首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stoddard solvent IIC is widely used as a solvent in paints and varnishes, and for dry cleaning and other grease removal applications. Because concern exists regarding the long-term effects of occupational exposure in industrial settings, the toxicity and carcinogenicity of Stoddard solvent IIC were evaluated in male and female F344/N rats and B6C3F1 mice. Rats and mice were exposed to 0, 138, 275, 550, 1100, or 2200 mg/m3 Stoddard solvent IIC by whole-body inhalation for 3 mo, and to 0, 138 (male rats), 550, 1100, or 2200 (female rats and male and female mice) mg/m3 for 2 yr. The kidney, liver, and adrenal medulla were targets of Stoddard solvent IIC toxicity in rats. After 3 mo of exposure, male rats developed lesions characteristic of alpha2u-globulin nephropathy. Male and female rats displayed increased liver weights and/or clinical pathology changes suggestive of hepatic injury, although no accompanying histopathologic changes were observed. After 2 yr, increased incidences of adrenal medullary pheochromocytomas provided some evidence of carcinogenicity in male rats. Renal tubule adenomas were slightly increased in male rats after 2 yr, and may have been related to exposure. In mice, there was no chemical-related toxicity after 3 mo, with the exception of increased liver weights in male mice exposed to 2200 mg/m3. After 2 yr, the incidences of hepatocellular adenomas were increased in female mice exposed to 2200 mg/m3; however, these increases were marginal and associated with increases in body weight. There was no evidence of Stoddard solvent IIC carcinogenicity in female rats or male mice. In summary, inhalation exposures of Stoddard solvent IIC resulted in renal toxicity and adrenal medullary pheochromocytomas in male rats. The liver also appeared to be a site of toxicity in male and female rats and mice.  相似文献   

2.
Stoddard solvent IIC is widely used as a solvent in paints and varnishes, and for dry cleaning and other grease removal applications. Because concern exists regarding the long-term effects of occupational exposure in industrial settings, the toxicity and carcinogenicity of Stoddard solvent IIC were evaluated in male and female F344/N rats and B6C3F1 mice. Rats and mice were exposed to 0, 138, 275, 550, 1100, or 2200 mg/m3 Stoddard solvent IIC by whole-body inhalation for 3 mo, and to 0, 138 (male rats), 550, 1100, or 2200 (female rats and male and female mice) mg/m3 for 2 yr. The kidney, liver, and adrenal medulla were targets of Stoddard solvent IIC toxicity in rats. After 3 mo of exposure, male rats developed lesions characteristic of α2u-globulin nephropathy. Male and female rats displayed increased liver weights and/or clinical pathology changes suggestive of hepatic injury, although no accompanying histopathologic changes were observed. After 2 yr, increased incidences of adrenal medullary pheochromocytomas provided some evidence of carcinogenicity in male rats. Renal tubule adenomas were slightly increased in male rats after 2 yr, and may have been related to exposure. In mice, there was no chemical-related toxicity after 3 mo, with the exception of increased liver weights in male mice exposed to 2200 mg/m3. After 2 yr, the incidences of hepatocellular adenomas were increased in female mice exposed to 2200 mg/m3; however, these increases were marginal and associated with increases in body weight. There was no evidence of Stoddard solvent IIC carcinogenicity in female rats or male mice. In summary, inhalation exposures of Stoddard solvent IIC resulted in renal toxicity and adrenal medullary pheochromocytomas in male rats. The liver also appeared to be a site of toxicity in male and female rats and mice.  相似文献   

3.
The potential maternal and developmental toxicity of dimethylpiperidone (DMPD) was assessed in rats. Groups of 25 mated female Crl:CD (SD)IGS BR rats were exposed by inhalation (whole-body exposures) for approximately six hours per day over days 7-21 of gestation (G); day 1G was the day of copulation plug detection. The exposure levels were 0, 52, 260, or 340 (vapor plus aerosol) mg/m3 DMPD. During the in-life portion, body weights, food consumption, and clinical observation data were collected. On day 22G, the dams were euthanized and examined for gross external and internal alterations. The uterine contents were described and the fetuses were weighed and examined for external, visceral, and skeletal alterations. Maternal toxicity was seen at both 260 and 340 mg/m3. At 340 mg/m3, evidence of maternal toxicity included mortality, increased clinical observations, and decreased body weight and food consumption. At 260 mg/m3, maternal toxicity was limited to increased clinical observations and decreased food consumption. Developmental toxicity was also produced at 260 and 340 mg/m3. At 340 mg/m3, evidence of developmental toxicity included decreased fetal weight, increased embryofetal lethality with concomitant reductions in litter size, and increased fetal malformations and variations. At 260 mg/m3, effects in fetuses were limited to slightly decreased fetal weight and increased fetal variations; additionally, one litter from this level consisted entirely of resorptions. There were no compound-related effects in either dams or fetuses at 52 mg/m3. It was, therefore, concluded that DMPD was not selectively toxic to the rat conceptus.  相似文献   

4.
