple nAChRs in the striatum, the present experiments were done to determine the subtypes through which cotinine exerts its effects in monkeys, a species that expresses similar densities of striatal alpha4beta2* (nAChR containing the alpha4 and beta2 subunits, but not alpha3 or alpha6) and alpha3/alpha6beta2* (nAChR composed of the alpha3 or alpha6 subunits and beta2) nAChRs. Competition binding studies showed that cotinine interacts with both alpha4beta2* and alpha3/alpha6beta2* nAChR subtypes in the caudate, with cotinine IC(50) values for inhibition of 5-[(125) I]iodo-3-[2(S)-azetinylmethoxy]pyridine-2HCl ([(125)I]A-85380) and (125)I-alpha-conotoxinMII binding in the micromolar range. This interaction at the receptor level is of functional significance because cotinine stimulated both alpha4beta2* and alpha3/alpha6beta2* nAChR [(3)H]dopamine release from caudate synaptosomes. Our results unexpectedly showed that nicotine evokes [(3)H]dopamine release from two alpha3/alpha6beta2* nAChR populations, one of which was sensitive to cotinine and the other was not. This cotinine-insensitive subtype was only present in the medial caudate and was preferentially lost with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced nigrostriatal damage. In contrast, cotinine and nicotine elicited equivalent levels of alpha4beta2* nAChR-mediated dopamine release. These data demonstrate that cotinine functionally discriminates between two alpha3/alpha6beta2* nAChRs in monkey striatum, with the cotinine-insensitive alpha3/alpha6beta2* nAChR preferentially vulnerable to nigrostriatal damage.  相似文献   

2.
The current study demonstrates that N-n-alkylnicotinium analogs with increasing n-alkyl chain lengths from 1 to 12 carbons have varying affinity (Ki = 90 nM-20 microM) for S-(-)-[3H]nicotine binding sites in rat striatal membranes. A linear relationship was observed such that increasing n-alkyl chain length provided increased affinity for the alpha4beta2* nicotinic acetylcholine receptor (nAChR) subtype, with the exception of N-n-octylnicotinium iodide (NONI). The most potent analog was N-n-decylnicotinium iodide (NDNI; Ki = 90 nM). In contrast, none of the analogs in this series exhibited high affinity for the [3H]methyllycaconitine binding site, thus indicating low affinity for the alpha7* nAChR. The C8 analog, NONI, had low affinity for S-(-)-[3H]nicotine binding sites but was a potent inhibitor of S-(-)-nicotine-evoked [3H]dopamine (DA) overflow from superfused striatal slices (IC50 = 0.62 microM), thereby demonstrating selectivity for the nAChR subtype mediating S-(-)-nicotine-evoked [3H]DA overflow (alpha3alpha6beta2* nAChRs). Importantly, the N-n-alkylnicotinium analog with highest affinity for the alpha4beta2* subtype, NDNI, lacked the ability to inhibit S-(-)-nicotine-evoked [3H]DA overflow and, thus, appears to be selective for alpha4beta2* nAChRs. Furthermore, the present study demonstrates that the interaction of these analogs with the alpha4beta2* subtype is via a competitive mechanism. Thus, selectivity for the alpha4beta2* subtype combined with competitive interaction with the S-(-)-nicotine binding site indicates that NDNI is an excellent candidate for studying the structural topography of alpha4beta2* agonist recognition binding sites, for identifying the antagonist pharmacophore on the alpha4beta2* nAChR, and for defining the role of this subtype in physiological function and pathological disease states.  相似文献   

3.
We investigated the effects of chronic nicotine on alpha6- and beta3-containing nicotinic acetylcholine receptors (nAChRs) in two rat brain regions using three methodological approaches: radioligand binding, immunoprecipitation, and nicotine-stimulated synaptosomal release of dopamine. Nicotine was administered by osmotic minipumps for 2 weeks. Quantitative autoradiography with [(125)I]alpha-conotoxin MII to selectively label alpha6(*) nAChRs showed a 28% decrease in binding in the striatum but no change in the superior colliculus. Immunoprecipitation of nAChRs labeled by [(3)H]epibatidine in these two regions showed that chronic nicotine increased alpha4- and beta2-containing nAChRs by 39 to 67%. In contrast, chronic nicotine caused a 39% decrease in alpha6-containing nAChRs in striatum but no change in superior colliculus. No changes in beta3-containing nAChRs were seen in either region after chronic nicotine. The decreased expression of alpha6-containing nAChRs persisted for at least 3 days, recovering to baseline by 7 days after removal of the pumps. There was a small but significant decrease in total nicotine-stimulated dopamine release in striatal synaptosomes after nicotine exposure. However, the component of dopamine release that was resistant to alpha-conotoxin MII blockade was unaffected, whereas dopamine release that was sensitive to blockade by alpha-conotoxin MII was decreased by 56%. These findings indicate that the alpha6(*) nAChR is regulated differently from other nAChR subtypes, and they suggest that the inclusion of a beta3 subunit with alpha6 may serve to inhibit nicotine-induced down-regulation of these receptors.  相似文献   

