首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abnormal hemodynamics in schizophrenia during an auditory oddball task.   总被引:6,自引:0,他引:6  
BACKGROUND: Schizophrenia is a heterogeneous disorder characterized by diffuse brain abnormalities that affect many facets of cognitive function. One replicated finding in schizophrenia is abnormalities in the neural systems associated with processing salient stimuli in the context of oddball tasks. This deficit in the processing of salience stimuli might be related to abnormalities in orienting, attention, and memory processes. METHODS: Behavioral responses and functional magnetic resonance imaging data were collected while 18 patients with schizophrenia and 18 matched healthy control subjects performed a three-stimulus auditory oddball task. RESULTS: Target detection by healthy participants was associated with significant activation in all 38 regions of interest embracing distributed cortical and subcortical systems. Similar reproducibility was observed in healthy participants for processing novel stimuli. Schizophrenia patients, relative to control subjects, showed diffuse cortical and subcortical hypofunctioning during target detection and novelty processing, including bilateral frontal, temporal, and parietal cortices and amygdala, thalamus, and cerebellum. CONCLUSIONS: These data replicate and extend imaging studies of target detection in schizophrenia and present new insights regarding novelty processing in the disorder. The results are consistent with the hypothesis that schizophrenia is characterized by a widespread pathologic process affecting many cerebral areas, including cortical, subcortical, and cerebellar circuits.  相似文献   

2.
Previous studies suggested that brain regions subtending affective‐cognitive processes can be implicated in the pathophysiology of functional dystonia (FD). In this study, the role of the affective‐cognitive network was explored in two phenotypes of FD: fixed (FixFD) and mobile dystonia (MobFD). We hypothesized that each of these phenotypes would show peculiar functional connectivity (FC) alterations in line with their divergent disease clinical expressions. Resting state fMRI (RS‐fMRI) was obtained in 40 FD patients (12 FixFD; 28 MobFD) and 43 controls (14 young FixFD‐age‐matched [yHC]; 29 old MobFD‐age‐matched [oHC]). FC of brain regions of interest, known to be involved in affective‐cognitive processes, and independent component analysis of RS‐fMRI data to explore brain networks were employed. Compared to HC, all FD patients showed reduced FC between the majority of affective‐cognitive seeds of interest and the fronto‐subcortical and limbic circuits; enhanced FC between the right affective‐cognitive part of the cerebellum and the bilateral associative parietal cortex; enhanced FC of the bilateral amygdala with the subcortical and posterior cortical brain regions; and altered FC between the left medial dorsal nucleus and the sensorimotor and associative brain regions (enhanced in MobFD and reduced in FixFD). Compared with yHC and MobFD patients, FixFD patients had an extensive pattern of reduced FC within the cerebellar network, and between the majority of affective‐cognitive seeds of interest and the sensorimotor and high‐order function (“cognitive”) areas with a unique involvement of dorsal anterior cingulate cortex connectivity. Brain FC within the affective‐cognitive network is altered in FD and presented specific features associated with each FD phenotype, suggesting an interaction between brain connectivity and clinical expression of the disease.  相似文献   

3.
Gray matter (GM) volume deficits have been described in patients with schizophrenia (Sz) and bipolar disorder (BD), but to date, few studies have directly compared GM volumes between these syndromes with methods allowing for whole-brain comparisons. We have used structural magnetic resonance imaging (MRI) and voxel-based morphometry (VBM) to compare GM volumes between 38 Sz and 19 BD chronic patients. We also included 24 healthy controls. The results revealed a widespread cortical (dorsolateral and medial prefrontal and precentral) and cerebellar deficit as well as GM deficits in putamen and thalamus in Sz when compared to BD patients. Besides, a subcortical GM deficit was shown by Sz and BD groups when compared to the healthy controls, although a putaminal reduction was only evident in the Sz patients. In this comparison, the BD patients showed a limited cortical and subcortical GM deficit. These results support a partly different pattern of GM deficits associated to chronic Sz and chronic BD, with some degree of overlapping.  相似文献   