Male and female rats were exposed by inhalation (whole body) to HCC-230fa (1,1,1,3,3,3-hexachloropropane) for 6 h/day, 5 days/week over a 15-week period. Concentrations of 0, 0.50, 2.5, and 25 ppm were studied. A total of eight groups/sex were exposed. Four groups of male and four groups of female rats were used to measure clinical signs and growth, clinical pathology, and tissue pathology. The remaining four groups of male rats were used for immunotoxicological and sperm assessment evaluations, and the remaining four groups of female rats were used for immunotoxicological evaluation. Following the exposure period, surviving male rats were kept for a 1- or 3-month recovery period. Male and female rats exposed to 25 ppm had lower mean body weights, mean body weight gains, and food consumption during the exposure period. Male and female rats exposed to 25 ppm and sacrificed immediately after the exposure period had minimally decreased total leukocyte and lymphocyte counts. These changes were considered to be marginally adverse. Pathologic examination revealed hepatocellular hypertrophy in 0-day recovery males and an increased incidence and/or severity in chronic progressive nephropathy in 0-day, 1-month recovery, and 3-month recovery males at 25 ppm. No other pathological changes, including the testis, epididymis, and other accessory sex organs, were noted in rats during the study. Evaluation of sperm parameters at the end of the exposure period showed statistically significant decreases in epididymal sperm number per cauda epididymis, percent motile sperm, and percent normal sperm morphology at 25 ppm. The biological significance of the slight changes observed in the sperm parameters in the absence of histopathological changes is unclear. After a 1-month recovery period, no biologically significant differences in sperm parameters were noted at 25 ppm compared with controls. Exposure to HCC-230fa did not significantly alter the primary humoral immune response to sheep red blood cell (SRBC). Under the conditions of this study, the no-observed-adverse-effect level (NOAEL) was considered to be 2.5 ppm.  相似文献   

5.
Dibromoacetic acid is a water disinfection by-product. Dibromoacetic acid was nominated to the National Toxicology Program by the United States Environmental Protection Agency for toxicity and carcinogenicity studies in rats and mice because of widespread human exposure and because a related dihaloacetate, dichloroacetate, was found to be carcinogenic to the liver of rats and mice. Drinking water was selected as the route of exposure to mimic human exposure to this chemical. Male and female F344/N rats and B6C3F1 mice were exposed to dibromoacetic acid (greater than 99% pure) in drinking water for 2 weeks, 3 months, or 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium and peripheral blood erythrocytes of exposed mice. 2-WEEK STUDY IN RATS: Groups of five male and five female rats were exposed to 0, 125, 250, 500, 1,000, or 2,000 mg/L dibromoacetic acid in drinking water for 2 weeks, equivalent to average daily doses of approximately 17, 32, 67, 134, 270 (males), or 257 (females) mg dibromoacetic acid/kg body weight. All rats survived to the end of the study. Mean body weight gains of 1,000 mg/L males and of 500 mg/L females were significantly greater than those of the controls. Water consumption by exposed and control groups was similar. Liver weights of exposed males and females were significantly increased. Right testis weights of males exposed to 500 mg/L or greater were significantly decreased. The incidences of hepatocytic cytoplasmic alteration were significantly increased in males exposed to 500 mg/L or greater and in 2,000 mg/L females. Testicular lesions, characterized by a delay in spermiation and retained spermatids, were noted in males exposed to 500 mg/L or higher concentrations. 2-WEEK STUDY IN MICE: Groups of five male and five female mice were exposed to 0, 125, 250, 500, 1,000, or 2,000 mg/L dibromoacetic acid (equivalent to average daily doses of approximately 24, 47, 95, 178, or 370 mg/kg to males and 22, 53, 88, 166, or 309 mg/kg to females) in drinking water for 2 weeks. All mice survived to the end of the study. Mean body weight gains of 250 and 500 mg/L males were significantly greater than those of the controls. Water consumption by exposed and control groups was similar. Liver weights of males and females in the 1,000 and 2,000 mg/L groups were significantly increased. Thymus weights of males and females in the 1,000 and 2,000 mg/L groups were significantly less than those of controls. The incidences of thymus atrophy were significantly increased in 1,000 and 2,000 mg/L males and 2,000 mg/L females. The incidences of morphological changes to the germinal epithelium of the testes were increased in males exposed to 1,000 or 2,000 mg/L. 3-MONTH STUDY IN RATS: Groups of 10 male and 10 female rats were exposed to 0, 125, 250, 500, 1,000, or 2,000 mg/L dibromoacetic acid (equivalent to average daily doses of approximately 10, 20, 40, 90, and 166 mg/kg to males and 12, 23, 48, 93, and 181 mg/kg to females) in drinking water for 3 months. All rats survived to the end of the study. Mean body weights of male and female rats in the 2,000 mg/L group were significantly less than those of controls. Water consumption by the 2,000 mg/L males at weeks 1 and 13 and by females at week 13 was less than that by controls. Small decreases in the erythron and platelet counts occurred in rats exposed to 2,000 mg/L; minimally impaired erythropoiesis was also seen in 1,000 mg/L rats. Liver weights of all exposed groups of males and females were significantly increased. Male rats in the 2,000 mg/L group had significantly decreased testis weights. Testicular atrophy was noted in the 2,000 mg/L group, and retained spermatids were observed in the 500 and 1,000 mg/L groups. In the pituitary gland of male rats exposed to 2,000 mg/L, the incidence of cellular hypertrophy was significantly increased. The incidences of hepatocellular vacuolization were significantly increased in males exposed to 500 mg/L or greater and in females exposed to 2,000 mg/L. Hematopoietic cell proliferation was noted in females in the 2,000 mg/L group. 