4.
Recent studies in nonhuman primates show that chronic nicotine treatment protects against nigrostriatal degeneration, with a partial restoration of neurochemical and functional measures in the striatum. The present studies were done to determine whether long-term nicotine treatment also protected against striatal nicotinic receptor (nAChR) losses after nigrostriatal damage. Monkeys were administered nicotine in the drinking water for 6 months and subsequently lesioned with the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) over several months while nicotine was continued. (125)I-Epibatidine, [(125)I]5-[(125)I]iodo-3(2(S)-azetidinylmethoxy)-pyridine (A85380), and (125)I-alpha-conotoxinMII autoradiography was performed to evaluate changes in alpha4beta2* and alpha3/alpha6beta2* nAChRs, the major striatal subtypes. Nicotine treatment increased alpha4beta2* nAChRs by > or =50% in striatum of both unlesioned and lesioned animals. This increase in alpha4beta2* nAChRs was significantly greater in lesioned compared with unlesioned monkey striatum. Chronic nicotine treatment led to a small decrease in alpha3/alpha6beta2* nAChR subtypes. The decline in alpha3/alpha6beta2* subtypes, defined using alpha-conotoxinMII-sensitive (125)I-epibatidine or [(125)I]A85380 binding, was significantly smaller in striatum of nicotine-treated lesioned monkeys compared with unlesioned monkeys. This difference was not observed for alpha3/alpha6beta2* nAChRs identified using (125)I-alpha-conotoxinMII. These data suggest that there are at least two striatal alpha3/alpha6beta2* subtypes that are differentially affected by chronic nicotine treatment in lesioned animals. In addition, the results showing an improvement in striatal alpha4beta2* and select alpha3/alpha6beta2* nAChR subtypes, combined with previous work, demonstrate that chronic nicotine treatment restores and/or protects against the loss of multiple molecular markers after nigrostriatal damage. Such findings suggest that nicotine or nicotinic agonists may be of therapeutic value in Parkinson's disease.  相似文献   

5.
Tobacco use is a leading cause of preventable deaths worldwide. However, current smoking cessation therapies have very limited long-term success rates. Considerable research effort is therefore focused on identification of central nervous system changes with nicotine exposure because this may lead to more successful treatment options. Although recent work suggests that α6β2* nicotinic acetylcholine receptors (nAChRs) play a dominant role in dopaminergic function in rodent nucleus accumbens, the effects of long-term nicotine exposure remain to be determined. Here, we used cyclic voltammetry to investigate α6β2* nAChR-mediated release with long-term nicotine treatment in nonhuman primate nucleus accumbens shell. Control studies showed that nAChR-mediated dopamine release occurs predominantly through the α6β2* receptor subtype. Unexpectedly, there was a complete loss of α6β2* nAChR-mediated activity after several months of nicotine treatment. This decline in function was observed with both single- and multiple-pulse-stimulated dopamine release. Paired-pulse studies showed that the facilitation of dopamine release with multiple pulsing observed in controls in the presence of nAChR antagonist was lost with long-term nicotine treatment. Nicotine-evoked [(3)H]dopamine release from nucleus accumbens synaptosomes was similar in nicotine- and vehicle-treated monkeys, indicating that long-term nicotine administration does not directly modify α6β2* nAChR-mediated dopamine release. Dopamine uptake rates, as well as dopamine transporter and α6β2* nAChRs levels, were also not changed with nicotine administration. These data indicate that nicotine exposure, as occurs with smoking, has major effects on cellular mechanisms linked to α6β2* nAChR-mediated dopamine release and that this receptor subtype may represent a novel therapeutic target for smoking cessation.  相似文献   