4.
Abnormalities of cerebellar function have been implicated in the pathophysiology of schizophrenia. Since the cerebellum has afferent and efferent projections to diverse brain regions, abnormalities in cerebellar lobules could affect functional connectivity with multiple functional systems in the brain. Prior studies, however, have not examined the relationship of individual cerebellar lobules with motor and nonmotor resting‐state functional networks. We evaluated these relationships using resting‐state fMRI in 30 patients with a schizophrenia‐spectrum disorder and 37 healthy comparison participants. For connectivity analyses, the cerebellum was parcellated into 18 lobular and vermal regions, and functional connectivity of each lobule to 10 major functional networks in the cerebrum was evaluated. The relationship between functional connectivity measures and behavioral performance on sensorimotor tasks (i.e., finger‐tapping and postural sway) was also examined. We found cerebellar–cortical hyperconnectivity in schizophrenia, which was predominantly associated with Crus I, Crus II, lobule IX, and lobule X. Specifically, abnormal cerebellar connectivity was found to the cerebral ventral attention, motor, and auditory networks. This cerebellar–cortical connectivity in the resting‐state was differentially associated with sensorimotor task‐based behavioral measures in schizophrenia and healthy comparison participants—that is, dissociation with motor network and association with nonmotor network in schizophrenia. These findings suggest that functional association between individual cerebellar lobules and the ventral attentional, motor, and auditory networks is particularly affected in schizophrenia. They are also consistent with dysconnectivity models of schizophrenia suggesting cerebellar contributions to a broad range of sensorimotor and cognitive operations.  相似文献   

5.
This study examined gray matter (GM) volume abnormalities in first-episode, antipsychotic-na?ve Indian schizophrenia patients. Magnetic resonance images of 18 schizophrenia patients and 18 matched healthy comparison subjects were analyzed by optimized voxel-based morphometry. Schizophrenia patients had significantly smaller global GM and greater global CSF volumes and smaller regional GM volume in superior frontal, inferior frontal, cingulate, post-central, superior temporal and parahippocampal gyri, inferior parietal lobule, insula, caudate nuclei, thalamus and cerebellum. Findings suggest limbic, heteromodal cortical, striatal, thalamic and cerebellar abnormalities in schizophrenia.  相似文献   

6.
Convergent evidences have revealed that schizophrenia is associated with brain dysconnectivity, which leads to abnormal network organization. However, discrepancies were apparent between the structural connectivity (SC) and functional connectivity (FC) studies, and the relationship between structural and functional deficits in schizophrenia remains largely unknown. In this study, resting‐state functional magnetic resonance imaging and structural diffusion tensor imaging were performed in 20 patients with schizophrenia and 20 matched healthy volunteers (patients/controls = 19/17 after head motion rejection). Functional and structural brain networks were obtained for each participant. Graph theoretical approaches were employed to parcellate the FC networks into functional modules. The relationships between the entries of SC and FC were estimated within each module to identify group differences and their correlations with clinical symptoms. Although five common functional modules (including the default mode, occipital, subcortical, frontoparietal, and central modules) were identified in both groups, the patients showed a significantly reduced modularity in comparison with healthy participants. Furthermore, we found that schizophrenia‐related aberrations of SC–FC coupling exhibited complex patterns among modules. Compared with controls, patients showed an increased SC–FC coupling in the default mode and the central modules. Moreover, significant SC–FC decoupling was demonstrated in the occipital and the subcortical modules, which was associated with longer duration of illness and more severe clinical manifestations of schizophrenia. Taken together, these findings demonstrated that altered module‐dependent SC–FC coupling may underlie abnormal brain function and clinical symptoms observed in schizophrenia and highlighted the potential for using new multimodal neuroimaging biomarkers for diagnosis and severity evaluation of schizophrenia. Hum Brain Mapp 38:2008–2025, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

7.
The default-mode network (DMN) is vital in the neurobiology of schizophrenia, and the cerebellum participates in the high-order cognitive network such as the DMN. However, the specific contribution of the cerebellum to the DMN abnormalities remains unclear in unaffected siblings of schizophrenia patients. Forty-six unaffected siblings of schizophrenia patients and 46 healthy controls were recruited for a resting-state scan. The images were analyzed using the functional connectivity (FC) method. The siblings showed significantly increased FCs between the left Crus I and the left superior medial prefrontal cortex (MPFC), as well as between the lobule IX and the bilateral MPFC (orbital part) and right superior MPFC compared with the controls. No significantly decreased FC was observed in the siblings relative to the controls. The analyses were replicated in 49 first-episode, drug-naive patients with schizophrenia, and the results showed that the siblings and the patients shared increased FCs between the left Crus I and the left superior MPFC, as well as between the lobule IX and the left MPFC (orbital part) compared with the controls. These findings suggest that increased cerebellar-DMN connectivities emerge earlier than illness onset, which highlight the contribution of the cerebellum to the DMN alterations in unaffected siblings. The shared increased cerebellar-DMN connectivities between the patients and the siblings may be used as candidate endophenotypes for schizophrenia.Key words: unaffected siblings of schizophrenia patients, schizophrenia, cerebellum, functional connectivity, default-mode network  相似文献   