3-MONTH STUDY IN MICE: Groups of 10 male and 10 female mice were exposed to 0, 125, 250, 500, 1,000, or 2,000 mg/L dibromoacetic acid (equivalent to average daily doses of approximately 16, 30, 56, 115, and 230 mg/kg to males and 17, 34, 67, 132, and 260 mg/kg to females) in drinking water for 3 months. All mice survived to the end of the study. Mean body weights and body weight gains of female mice in the 2,000 mg/L group and the mean body weight gain of 2,000 mg/L males were significantly less than those of controls. Water consumption by males in the 2,000 mg/L group was decreased at weeks 1 and 13 relative to controls. Small decreases in mean cell hemoglobin and platelet counts occurred in 2,000 mg/L male mice. Liver weights of males and females exposed to 500 mg/L or greater were significantly increased. Hepatocellular cytoplasmic vacuolization was present in most mice and the severity was increased in 1,000 and 2,000 mg/L males and females. The incidences of abnormal testicular morphology were significantly increased in 1,000 and 2,000 mg/L males. 2-YEAR STUDY IN RATS: Groups of 50 male and 50 female rats were exposed to drinking water containing 0, 50, 500, and 1,000 mg/L dibromoacetic acid for 2 years (equivalent to average daily doses of approximately 2, 20, and 40 mg/kg to males and 2, 25, and 45 mg/kg to females). Survival of exposed rats was similar to that of the control groups. Mean body weights of 1,000 mg/L males and females were less than those of the controls after weeks 29 and 53, respectively, and those of 500 mg/L males and females were less after weeks 57 and 85, respectively. Water consumption by males and females exposed to 1,000 mg/L was less than that by controls during year 2 of the study. The incidence of malignant mesothelioma was significantly increased in 1,000 mg/L male rats. A positive trend in the incidence of mononuclear cell leukemia occurred in female rats, and the incidence in 1,000 mg/L females was significantly increased. The incidences of mononuclear cell leukemia were increased in 50 and 500 mg/L males. The incidences of cystic degeneration of the liver were significantly increased in all exposed groups of male rats. The incidences of alveolar epithelial hyperplasia were significantly increased in 500 and 1,000 mg/L females, and the incidences of nephropathy were significantly increased in all exposed groups of females. 2-YEAR STUDY IN MICE: Groups of 50 male and 50 female mice were exposed to drinking water containing 0, 50, 500, and 1,000 mg/L dibromoacetic acid for 2 years (equivalent to average daily doses of approximately 4, 45, and 87 mg/kg to males and 4, 35, and 65 mg/kg to females). Survival of exposed mice was similar to that of the controls. Mean body weights of 50 and 500 mg/L male mice were greater than those of the controls after week 85. Water consumption by exposed mice was generally similar to that by controls throughout the study. The incidences of liver neoplasms occurred with positive trends in male and female mice. The incidences of multiple hepatocellular adenoma and hepatocellular adenoma or carcinoma (combined) were significantly increased in all exposed groups of males and in 500 and 1,000 mg/L females. The incidences of hepatoblastoma were significantly increased in 500 and 1,000 mg/L males, and the incidences of hepatocellular carcinoma were significantly increased in 1,000 mg/L males and 500 mg/L females. The incidences of alveolar/bronchiolar adenoma occurred with positive trends in males and females, and the incidence in 500 mg/L male mice was significantly greater than that in controls. GENETIC TOXICOLOGY: Dibromoacetic acid was mutagenic in Salmonella typhimurium strain TA100 with and without rat or hamster liver metabolic activation enzymes (S9); no activity was detected in strain TA98, with or without S9. Increased frequencies of micronucleated normochromatic erythrocytes were observed in peripheral blood samples from male, but not female, mice administered dibromoacetic acid in drinking water for 3 months. CONCLUSIONS: Under the conditions of these studies, there was some evidence of carcinogenic activity of dibromoacetic acid in male rats based on an increased incidence of malignant mesothelioma. The increased incidences of mononuclear cell leukemia in male rats may have been related to dibromoacetic acid exposure. There was some evidence of carcinogenic activity of dibromoacetic acid in female rats based on an increased incidence and positive trend of mononuclear cell leukemia. There was clear evidence of carcinogenic activity of dibromoacetic acid in male and female mice based on increased incidences of hepatocellular neoplasms and hepatoblastoma (males only). Increased incidences of lung neoplasms in male mice were also considered to be exposure related. The slight increased incidence of lung neoplasms in female mice may have been related to dibromoacetic acid exposure. Exposure to dibromoacetic acid for 2 years caused increased incidences of cystic degeneration of the liver in male rats, increased incidences of alveolar epithelial hyperplasia and nephropathy in female rats, and increased incidences of splenic hematopoiesis in male mice.  相似文献   

6.