6.
(5aS,8S,10aR)-5a,6,9,10-Tetrahydro,7H,11H-8,10a-methanopyrido[2',3':5,6]pyrano[2,3-d]azepine (SSR591813) is a novel compound that binds with high affinity to the rat and human alpha4beta2 nicotinic acetylcholine receptor (nAChR) subtypes (Ki = 107 and 36 nM, respectively) and displays selectivity for the alpha4beta2 nAChR (Ki, human alpha3beta4 > 1000, alpha3beta2 = 116; alpha1beta1deltagamma > 6000 nM and rat alpha7 > 6000 nM). Electrophysiological experiments indicate that SSR591813 is a partial agonist at the human alpha4beta2 nAChR subtype (EC50 = 1.3 micro M, IA =19% compared with the full agonist 1,1-dimethyl-4-phenyl-piperazinium). In vivo findings from microdialysis and drug discrimination studies confirm the partial intrinsic activity of SSR591813. The drug increases dopamine release in the nucleus accumbens shell (30 mg/kg i.p.) and generalizes to nicotine or amphetamine (10-20 mg/kg i.p.) in rats, with an efficacy approximately 2-fold lower than that of nicotine. Pretreatment with SSR591813 (10 mg/kg i.p.) reduces the dopamine-releasing and discriminative effects of nicotine. SSR591813 shows activity in animal models of nicotine dependence at doses devoid of unwanted side effects typically observed with nicotine (hypothermia and cardiovascular effects). The compound (10 mg/kg i.p.) also prevents withdrawal signs precipitated by mecamylamine in nicotine-dependent rats and partially blocks the discriminative cue of an acute precipitated withdrawal. SSR591813 (20 mg/kg i.p.) reduces i.v. nicotine self-administration and antagonizes nicotine-induced behavioral sensitization in rats. The present results confirm important role for alpha4beta2 nAChRs in mediating nicotine dependence and suggest that SSR591813, a partial agonist at this particular nAChR subtype, may have therapeutic potential in the clinical management of smoking cessation.  相似文献   

7.
The current study evaluated a new series of N,N'-alkane-diyl-bis-3-picolinium (bAPi) analogs with C6-C12 methylene linkers as nicotinic acetylcholine receptor (nAChR) antagonists, for nicotine-evoked [3H]dopamine (DA) overflow, for blood-brain barrier choline transporter affinity, and for attenuation of discriminative stimulus and locomotor stimulant effects of nicotine. bAPi analogs exhibited little affinity for alpha4beta2* (* indicates putative nAChR subtype assignment) and alpha7* high-affinity ligand binding sites and exhibited no inhibition of DA transporter function. With the exception of C6, all analogs inhibited nicotine-evoked [3H]DA overflow (IC50 = 2 nM-6 microM; Imax = 54-64%), with N,N'-dodecane-1,12-diyl-bis-3-picolinium dibromide (bPiDDB; C12) being most potent. bPiDDB did not inhibit electrically evoked [3H]DA overflow, suggesting specific nAChR inhibitory effects and a lack of toxicity to DA neurons. Schild analysis suggested that bPiDDB interacts in an orthosteric manner at nAChRs mediating nicotine-evoked [3H]DA overflow. To determine whether bPiDDB interacts with alpha-conotoxin MII-sensitive alpha6beta2-containing nAChRs, slices were exposed concomitantly to maximally effective concentrations of bPiDDB (10 nM) and alpha-conotoxin MII (1 nM). Inhibition of nicotine-evoked [3H]DA overflow was not different with the combination compared with either antagonist alone, suggesting that bPiDDB interacts with alpha6beta2-containing nAChRs. C7, C8, C10, and C12 analogs exhibited high affinity for the blood-brain barrier choline transporter in vivo, suggesting brain bioavailability. Although none of the analogs altered the discriminative stimulus effect of nicotine, C8, C9, C10, and C12 analogs decreased nicotine-induced hyperactivity in nicotine-sensitized rats, without reducing spontaneous activity. Further development of nAChR antagonists that inhibit nicotine-evoked DA release and penetrate brain to antagonize DA-mediated locomotor stimulant effects of nicotine as novel treatments for nicotine addiction is warranted.  相似文献   