8.
The role of the cerebellum in schizophrenia has been highlighted by Andreasen's hypothesis of "cognitive dysmetria," which suggests a general dyscoordination of sensorimotor and mental processes. Studies in schizophrenic patients have brought observations supporting a cerebellar impairment: high prevalence of neurological soft signs, dyscoordination, abnormal posture and propioception, impaired eyeblink conditioning, impaired adaptation of the vestibular-ocular reflex or procedural learning tests, and lastly functional neuroimaging studies correlating poor cognitive performances with abnormal cerebellar activations. Despite those compelling evidences, there has been, to our knowledge, no recent review on the clinical, cognitive, and functional literature supporting the role of the cerebellum in schizophrenia. We conducted a Medline research focusing on cerebellar dysfunctions in schizophrenia. Emphasis was given to recent literature (after 1998). The picture arising from this review is heterogeneous. While in some domains, the role of the cerebellum seems clearly defined (ie, neurological soft signs, posture, or equilibrium), in other domains, the cerebellar contribution to schizophrenia seems limited or indirect (ie, cognition) if present at all (ie, affectivity). Functional models of the cerebellum are proposed as a background for interpreting these results.  相似文献   

9.
Reduced volume of the cerebellar vermis in neuroleptic-naive schizophrenia.   总被引:5,自引:0,他引:5  
BACKGROUND: Neuroimaging studies have suggested the possible role of the cerebellum in the pathophysiology of schizophrenia. However, no study has investigated the detailed structures of the cerebellum in patients without a history of neuroleptic medication. The objective of this study is to examine the volume of detailed structures of the cerebellum in neuroleptic-naive schizophrenic patients and to examine the relationship between cerebellar morphology and clinical symptoms. METHODS: Magnetic resonance imaging scans were acquired from 20 male neuroleptic-naive schizophrenic patients and 20 healthy control subjects. We measured the volumes of the cerebrum, cerebellar hemisphere, cerebellar gray and white matter, and vermis. Symptoms were assessed with the Brief Psychiatric Rating Scale. Total Brief Psychiatric Rating Scale scores and subscale scores were used for analysis. RESULTS: The volume of the vermis was significantly reduced in the schizophrenic group relative to the control group, whereas no significant differences were found in the volumes of other cerebellar structures and the cerebrum. Reduction in the vermal volume correlated with the total Brief Psychiatric Rating Scale Depression subscore and Paranoia subscore. CONCLUSIONS: This study indicates that the volume of the vermis is reduced in patients with schizophrenia, and reduction in vermal volume is suggested to be related to the pathophysiology of the disease.  相似文献   

10.
This study aimed to investigate the changes in functional connectivity (FC) within each resting-state network (RSN) and between RSNs in subcortical stroke patients who were well recovered in global motor function. Eleven meaningful RSNs were identified via functional magnetic resonance imaging data from 25 subcortical stroke patients and 22 normal controls using independent component analysis. Compared with normal controls, stroke patients exhibited increased intranetwork FC in the sensorimotor (SMN), visual (VN), auditory (AN), dorsal attention (DAN), and default mode (DMN) networks; they also exhibited decreased intranetwork FC in the frontoparietal network (FPN) and anterior DMN. Stroke patients displayed a shift from no FC in controls to negative internetwork FC between the VN and AN as well as between the VN and SMN. Stroke patients also exhibited weakened positive (anterior and posterior DMN; posterior DMN and right FPN) or negative (AN and right FPN; posterior DMN and dorsal SMN) internetwork FC when compared with normal controls. We suggest that subcortical stroke may induce connectivity changes in multiple functional networks, affecting not only the intranetwork FC within RSNs but also the internetwork FC between these RSNs.  相似文献   