Vanadium pentoxide, commercially the most important compound of vanadium, presents a potential occupational hazard during the cleaning of oil-fired boilers and furnaces, the handling of catalysts, and during the refining, processing, or burning of vanadium-rich mineral ores or fossil fuels. Vanadium pentoxide was nominated for study by the National Cancer Institute as a representative of the metals class study. Male and female F344/N rats and B6C3F1 mice were exposed to vanadium pentoxide (99% pure) by inhalation for 16 days, 14 weeks, or 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium and mouse peripheral blood. 16-DAY STUDY IN RATS: Groups of five male and five female rats were exposed to particulate aerosols of vanadium pentoxide at concentrations of 0, 2, 4, 8, 16, or 32 mg/m(3) by inhalation, 6 hours per day, 5 days per week for 16 days. Three males in the 32 mg/m(3) group died before the end of the study. Mean body weights of males and females exposed to 8 mg/m(3) or greater were less than those of the chamber controls. Clinical findings included rapid respiration and hypoactivity in rats exposed to 16 or 32 mg/m(3). Relative lung weights of 4 mg/m(3) or greater males and 2 mg/m(3) or greater females were significantly greater than those of the chamber controls. Lavage fluid analysis indicated an inflammatory response in the lung that was either directly mediated by vanadium pentoxide or was secondary to lung damage induced by vanadium pentoxide exposure. 16-DAY STUDY IN MICE: Groups of five male and five female mice were exposed to particulate aerosols of vanadium pentoxide at concentrations of 0, 2, 4, 8, 16, or 32 mg/m(3) by inhalation, 6 hours per day, 5 days per week for 16 days. All males exposed to 32 mg/m(3) and one 8 mg/m(3) male died or were killed moribund before the end of the study. Mean body weights of 16 mg/m(3) males and 8 mg/m(3) or greater females were significantly less than those of the chamber controls, and the 32 mg/m(3) females lost weight during the study. Absolute and relative lung weights of 4 mg/m(3) or greater males and all exposed groups of females and liver weights of 16 mg/m(3) males were significantly greater than those of the chamber controls. The mediastinal lymph nodes were enlarged in 4, 8, and 16 mg/m(3) males and females, and lymphoid hyperplasia was confirmed histologically. Lavage fluid analysis indicated an inflammatory response in the lung that was either directly mediated by vanadium pentoxide or was secondary to lung damage induced by vanadium pentoxide exposure. 3-MONTH STUDY IN RATS: Groups of 10 male and 10 female rats were exposed to particulate aerosols of vanadium pentoxide at concentrations of 0, 1, 2, 4, 8, or 16 mg/m(3) by inhalation, 6 hours per day, 5 days per week for 3 months. Seven males and three females exposed to 16 mg/m(3) died during the study. Mean body weights were significantly less in males exposed to 4 mg/m(3) or greater and in females exposed to 16 mg/m(3). Abnormal breathing, thinness, lethargy, abnormal posture, and ruffled fur were observed in rats exposed to 16 mg/m(3). Hematology results indicated that exposure of rats to vanadium pentoxide induced a microcytic erythrocytosis in males and females. Absolute and relative lung weights were significantly greater for 4 mg/m(3) or greater males and females than for the chamber controls as were the relative lung weights of 2 mg/m(3) males. The estrous cycle of females exposed to 8 mg/m(3) was significantly longer than that of the chamber control group, and the number of cycling females in the 16 mg/m(3) group was reduced. The incidences of several nonneoplastic lesions of the lung and nose were significantly increased in males and females exposed to 2 mg/m(3) or greater. Data from pulmonary function analyses indicated that a restrictive lung disease was present in male and female rats exposed to 4 mg/m(3) or greater, while an obstructive lung disease was present only in the 16 mg/m(3) groups. 3-MONTH STUDY IN MICE: Groups of 10 male and 10 female mice were exposed to particulate aerosols of vanadium pentoxide at concentrations of 0, 1, 2, 4, 8, or 16 mg/m(3) by inhalation, 6 hours per day, 5 days per week for 3 months. One male exposed to 16 mg/m(3) died before the end of the study. Mean body weights of 8 and 16 mg/m(3) males and 4 mg/m(3) or greater females were significantly less than those of the chamber controls. Absolute and relative lung weights of males and females exposed to 4 mg/m(3) or greater were significantly greater than those of the chamber controls. The epididymal spermatozoal motility of males exposed to 8 or 16 mg/m(3) was significantly decreased. Some mice exposed to 2 or 4 mg/m(3) had inflammation of the lung, and all mice exposed to 8 or 16 mg/m(3) had inflammation and epithelial hyperplasia of the lung. 16-DAY SPECIAL STUDY IN RATS: Groups of 60 female rats were exposed to particulate