8.
The plant alkaloid methyllycaconitine (MLA) is considered to be a selective antagonist of the alpha7 subtype of neuronal nicotinic acetylcholine receptor (nAChR). However, 50 nM MLA partially inhibited (by 16%) [(3)H]dopamine release from rat striatal synaptosomes stimulated with 10 microM nicotine. Other alpha7-selective antagonists had no effect. Similarly, MLA (50 nM) inhibited [(3)H]dopamine release evoked by the partial agonist (2-chloro-5-pyridyl)-9-azabicyclo[4.2.1]non-2-ene (UB-165) (0.2 microM) by 37%. In both cases, inhibition by MLA was surmountable with higher agonist concentrations, indicative of a competitive interaction. At least two subtypes of presynaptic nAChR can modulate dopamine release in the striatum, and these nAChR are distinguished by their differential sensitivity to alpha-conotoxin-MII (alpha-CTx-MII). MLA was not additive with a maximally effective concentration of alpha-CTx-MII (100 nM) in inhibiting [(3)H]dopamine release elicited by 10 microM nicotine or 0.2 microM UB-165, suggesting that both toxins act at the same site. This was confirmed in quantitative binding assays with (125)I-alpha-CTx-MII, which displayed saturable specific binding to rat striatum and nucleus accumbens with B(max) values of 9.8 and 16.5 fmol/mg of protein, and K(d) values of 0.63 and 0.83 nM, respectively. MLA fully inhibited (125)I-alpha-CTx-MII binding to striatum and nucleus accumbens with a K(i) value of 33 nM, consistent with the potency observed in the functional assays. We speculate that MLA and alpha-CTx-MII interact with a presynaptic nAChR of subunit composition alpha3/alpha6beta2beta3* on dopamine neurons. The use of MLA as an alpha7-selective antagonist should be exercised with caution, especially in studies of nAChR in basal ganglia.  相似文献   

9.
The effects of nicotine on the tail-flick and hot-plate tests were determined to identify nicotinic receptor subtypes responsible for spinally and supraspinally mediated nicotine analgesia in knockin mice expressing hypersensitive alpha(4) nicotinic receptors (L9'S), in seven inbred mouse strains (C57BL/6, DBA/2, A/2, CBA/2, BALB/cByJ, C3H/HeJ, and 129/SvEv), and in two F1 hybrids (B6CBAF1 and B6D2F1). L9'S heterozygotes were approximately 6-fold more sensitive to the antinociceptive effects of nicotine than the wild-type controls in the hot-plate test but not in the tail-flick assay. Large differences in the effects of nicotine were also observed with both tests for the seven mouse strains. A/J and 129 mice were 6- to 8-fold more sensitive than CBA and BALB mice. In addition, B6CBAF1 hybrid mice were even less sensitive than CBA mice. Nicotinic binding sites were measured in three spinal cord regions and the hindbrain of the inbred strains. Significant differences in cytisine-sensitive, high affinity [(125)I]epibatidine binding site levels (alpha(4)beta(2)(*) subtypes), but not in (125)I-alpha-bungarotoxin binding (alpha(7)(*) subtypes), were observed. Significant negative correlations between cytisine-sensitive [(125)I]epibatidine binding and nicotine ED(50) for both tests were noted. Our results indicate that alpha(4)beta(2)(*) acetylcholine nicotinic receptors (nAChR) are important in mediating nicotine analgesia in supraspinal responses, while also showing that alpha(4)beta(2)(*)-nAChR and at least one other nAChR subtype appear to modulate spinal actions.  相似文献   

10.
Extensive evidence indicates that varenicline reduces nicotine craving and withdrawal symptoms by modulating dopaminergic function at α4β2* nicotinic acetylcholine receptors (nAChRs) (the asterisk indicates the possible presence of other nicotinic subunits in the receptor complex). More recent data suggest that α6β2* nAChRs also regulate dopamine release and mediate nicotine reinforcement. The present experiments were therefore done to test the effect of varenicline on α6β2* nAChRs and their function, because its interaction with this subtype is currently unclear. Receptor competition studies showed that varenicline inhibited α6β2* nAChR binding (K(i) = 0.12 nM) as potently as α4β2* nAChR binding (K(i) = 0.14 nM) in rat striatal sections and with ~20-fold greater affinity than nicotine. Functionally, varenicline was more potent in stimulating α6β2* versus α4β2* nAChR-mediated [(3)H]dopamine release from rat striatal synaptosomes with EC(50) values of 0.007 and 0.086 μM, respectively. However, it acted as a partial agonist on α6β2* and α4β2* nAChR-mediated [(3)H]dopamine release with maximal efficacies of 49 and 24%, respectively, compared with nicotine. We also evaluated varenicline's action in striatum of monkeys, a useful animal model for comparison with humans. Varenicline again potently inhibited monkey striatal α6β2* (K(i) = 0.13 nM) and α4β2* (K(i) = 0.19 nM) nAChRs in competition studies. Functionally, it potently stimulated both α6β2* (EC(50) = 0.014 μM) and α4β2* (EC(50) = 0.029 μM) nAChR-mediated [(3)H]dopamine release from monkey striatal synaptosomes, again acting as a partial agonist relative to nicotine at both subtypes. These data suggest that the ability of varenicline to interact at α6β2* nAChRs may contribute to its efficacy as a smoking cessation aid.  相似文献   