11.
OBJECTIVE: Structural and functional studies implicate multiple brain lesions as a basis for a functional dysconnectivity underlying the cognitive and symptom profiles in schizophrenia. The aim of this study was to examine the hypothesis that early-onset schizophrenia is associated with structural abnormalities in the prefrontal cortex, thalamus, and cerebellum, compatible with a dysconnectivity syndrome. METHOD: Two magnetic resonance imaging scans of 16 patients and 16 normal comparison subjects were undertaken on average 2 to 3 years apart. The participants were all from a defined geographic area in the United Kingdom with a population of 2.5 million. RESULTS: In comparison to the normal adolescents, the schizophrenic subjects demonstrated low prefrontal cortex and thalamic volumes. The relatively large difference in prefrontal and thalamic volumes in these adolescents with schizophrenia implies a more severe disease process than in adult subjects. CONCLUSIONS: The thalamic and frontal lobe findings provide preliminary, supportive structural evidence for a neurodevelopmental basis for a dysconnectivity syndrome, although the cerebellar findings were inconclusive.  相似文献   

12.
Attention‐deficit/hyperactivity disorder (ADHD) is increasingly understood as a disorder of spontaneous brain‐network interactions. The default mode network (DMN), implicated in ADHD‐linked behaviors including mind‐wandering and attentional fluctuations, has been shown to exhibit abnormal spontaneous functional connectivity (FC) within‐network and with other networks (salience, dorsal attention and frontoparietal) in ADHD. Although the cerebellum has been implicated in the pathophysiology of ADHD, it remains unknown whether cerebellar areas of the DMN (CerDMN) exhibit altered FC with cortical networks in ADHD. Here, 23 adults with ADHD and 23 age‐, IQ‐, and sex‐matched controls underwent resting state fMRI. The mean time series of CerDMN areas was extracted, and FC with the whole brain was calculated. Whole‐brain between‐group differences in FC were assessed. Additionally, relationships between inattention and individual differences in FC were assessed for between‐group interactions. In ADHD, CerDMN areas showed positive FC (in contrast to average FC in the negative direction in controls) with widespread regions of salience, dorsal attention and sensorimotor networks. ADHD individuals also exhibited higher FC (more positive correlation) of CerDMN areas with frontoparietal and visual network regions. Within the control group, but not in ADHD, participants with higher inattention had higher FC between CerDMN and regions in the visual and dorsal attention networks. This work provides novel evidence of impaired CerDMN coupling with cortical networks in ADHD and highlights a role of cerebro‐cerebellar interactions in cognitive function. These data provide support for the potential targeting of CerDMN areas for therapeutic interventions in ADHD. Hum Brain Mapp 36:3373–3386, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
Brain morphometry has been studied extensively in schizophrenic patients, and among the cortical differences identified two consistent findings are decreased cerebellar vermal volume and increased volume of the fourth ventricle; although contradictory findings are reported as well. Recent cognitive activation studies utilizing PET, SPECT and fMRI have identified both decreased and increased activation in the cerebellum of schizophrenic patients compared with healthy controls. This study used DSC fMRI to map cerebellar blood volume in patients with schizophrenia or bipolar disorder and healthy controls. For all cerebellar regions analyzed, schizophrenic patients had the highest cerebellar blood volume, while bipolars had the lowest blood volume. Morphometric measurements were completed and indicated that the ratio of vermis to whole CBL tissue volume was 24% less for the schizophrenic population than controls, whereas the subjects with bipolar disorder had a ratio that was non-significantly smaller than controls by 19%. Comparison of morphometric data with blood volume data did not reveal any statistically significant correlations among the study groups.  相似文献   

14.
Motor functions are supported through functional integration across the extended motor system network. Individuals following stroke often show deficits on motor performance requiring coordination of multiple brain networks; however, the assessment of connectivity patterns after stroke was still unclear. This study aimed to investigate the changes in intra‐ and inter‐network functional connectivity (FC) of multiple networks following stroke and further correlate FC with motor performance. Thirty‐three left subcortical chronic stroke patients and 34 healthy controls underwent resting‐state functional magnetic resonance imaging. Eleven resting‐state networks were identified via independent component analysis (ICA). Compared with healthy controls, the stroke group showed abnormal FC within the motor network (MN), visual network (VN), dorsal attention network (DAN), and executive control network (ECN). Additionally, the FC values of the ipsilesional inferior parietal lobule (IPL) within the ECN were negatively correlated with the Fugl‐Meyer Assessment (FMA) scores (hand + wrist). With respect to inter‐network interactions, the ipsilesional frontoparietal network (FPN) decreased FC with the MN and DAN; the contralesional FPN decreased FC with the ECN, but it increased FC with the default mode network (DMN); and the posterior DMN decreased FC with the VN. In sum, this study demonstrated the coexistence of intra‐ and inter‐network alterations associated with motor‐visual attention and high‐order cognitive control function in chronic stroke, which might provide insights into brain network plasticity following stroke.  相似文献   