aerosols of vanadium pentoxide at concentrations of 0, 1, or 2 mg/m(3) and groups of 40 female rats were exposed to 4 mg/m(3) by inhalation, 6 hours per day, 5 days per week for 16 days. Alveolar and bronchiolar epithelial hyperplasia was observed in most rats exposed to 2 or 4 mg/m(3) on days 6 and 13. Histiocytic infiltration and inflammation occurred in a time- and concentration-related manner. Cell turnover rates were increased in the terminal bronchioles on days 6 and 13 and in the alveoli in the 4 mg/m(3) group on day 6 and in all exposed groups on day 13. Assessment of lung vanadium concentrations suggested deposition and clearance exhibited linear kinetics over the exposure range studied. Lung clearance half-times ranged from 4.42 to 4.96 days. 16-DAY SPECIAL STUDY IN MICE: Groups of 60 female mice were exposed to particulate aerosols of vanadium pentoxide at concentrations of 0, 2, or 4 mg/m(3) and groups of 40 female mice were exposed to 8 mg/m(3) by inhalation, 6 hours per day, 5 days per week for 16 days. Alveolar and bronchiolar epithelial hyperplasia occurred with similar incidences and severities among the exposed groups on days 6 and 13, and time- and concentration-related increases in the incidences of interstitial inflammation and histiocytic infiltration also occurred in these groups. Cell turnover rates were increased in the terminal bronchioles on day 6 and remained greater than those of the chamber controls on day 13. In the alveoli, cell turnover rates were increased in an exposure concentration-related manner on day 13; cell turnover rates were increased only in the 8 mg/m(3) group on day 6. Assessment of lung vanadium concentrations suggested deposition and clearance exhibited linear kinetics over the exposure range studied. Lung clearance half-times ranged from 2.40 to 2.55 days. 2-YEAR STUDY IN RATS: Groups of 50 male and 50 female rats were exposed to particulate aerosols of vanadium pentoxide at concentrations of 0, 0.5, 1, or 2 mg/m(3) by inhalation, 6 hours per day, 5 days per week for 104 weeks. Survival and body weights of males and females were generally similar to those of the chamber controls. Mean body weights of females exposed to 2 mg/m(3) were less than those of the chamber controls throughout the study. Alveolar/bronchiolar neoplasms were present in exposed groups of male rats, and the incidences often exceeded the historical control ranges. Alveolar/bronchiolar adenomas were present in 0.5 and 1 mg/m(3) females; one 2 mg/m(3) female also had an alveolar/bronchiolar carcinoma. The incidence of alveolar/bronchiolar adenoma in the 0.5 mg/m(3) group was at the upper end of the historical control ranges. Nonneoplastic lesions related to vanadium pentoxide exposure occurred in the respiratory system (lung, larynx, and nose) of male and female rats, and the severities of these lesions generally increased with increasing exposure concentration. 2-YEAR STUDY IN MICE: Groups of 50 male and 50 female mice were exposed to particulate aerosols of vanadium pentoxide at concentrations of 0, 1, 2, or 4 mg/m(3) by inhalation, 6 hours per day, 5 days per week for 104 weeks. Survival of 4 mg/m(3) males was significantly less than that of the chamber controls. Mean body weights of 4 mg/m(3) males and all exposed groups of females were generally less than those of the chamber controls throughout the study, and those of males exposed to 2 mg/m(3) were less from week 85 to the end of the study. Many mice exposed to vanadium pentoxide were thin, and abnormal breathing was observed in some mice, particularly those exposed to 2 or 4 mg/m(3). The incidences of alveolar/bronchiolar neoplasms were significantly increased in all groups of exposed males and females. Nonneoplastic lesions related to vanadium pentoxide exposure occurred in the respiratory system (lung, larynx, and nose) of male and female mice, and the severities of these lesions generally increased with increasing exposure concentration. Bronchial lymph node hyperplasia was present in many exposed females. MOLECULAR ONCOLOGY STUDIES: K-ras codon 12 mutation and loss of heterozygosity on chromosome 6 were detected in vanadium pentoxide-induced alveolar/bronchiolar carcinomas from mice. GENETIC TOXICOLOGY: Vanadium pentoxide was not mutagenic in Salmonella typhimurium strain TA97, TA98, TA100, TA102, or TA1535, with or without induced rat or hamster liver S9 enzymes. CONCLUSIONS: Under the conditions of this 2-year inhalation study, there was some evidence of carcinogenic activity of vanadium pentoxide in male F344/N rats and equivocal evidence of carcinogenic activity of vanadium pentoxide in female F344/Nrats based on the occurrence of alveolar/bronchiolar neoplasms. There was clear evidence of carcinogenic activity of vanadium pentoxide in male and female B6C3F1 mice based on increased incidences of alveolar/bronchiolar neoplasms. (ABSTRACT TRUNCATED)  相似文献   

7.