11.
Lobeline attenuates the behavioral effects of psychostimulants in rodents and inhibits the function of nicotinic receptors (nAChRs), dopamine transporters (DATs), and vesicular monoamine transporters (VMAT2s). Monoamine transporters are considered valid targets for drug development for the treatment of methamphetamine abuse. In the current study, a series of lobeline analogs were evaluated for affinity and selectivity at these targets. None of the analogs was more potent than nicotine at the [3H]methyllycaconitine binding site (alpha7* nAChR subtype). Lobeline tosylate was equipotent with lobeline in inhibiting [3H]nicotine binding but 70-fold more potent in inhibiting nicotine-evoked 86Rb+ efflux, demonstrating antagonism of alpha4beta2* nAChRs. Compared with lobeline, the defunctionalized analogs lobelane, mesotransdiene, and (-)-trans-transdiene showed dramatically reduced affinity at alpha4beta2* nAChRs and a 15- to 100-fold higher affinity (Ki = 1.95, 0.58, and 0.26 microM, respectively) at DATs. Mesotransdiene and (-)-trans-transdiene competitively inhibited DAT function, whereas lobelane and lobeline acted noncompetitively. 10S/10R-MEPP [N-methyl-2R-(2R/2S-hydroxy-2-phenylethyl)6S-(2-phenylethyl)piperidine] and 10R-MESP [N-methyl-2R-(2R-hydroxy-2-phenylethyl)6S-(2-phenylethen-1-yl)piperidine] were 2 to 3 orders of magnitude more potent (Ki = 0.01 and 0.04 microM, respectively) than lobeline in inhibiting [3H]serotonin uptake; 10S/10R-MEPP showed a 600-fold selectivity for this transporter. Uptake results using hDATs and human serotonin transporters expressed in human embryonic kidney-293 cells were consistent with native transporter assays. Lobelane and ketoalkene were 5-fold more potent (Ki = 0.92 and 1.35 microM, respectively) than lobeline (Ki = 5.46 microM) in inhibiting [3H]methoxytetrabenazine binding to VMAT2 in vesicle preparations. Thus, structural modification (defunctionalization) of the lobeline molecule markedly decreases affinity for alpha4beta2* and alpha7* nAChRs while increasing affinity for neurotransmitter transporters, affording analogs with enhanced selectivity for these transporters and providing new leads for the treatment of psychostimulant abuse.  相似文献   

12.
Paraquat, an herbicide widely used in the agricultural industry, has been associated with lung, liver, and kidney toxicity in humans. In addition, it is linked to an increased risk of Parkinson's disease. For this reason, we had previously investigated the effects of paraquat in mice and showed that it influenced striatal nicotinic receptor (nAChR) expression but not nAChR-mediated dopaminergic function. Because nonhuman primates are evolutionarily closer to humans and may better model the effects of pesticide exposure in man, we examined the effects of paraquat on striatal nAChR function and expression in monkeys. Monkeys were administered saline or paraquat once weekly for 6 weeks, after which nAChR levels and receptor-evoked [(3)H]dopamine ([(3)H]DA) release were measured in the striatum. The functional studies showed that paraquat exposure attenuated dopamine (DA) release evoked by alpha3/alpha6beta2(*) (nAChR that is composed of the alpha3 or alpha6 subunits, and beta2; the asterisk indicates the possible presence of additional subunits) nAChRs, a subtype present only on striatal dopaminergic terminals, with no decline in release mediated by alpha4beta2(*) (nAChR containing alpha4 and beta2 subunits, but not alpha3 or alpha6) nAChRs, present on both DA terminals and striatal neurons. Paraquat treatment decreased alpha4beta2(*) but not alpha3/alpha6beta2(*) nAChR expression. The differential effects of paraquat on nAChR expression and receptor-evoked [(3)H]DA release emphasize the importance of evaluating changes in functional measures. The finding that paraquat treatment has a negative impact on striatal nAChR-mediated dopaminergic activity in monkeys but not mice indicates the need for determining the effects of pesticides in higher species.  相似文献   