15.
Psychotic disorders are disabling clinical syndromes characterized by widespread alterations in cortical information processing. Disruption of frontoparietal network (FPN) connectivity has emerged as a common footprint across the psychosis spectrum. Our goal was to characterize the static and dynamic resting‐state functional connectivity (FC) of the FPN in antipsychotic‐naïve first‐episode psychosis (FEP) subjects. We compared the static FC of the FPN in 40 FEP and 40 healthy control (HC) subjects, matched on age, sex, and socioeconomic status. To study the dynamic FC, we measured quasiperiodic patterns (QPPs) that consist of infraslow spatioemporal patterns embedded in the blood oxygen level‐dependent signal that repeats over time, exhibiting alternation of high and low activity. Relative to HC, we found functional hypoconnectivity between the right middle frontal gyrus and the right middle temporal gyrus, as well as the left inferior temporal gyrus and the left inferior parietal gyrus in FEP (p < .05, false discovery rate corrected). The correlation of the QPP with all functional scans was significantly stronger for FEP compared to HC, suggesting a greater impact of the QPPs to intrinsic brain activity in psychotic population. Regressing the QPP from the functional scans erased all significant group differences in static FC, suggesting that abnormal connectivity in FEP could result from altered QPP. Our study supports that alterations of cortical information processing are not a function of psychotic chronicity or antipsychotic medication exposure and may be regarded as trait specific. In addition, static connectivity abnormality may be partly related to altered brain network temporal dynamics.  相似文献   

16.
BackgroundRecent imaging studies of large datasets suggested that psychiatric disorders have common biological substrates. This study aimed to identify all the common neural substrates with connectomic abnormalities across four major psychiatric disorders by using the data-driven connectome-wide association method of multivariate distance matrix regression (MDMR).MethodsThis study analyzed a resting functional magnetic resonance imaging dataset of 100 patients with schizophrenia, 100 patients with bipolar I disorder, 100 patients with bipolar II disorder, 100 patients with major depressive disorder, and 100 healthy controls (HCs). We calculated a voxel-wise 4,330 × 4,330 matrix of whole-brain functional connectivity (FC) with 8-mm isotropic resolution for each participant and then performed MDMR to identify structures where the overall multivariate pattern of FC was significantly different between each patient group and the HC group. A conjunction analysis was performed to identify common neural regions with FC abnormalities across these four psychiatric disorders.ResultsThe conjunction of the MDMR maps revealed that the four groups of patients shared connectomic abnormalities in distributed cortical and subcortical structures, which included bilateral thalamus, cerebellum, frontal pole, supramarginal gyrus, postcentral gyrus, lingual gyrus, lateral occipital cortex, and parahippocampus. The follow-up analysis based on pair-wise FC of these regions demonstrated that these psychiatric disorders also shared similar patterns of FC abnormalities characterized by sensory/subcortical hyperconnectivity, association/subcortical hypoconnectivity, and sensory/association hyperconnectivity.ConclusionsThese findings suggest that major psychiatric disorders share common connectomic abnormalities in distributed cortical and subcortical regions and provide crucial support for the common network hypothesis of major psychiatric disorders.  相似文献   

17.
Progressive supranuclear palsy (PSP) is associated with pathological changes along the dentatorubrothalamic tract and in premotor cortex. We aimed to assess whether functional neural connectivity is disrupted along this pathway in PSP, and to determine how functional changes relate to changes in structure and diffusion. Eighteen probable PSP subjects and 18 controls had resting-state (task-free) fMRI, diffusion tensor imaging and structural MRI. Functional connectivity was assessed between thalamus and the rest of the brain, and within the basal ganglia, salience and default mode networks (DMN). Patterns of atrophy were assessed using voxel-based morphometry, and patterns of white matter tract degeneration were assessed using tract-based spatial statistics. Reduced in-phase functional connectivity was observed between the thalamus and premotor cortex including supplemental motor area (SMA), striatum, thalamus and cerebellum in PSP. Reduced connectivity in premotor cortex, striatum and thalamus were observed in the basal ganglia network and DMN, with subcortical salience network reductions. Tract degeneration was observed between cerebellum and thalamus and in superior longitudinal fasciculus, with grey matter loss in frontal lobe, premotor cortex, SMA and caudate nucleus. SMA functional connectivity correlated with SMA volume and measures of cognitive and motor dysfunction, while thalamic connectivity correlated with degeneration of superior cerebellar peduncles. PSP is therefore associated with disrupted thalamocortical connectivity that is associated with degeneration of the dentatorubrothalamic tract and the presence of cortical atrophy.  相似文献   