Stoddard solvent (white spirit/mineral spirit) is the most widely used solvent in the paint industry. It is used as a dry cleaning agent; as an extraction, cleaning, and degreasing solvent; and as a solvent in aerosols, paints, wood preservatives, asphalt products, lacquers, and varnishes. Stoddard solvent IIC was nominated by the International Union, United Auto Workers, for carcinogenicity testing because of the large volume used in industrial and other settings. Male and female F344/N rats and B6C3F1 mice were exposed to Stoddard solvent IIC (greater than 99% pure) by inhalation for 2 weeks, 3 months, or 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium and mouse peripheral blood erythrocytes. 2-WEEK STUDY IN RATS: Groups of five male and five female rats were exposed to Stoddard solvent IIC by inhalation at concentrations of 0, 138, 275, 550, 1,100, or 2,200 mg/m3, 6 hours per day, 5 days per week for 16 days. All rats survived to the end of the study, and mean body weights of all exposed groups were similar to those of the chamber controls. Liver weights of males exposed to 550 mg/m3 or greater and of females exposed to 275 mg/m3 or greater were increased. Minimal diffuse cytoplasmic vacuolization of hepatocytes of the liver occurred in all females exposed to 2,200 mg/m3. 2-WEEK STUDY IN MICE: Groups of five male and five female mice were exposed to Stoddard solvent IIC by inhalation at concentrations of 0, 138, 275, 550, 1,100, or 2,200 mg/m3, 6 hours per day, 5 days per week for 17 days. All mice survived to the end of the study, and mean body weights of all exposed groups were similar to those of the chamber controls. Liver weights of males and females exposed to 275 mg/m3 or greater were significantly increased. Cytomegaly of the liver occurred in all males and females exposed to 2,200 mg/m3. 3-MONTH STUDY IN RATS: Groups of 10 male and 10 female rats were exposed to Stoddard solvent IIC by inhalation at concentrations of 0, 138, 275, 550, 1,100, or 2,200 mg/m3, 6 hours per day, 5 days per week for 14 weeks. All rats survived to the end of the study, and the final mean body weight of females exposed to 275 mg/m3 was greater than that of the chamber controls. The relative kidney, liver, and testis weights of all exposed groups of males and the absolute kidney weights of males exposed to 550 mg/m3 or greater were increased. The sperm motility of 550 mg/m3 or greater males was significantly decreased. The incidences of renal tubule granular casts were significantly increased in males exposed to 550 mg/m3 or greater, and the severities of renal tubule hyaline droplet accumulation, granular casts, and regeneration increased with increasing exposure concentration in males. The incidences of goblet cell hypertrophy of the nasal respiratory epithelium in males and females exposed to 2,200 mg/m3 were significantly increased. Sperm motility was decreased in males exposed to 550 mg/m3 or greater. 3-MONTH STUDY IN MICE: Groups of 10 male and 10 female mice were exposed to Stoddard solvent IIC by inhalation at concentrations of 0, 138, 275, 550, 1,100, or 2,200 mg/m3, 6 hours per day, 5 days per week for 14 weeks. Mean body weights of exposed groups were similar to those of the chamber controls, but liver weights of males exposed to 2,200 mg/m3 were significantly increased. The sperm motility of 2,200 mg/m3 males was significantly decreased. This reduction in sperm motility, while statistically significant, is probably of modest importance as studies in mice have found that fertility is unaffected by motility decreases of less than 40%. The incidences of hematopoietic cell proliferation of the spleen in all exposed groups of females were greater than that in the chamber controls. 2-YEAR STUDY IN RATS: Groups of 50 male and 50 female rats were exposed to Stoddard solvent IIC by inhalation at concentrations of 0, 138 (males), 550, 1,100, or 2,200 (females) mg/m3, 6 hours per day, 5 days per week for 104 to 105 weeks. Additional groups of 10 males and 10 females were exposed to the same concentrations for 3 months for renal toxicity analyses. Survival in the top exposure concentration groups of males and females was significantly less than that of the chamber controls. Mean body weights of exposed males and females were similar to those of the chamber controls. Cell proliferation analyses were performed in the left kidney of males and females after 3 months of exposure. The mean numbers of labeled cells and the labeling indices in males exposed to 550 and 1,100 mg/m3 were significantly increased. The amount of alpha2u-globulin in the right kidney of males increased with increasing exposure concentration. Also, the incidences of granular casts and cortical tubule degeneration and regeneration were generally increased in exposed males, as was the severity of hyaline droplets. These effects did not occur in females. At 2 years, the incidences of benign and benign or malignant pheochromocytoma (combined) of the adrenal medulla occurred with positive trends in males, and the incidences in the 550 and 1,100 mg/m3 groups were significantly increased. Due to increased incidences of renal tubule hyperplasia in males at 2 years, extended kidney evaluations were conducted; a slightly increased incidence of renal tubule adenoma occurred in the 1,100 mg/m3 group. Nonneoplastic lesions related to Stoddard solvent IIC exposure occurred in the kidney of males. 2-YEAR STUDY IN MICE: Groups of 50 male and 50 female mice were exposed to Stoddard solvent IIC by inhalation at concentrations of 0, 550, 1,100, or 2,200 mg/m3, 6 hours per day, 5 days per week for 105 weeks. Survival of exposed mice was similar to that of the chamber controls. Mean body weights of exposed females were greater than those of the chamber controls. The incidences of hepatocellular adenoma occurred with a positive trend in females, and the incidence of multiple hepatocellular adenoma in females exposed to 2,200 mg/m3 was significantly increased. However, the incidences of hepatocellular adenoma or carcinoma (combined) and hepatocellular carcinoma alone in exposed males and females were not significantly increased. GENETIC TOXICOLOGY: Stoddard solvent IIC was tested for mutagenicity in Salmonella typhimurium strains TA97, TA98, TA100, and TA1535, with and without S9 metabolic activation enzymes; all results were negative. In vivo, the frequency of micronucleated erythrocytes was assessed in peripheral blood samples from male and female B6C3F1 mice after 3 months of inhalation exposure to Stoddard solvent IIC, and results were negative. CONCLUSIONS: Under the conditions of these 2-year inhalation studies, there was some evidence of carcinogenic activity of Stoddard solvent IIC in male F344/N rats based on increased incidences of adrenal medulla neoplasms; the slightly increased incidences of renal tubule adenoma may have been related to Stoddard solvent IIC exposure. There was no evidence of carcinogenic activity of Stoddard solvent IIC in female F344/N rats exposed to 550, 1,100, or 2,200 mg/m3. There was no evidence of carcinogenic activity of Stoddard solvent IIC in male B6C3F1 mice exposed to 550, 1,100, or 2,200 mg/m3. There was equivocal evidence of carcinogenic activity of Stoddard solvent IIC in female B6C3F1 mice based on increased incidences of hepatocellular adenoma; this slight increase was associated with increased body weight in exposed females. Exposure of male rats to Stoddard solvent IIC resulted in nonneoplastic lesions of the kidney characteristic of alpha2u-globulin accumulation.  相似文献   

8.