13.
Vaupel DB  Stein EA  Mukhin AG 《NeuroImage》2007,34(4):1352-1362
The radioligand 2-[(18)F]F-A-85380 has been used for PET studies of the alpha4beta2* subtype of nicotinic acetylcholine receptors (nAChRs) in the living brain of humans and nonhuman primates. In order to extend the capacity of microPET to quantify neuroreceptors in rat brain, we carried out studies of 2-[(18)F]F-A-85380 to measure the apparent binding potential BP* in individual rats, which were studied repeatedly over several months. Using a bolus-plus-infusion paradigm, 2-[(18)F]F-A-85380 (specific activity 20-1300 GBq/micromol) was administered intravenously over 8 to 9 h with K(bol) values of 350 to 440 min and a mean infusion rate of 0.03+/-0.01 nmol/kg/h. Studies included a 2-h nicotine infusion initiated 2 h before the end of scanning to displace specifically bound radioactivity. Steady state binding in brain was obtained within 5 h as defined by the occurrence of constant radioactivity concentrations in brain regions and constant, free arterial plasma levels of nonmetabolized radioligand. BP* averages (+/-SEM) for thalamus, forebrain, and cerebellum were 5.9+/-0.7, 2.6+/-0.4, and 1.0+/-0.1, respectively, which are consistent with the alpha4beta2* nAChR distribution in rat brain measured in vitro. Studies of receptor occupancy determined the ED(50) to be 0.29 nmol/kg/h. The demonstration that alpha4beta2* nAChRs are quantifiable in the rat brain using PET measurements, coupled with the ability to conduct longitudinal studies over several months in the same rats, suggests potential applications to studies of chronic nicotine use, its treatment, and abnormal functioning of alpha4beta2* receptors in a rat model.  相似文献   

14.
15.
Subtypes of neuronal nicotinic acetylcholine receptors (nAChRs) are differentially sensitive to up-regulation by chronic nicotine exposure in vitro. To determine whether this occurs in animals, rats were implanted with minipumps containing saline +/- nicotine (6.0 mg/kg/rat/day) for 14 days. Autoradiography with [125I]epibatidine using 3-(2(S)-azetidinylmethoxy)pyridine dihydrochloride (A-85380) or cytisine as selective competitors allowed quantitative measurement in 33 regions of 3 families of nAChR binding, with properties of alpha4beta2, alpha3beta4, and alpha3/alpha6beta2. Chronic nicotine exposure caused increases of 20 to 100% for alpha4beta2-like binding in most regions surveyed. However, binding to this subtype was not increased in some regions, including habenulopeduncular structures, certain thalamic nuclei, and several brainstem regions. In 9 of 33 regions, including catecholaminergic areas and visual structures, alpha3/alpha6beta2-like binding represented >10% of total binding. Binding to this subtype was up-regulated by nicotine in only two of these nine regions: the nucleus accumbens and superior colliculus. alpha3beta4-Like binding represented >10% of total in 15 of the 33 regions surveyed. Binding to this subtype was increased by nicotine in only 1 of these 15 regions, and actually decreased in subiculum and cerebellum. These studies yielded two principal findings. First, chronic nicotine exposure selectively up-regulates alpha4beta2-like binding, with relatively little effect on alpha3/alpha6beta2-like and alpha3beta4-like binding in vivo. Second, up-regulation by chronic nicotine exposure shows considerable regional variation. Differential subtype sensitivity to chronic nicotine exposure may contribute to altered pharmacological response in individuals who smoke or use nicotine replacement therapy.  相似文献   

16.
Takeda D  Nakatsuka T  Papke R  Gu JG 《Pain》2003,101(1-2):13-23
The GABA/glycine-mediated inhibitory activity in the substantia gelatinosa (SG) of the spinal cord is critical in the control of nociceptive transmission. We examined whether and how SG inhibitory activity might be regulated by neuronal nicotinic receptors (nAChRs). Patch-clamp recordings were performed in SG neurons of spinal slice preparations from adult rats. We provided electrophysiological evidence that inhibitory presynaptic terminals in the SG expressed nAChRs and their activation resulted in large increases in the frequency of spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs) in over 90% SG neurons tested. The enhancement of inhibitory activity was mediated by increases in the release of GABA/glycine, and direct Ca(2+) entry through SG presynaptic nAChRs appeared to be involved. Miniature IPSC frequency could be enhanced by the nAChR agonists nicotine or cytisine. Nicotine could still elicit large increases in mIPSC frequency in the presence of the alpha4beta2 nAChR antagonist dihydro-beta-erythroidine (5 microM) and the alpha7 nAChR-selective antagonist methyllycaconitine (40 nM). However, nicotine did not produce a significant enhancement of mIPSC frequency in the presence of the broad spectrum nAChR antagonist mecamylamine (5 microM). Nicotinic agonist-evoked whole-cell currents from SG neurons and the antagonist profiles also indicated the presence of a subtype of nAChRs, which were different from the major central nervous system nAChR subtypes, i.e. alpha4beta2* or alpha7 nAChRs. Together, our results suggest that a subtype of nAChR, possibly alpha3beta4* nAChR or a new nAChR type, is highly expressed at the inhibitory presynaptic terminals in SG of adult rats and play a role in the control of inhibitory activity in SG.  相似文献   