18.
Structural and functional abnormalities of the cerebellum in schizophrenia have been reported. Most previous studies investigating resting-state functional connectivity (rsFC) have relied on a priori restrictions on seed regions or specific networks, which may bias observations. In this study, we aimed to elicit the connectivity alterations of the cerebellum in schizophrenia in a hypothesis-free approach. Ninety-five schizophrenia patients and 93 sex- and age-matched healthy controls underwent resting-state functional magnetic resonance imaging (fMRI). A voxel-wise data-driven method, resting-state functional connectivity density (rsFCD), was used to investigate cerebellar connectivity changes in schizophrenia patients. Regions with altered rsFCD were chosen as seeds to perform seed-based resting-state functional connectivity (rsFC) analyses. We found that schizophrenia patients exhibited decreased rsFCD in the right hemispheric VI; moreover, this cerebellar region showed increased rsFC with the prefrontal cortex and subcortical nuclei and decreased rsFC with the visual cortex and sensorimotor cortex. In addition, some rsFC changes were associated with positive symptoms. These findings suggest that abnormalities of the cerebellar hub and cerebellar-subcortical-cortical loop may be the underlying mechanisms of schizophrenia.  相似文献   

19.
The cerebellar deficit hypothesis of dyslexia posits that dysfunction of the cerebellum is the underlying cause for reading difficulties observed in this common learning disability. The present study used functional magnetic resonance imaging (fMRI) and a single word processing task to test for differences in activity and connectivity in children with (n = 23) and without (n = 23) dyslexia. We found cerebellar activity in the control group when word processing was compared to fixation, but not when it was compared to the active baseline task designed to reveal activity specific to reading. In the group with dyslexia there was no cerebellar activity for either contrasts and there were no differences when they were compared to children without dyslexia. Turning to functional connectivity (FC) in the controls, background FC (i.e., not specific to reading) was predominately found between the cerebellum and the occipitaltemporal cortex. In the group with dyslexia, there was background FC between the cerebellum and several cortical regions. When comparing the two groups, they differed in background FC in connections between the seed region right crus I and three left‐hemisphere perisylvian target regions. However, there was no task‐specific FC for word processing in either group and no between‐group differences. Together the results do not support the theory that the cerebellum is affected functionally during reading in children with dyslexia.  相似文献   

20.
Even with an overarching functional dysconnectivity model of adolescent‐onset schizophrenia (AOS), there have been no functional connectome (FC) biomarkers identified for predicting patients'' specific symptom domains. Adolescence is a period of dramatic brain maturation, with substantial interindividual variability in brain anatomy. However, existing group‐level hypotheses of AOS lack precision in terms of neuroanatomical boundaries. This study aimed to identify individual‐specific FC biomarkers associated with schizophrenic symptom manifestation during adolescent brain maturation. We used a reliable individual‐level cortical parcellation approach to map functional brain regions in each subject, that were then used to identify FC biomarkers for predicting dimension‐specific psychotic symptoms in 30 antipsychotic‐naïve first‐episode AOS patients (recruited sample of 39). Age‐related changes in biomarker expression were compared between these patients and 31 healthy controls. Moreover, 29 antipsychotic‐naïve first‐episode AOS patients (analyzed sample of 25) were recruited from another center to test the generalizability of the prediction model. Individual‐specific FC biomarkers could significantly and better predict AOS positive‐dimension symptoms with a relatively stronger generalizability than at the group level. Specifically, positive symptom domains were estimated based on connections between the frontoparietal control network (FPN) and salience network and within FPN. Consistent with the neurodevelopmental hypothesis of schizophrenia, the FPN–SN connection exhibited aberrant age‐associated alteration in AOS. The individual‐level findings reveal reproducible FPN‐based FC biomarkers associated with AOS positive symptom domains, and highlight the importance of accounting for individual variation in the study of adolescent‐onset disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号