Inhalation toxicity and carcinogenicity studies of cobalt sulfate.   总被引:2,自引:0,他引:2  
Cobalt sulfate is a water-soluble cobalt salt with a variety of industrial and agricultural uses. Several cobalt compounds have induced sarcomas at injection sites in animals, and reports have suggested that exposure to cobalt-containing materials may cause lung cancer in humans. The present studies were done because no adequate rodent carcinogenicity studies had been performed with a soluble cobalt salt using a route relevant to occupational exposures. Groups of 50 male and 50 female F344/N rats and B6C3F1 mice were exposed to aerosols containing 0, 0.3, 1.0, or 3.0 mg/m3 cobalt sulfate hexahydrate, 6 h/day, 5 days/week, for 104 weeks. Survival and body weights of exposed rats and mice were generally unaffected by the exposures. In rats, proteinosis, alveolar epithelial metaplasia, granulomatous alveolar inflammation, and interstitial fibrosis were observed in the lung in all exposed groups. Nonneoplastic lesions of the nose and larynx were also attributed to exposure to all concentrations of cobalt sulfate. In 3.0 mg/m3 male rats and in female rats exposed to 1.0 or 3.0 mg/m3, the incidences of alveolar/bronchiolar neoplasms were increased over those in the control groups. Lung tumors occurred with significant positive trends in both sexes. The incidences of adrenal pheochromocytoma in 1.0 mg/m3 male rats and in 3.0 mg/m3 female rats were increased. Nonneoplastic lesions of the respiratory tract were less severe in mice than in rats. In mice, alveolar/bronchiolar neoplasms in 3.0 mg/m3 males and females were greater than those in the controls, and lung tumors occurred with significantly positive trends. Male mice had liver lesions consistent with a Helicobacter hepaticus infection. Incidences of liver hemangiosarcomas were increased in exposed groups of male mice; however, because of the infection, no conclusion could be reached concerning an association between liver hemangiosarcomas and cobalt sulfate. In summary, exposure to cobalt sulfate by inhalation resulted in increased incidence of alveolar/bronchiolar neoplasms and a spectrum of inflammatory, fibrotic, and proliferative lesions in the respiratory tracts of male and female rats and mice. Adrenal pheochromocytomas were increased in female rats, and possibly in male rats.  相似文献   

9.
Vanadium pentoxide (V2O5) is a slightly soluble compound found in airborne particle emissions from metallurgical works and oil and coal burning. Because the carcinogenic potential of V2O5 was not known, F344/N rats and B6C3F1 mice (N=50/sex/species) were exposed to V2O5 at concentrations of 0, 0.5 (rats only), 1, 2, or 4 (mice only) mg/m3, by whole-body inhalation for 2 years. The survival and body weights of rats were minimally affected by exposure to V2O5. The survival and body weights of male mice exposed to 4 mg/m3 and body weights of all exposed groups of female mice were lower than the controls. Alveolar/bronchiolar (A/B) neoplasms occurred in male rats exposed to 0.5 and 2 mg/m3 at incidences exceeding the National Toxicology Program (NTP) historical control ranges. A marginal increase in A/B neoplasms was also observed in female rats exposed to 0.5 mg/m3. Increases in chronic inflammation, interstitial fibrosis, and alveolar and bronchiolar hyperplasia/metaplasia and squamous metaplasia were observed in exposed male and female rats. A/B neoplasms were significantly increased in all groups of exposed mice. As with rats, increases in chronic inflammation, interstitial fibrosis, and alveolar and bronchiolar epithelial hyperplasia were observed in mice exposed to V2O5. Thus, V2O5 exposure was a pulmonary carcinogen in male rats and male and female mice. The marginal tumor response in the lungs of female rats could not be attributed conclusively to exposure to V2O5. These responses were noted at and slightly above the OSHA permissible occupational exposure limit of 0.5 mg/m3 (dust) (National Institute for Occupational Safety and Health, NIOSH Pocket Guide to Chemical Hazards, U.S. Department of Health and Human Services, Washington, DC, 1997, p. 328).  相似文献   

10.