17.
The relative contribution of alpha4beta2, alpha7 and other nicotinic acetylcholine receptor (nAChR) subtypes to the memory enhancing versus the addictive effects of nicotine is the subject of ongoing debate. In the present study, we characterized the pharmacological and behavioral properties of the alpha7 nAChR agonist N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-7-[2-(methoxy)phenyl]-1-benzofuran-2-carboxamide (ABBF). ABBF bound to alpha7 nAChR in rat brain membranes (Ki=62 nM) and to recombinant human 5-hydroxytryptamine (5-HT)3 receptors (Ki=60 nM). ABBF was a potent agonist at the recombinant rat and human alpha7 nAChR expressed in Xenopus oocytes, but it did not show agonist activity at other nAChR subtypes. ABBF acted as an antagonist of the 5-HT3 receptor and alpha3beta4, alpha4beta2, and muscle nAChRs (at higher concentrations). ABBF improved social recognition memory in rats (0.3-1 mg/kg p.o.). This improvement was blocked by intracerebroventricular administration of the alpha7 nAChR antagonist methyllycaconitine at 10 microg, indicating that it is mediated by alpha7 nAChR agonism. In addition, ABBF improved working memory of aged rats in a water maze repeated acquisition paradigm (1 mg/kg p.o.) and object recognition memory in mice (0.3-1 mg/kg p.o.). Rats trained to discriminate nicotine (0.4 mg/kg s.c.) from vehicle did not generalize to ABBF (0.3-30 mg/kg p.o.), suggesting that the nicotine cue is not mediated by the alpha7 nAChR and that selective alpha7 nAChR agonists may not share the abuse liability of nicotine. Our results support the hypothesis that alpha7 nAChR agonists may provide a novel therapeutic strategy for the treatment of cognitive deficits with low abuse potential.  相似文献   

18.
Structural simplification of N-n-alkylnicotinium analogs, antagonists at neuronal nicotinic acetylcholine receptors (nAChRs), was achieved by removal of the N-methylpyrrolidino moiety affording N-n-alkylpyridinium analogs with carbon chain lengths of C1 to C20. N-n-Alkylpyridinium analog inhibition of [3H]nicotine and [3H]methyllycaconitine binding to rat brain membranes assessed interaction with alpha4beta2* and alpha7* nAChRs, respectively, whereas inhibition of nicotine-evoked 3H overflow from [3H]dopamine ([3H]DA)-preloaded rat striatal slices assessed antagonist action at nAChR subtypes mediating nicotine-evoked DA release. No inhibition of [3H]methyllycaconitine binding was observed, although N-n-alkylpyridinium analogs had low affinity for [3H]nicotine binding sites, i.e., 1 to 3 orders of magnitude lower than that of the respective N-n-alkylnicotinium analogs. These results indicate that the N-methylpyrrolidino moiety in the N-n-alkylnicotinium analogs is a structural requirement for potent inhibition of alpha4beta2* nAChRs. Importantly, N-n-alkylpyridinium analogs with n-alkyl chains < C10 did not inhibit nicotine-evoked [3H]DA overflow, whereas analogs with n-alkyl chains ranging from C10 to C20 potently and completely inhibited nicotine-evoked [3H]DA overflow (IC50 = 0.12-0.49 microM), with the exceptions of N-n-pentadecylpyridinium bromide (C15) and N-n-eicosylpyridinium bromide (C20), which exhibited maximal inhibition of approximately 50%. The mechanism of inhibition of a representative analog of this structural series, N-n-dodecylpyridinium iodide, was determined by Schild analysis. Linear Schild regression with slope not different from unity indicated competitive antagonism at nAChRs mediating nicotine-evoked [3H]DA overflow and a KB value of 0.17 microM. Thus, the simplified N-n-alkylpyridinium analogs are potent, selective, and competitive antagonists of nAChRs mediating nicotine-evoked [3H]DA overflow, indicating that the N-methylpyrrolidino moiety is not a structural requirement for interaction with nAChR subtypes mediating nicotine-evoked DA release.  相似文献   

19.
A recently developed alpha-conotoxin, alpha-conotoxin Arenatus IB-[V11L,V16D] (alpha-CtxArIB[V11L,V16D]) [corrected], is a potent and selective competitive antagonist at rat recombinant alpha7 nicotinic acetylcholine receptors (nAChRs), making it an attractive probe for this receptor subtype. alpha7 nAChRs are potential therapeutic targets that are widely expressed in both neuronal and non-neuronal tissues, where they are implicated in a variety of functions. In this study, we evaluate this toxin at rat and human native nAChRs. Functional alpha7 nAChR responses were evoked by choline plus the allosteric potentiator PNU-120596 [1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxazol-3-yl)-urea] in rat PC12 cells and human SH-SY5Y cells loaded with calcium indicators. alpha-CtxArIB[V11L,V16D] specifically inhibited alpha7 nAChR-mediated increases in Ca2+ in PC12 cells. Responses to other stimuli, 5-I-A-85380 [5-iodo-3-(2(S)-azetidinylmethoxy)pyridine dihydrochloride], nicotine, or KCl, that did not activate alpha7 nAChRs were unaffected. Human alpha7 nAChRs were also sensitive to alpha-CtxArIB[V11L, V16D]; acetylcholine-evoked currents in Xenopus laevis oocytes expressing human alpha7 nAChRs were inhibited by alpha-CtxArIB[V11L,V16D] (IC(50), 3.4 nM) in a slowly reversible manner, with full recovery taking 15 min. This is consistent with the time course of recovery from blockade of rat alpha7 nAChRs in PC12 cells. alpha-CtxArIB[V11L,V16D] inhibited human native alpha7 nAChRs in SHSY5Y cells, activated by either choline or AR-R17779 [(2)-spiro[1-azabicyclo[2.2.2]octane-3,59-oxazolidin]-29-one] plus PNU-120596. Rat brain alpha7 nAChRs contribute to dopamine release from striatal minces; alpha-CtxArIB[V11L,V16D] (300 nM) selectively inhibited choline-evoked dopamine release without affecting responses evoked by nicotine that activates heteromeric nAChRs. This study establishes that alpha-CtxArIB[V11L,V16D] selectively inhibits human and rat native alpha7 nAChRs with comparable potency, making this a potentially useful antagonist for investigating alpha7 nAChR functions.  相似文献   

20.
Chronic nicotine treatment elicits a brain region-selective increase in the number of high-affinity agonist binding sites, a phenomenon termed up-regulation. Nicotine-induced up-regulation of α4β2-nicotinic acetylcholine receptors (nAChRs) in cell cultures results from increased assembly and/or decreased degradation of nAChRs, leading to increased nAChR protein levels. To evaluate whether the increased binding in mouse brain results from an increase in nAChR subunit proteins, C57BL/6 mice were treated with nicotine by chronic intravenous infusion. Tissue sections were prepared, and binding of [(125)I]3-((2S)-azetidinylmethoxy)-5-iodo-pyridine (A85380) to β2*-nAChR sites, [(125)I]monoclonal antibody (mAb) 299 to α4 nAChR subunits, and [(125)I]mAb 270 to β2 nAChR subunits was determined by quantitative autoradiography. Chronic nicotine treatment dose-dependently increased binding of all three ligands. In regions that express α4β2-nAChR almost exclusively, binding of all three ligands increased coordinately. However, in brain regions containing significant β2*-nAChR without α4 subunits, relatively less increase in mAb 270 binding to β2 subunits was observed. Signal intensity measured with the mAbs was lower than that with [(125)I]A85380, perhaps because the small ligand penetrated deeply into the sections, whereas the much larger mAbs encountered permeability barriers. Immunoprecipitation of [(125)I]epibatidine binding sites with mAb 270 in select regions of nicotine-treated mice was nearly quantitative, although somewhat less so with mAb 299, confirming that the mAbs effectively recognize their targets. The patterns of change measured using immunoprecipitation were comparable with those determined autoradiographically. Thus, increases in α4β2*-nAChR binding sites after chronic nicotine treatment reflect increased nAChR protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号