Propylene glycol mono-t-butyl ether (PGMBE) is used as a solvent in a variety of commercial applications. Male and female F344/N rats and B6C3F(1) mice were exposed to PGMBE by whole-body inhalation for 2 or 14 weeks (0, 75, 150, 300, 600, or 1200 ppm) or 2 years (0, 75, 300, or 1200 ppm); male NBR rats were exposed for 2 weeks. The kidney and the liver were targets of PGMBE toxicity in rats. Renal lesions suggestive of alpha(2u)-globulin nephropathy were observed in male F344/N, in the 2 and 14-week studies, no kidney lesions were seen in NBR rats. In the 2-year study, male rats displayed exposure-related nonneoplastic lesions in the kidney, and may have shown marginal increases in tubular neoplasms. In the liver, the incidences of hepatocellular adenomas occurred with a positive trend in male rats, and may have been related to PGMBE exposure. In mice of both sexes, the major target of PGMBE toxicity was the liver. In the 2-week study, liver weights and in the 14-week study, liver weights and the incidences of centrilobular hypertrophy were increased. In the 2-year study, the incidences of exposure-related hepatocellular adenoma, adenoma or carcinoma combined, and hepatoblastoma occurred with a positive trend, and were significantly increased in 1200 ppm groups. In summary, exposure to PGMBE resulted in nonneoplastic lesions of the kidney characteristic of alpha(2u)-globulin nephropathy, and may have increased renal tubular neoplasms in male rats. Exposure to PGMBE also produced increases in hepatic tumors in male and female mice.  相似文献   

11.
Acute and sub-acute inhalation toxicity of germanium metal powder in rats   总被引:1,自引:0,他引:1  
An acute (4-hr) and a sub-acute (4-wk) inhalation toxicity study of germanium metal powder (purity 99.8%, mean particle size 2.0-2.4 microns) were carried out in young adult Wistar rats. Exposure of five male and five female rats to 3.86 or 5.34 g/m3 for 4 hr resulted in the death of one rat at each exposure level. Four groups of five male and five female rats were exposed to 0, 9.9, 65.1 or 251.4 mg/m3 for 6 hr/day, 5 days/wk for 30 days. Two additional (recovery) groups of five male and five female rats exposed to 0 or 251.4 mg/m3 were kept untreated for 31 days after exposure. At the end of the treatment period, fasting blood glucose was decreased in males exposed to the high concentration. In females of this group, blood creatinine and urea levels, and urine volumes were increased, but urine density was decreased. Increased blood creatinine levels and urine volume and decreased urine density were also observed in females exposed to 65.1 mg/m3. The absolute and relative lung weights were increased in rats in the mid-and high-concentration groups. Histopathological examination revealed: accumulation of particulate material in the lungs of all treated groups, accumulation of alveolar macrophages in the mid- and high-concentration groups, and alveolitis mainly in the high-concentration group. After the 4-wk recovery period, urine volume was increased in males that had been exposed to germanium. In exposed rats of both sexes, lung weights were still increased and histopathological changes were present, but to a lesser extent than at the end of the exposure period. It was concluded that the 4-hr LC50 value of germanium metal powder in rats is greater than 5.34 g/m3. The no-adverse-effect level in the 4-wk study was 9.9 mg/m3 air.  相似文献   

12.
Thirteen‐week and one‐year toxicity studies of methyl tertiary‐butyl ether (MTBE) administered in drinking water to Wistar rats were conducted. Male and female rats were exposed to MTBE in drinking water at 0.5, 3, 7.5 and 15 mg ml?1 for 13 weeks and at 0.5, 3 and 7.5 (males) or 0.5, 3 and 15 mg ml?1 (females) for 1 year. Body weights were reduced only in males following 13 weeks of exposure. Reduced water consumption and urine output were observed in males and females exposed to MTBE. Kidney cell replication and α2u‐globulin levels in males were increased at 1 and 4 weeks of MTBE exposure and tubular cell regeneration was increased in male kidneys exposed to MTBE concentrations of 7.5 mg ml?1 or greater for 13 weeks. Wet weights of male kidneys were increased following 13 weeks, 6 months and 1 year of exposure to MTBE concentrations of 7.5 mg ml?1 or greater. Kidney wet weights were increased in females at MTBE concentrations of 15 mg ml?1 for 13 weeks. Tertiary‐butyl alcohol blood levels increased linearly with dose in males and females following 1 year of exposure. Chronic progressive nephropathy (CPN), of minimal to mild severity, increased in males, but not females, with 1 year of MTBE exposure. In summary, exposure of Wistar rats to MTBE in the drinking water resulted in minimal exposure‐related effects including limited renal changes in male rats suggestive of α2u‐globulin nephropathy following 13 weeks of exposure and an exacerbation of CPN in males at the end of 1 year of exposure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
o-Benzyl-p-chlorophenol, an aryl halide biocide, was evaluatedin male and female F344/N rats and B6C3F1 mice in a series ofsubchronic and 2-year toxicity and carcinogenicity studies.Kidney was the primary target of toxicity in the 13-week gavagestudies in rats and mice, with increased nephropathy noted aslow as 240 mg/kg in male rats. Considering the nephropathy tobe dose-limiting, the chronic (2-year) study was conducted atlower doses (male rats: 30, 60, or 120 mg/kg; female rats: 60,120, or 240 mg/kg; male and female mice: 120, 240, or 480 mg/kg;in corn oil; n=50/group). Survival and body weights of dosedrats were similar to controls in the 2-year study. Survivalof high-dose male and female mice, and body weights of all dosedmale and mid- and high-dose female mice, were lower than controls.The incidence and severity of nephropathy increased with doseand length of treatment in both rats and mice. There was anincreased incidence of renal tubule adenomas or carcinomas inboth the mid- and high-dose male mice. Despite similar evidenceof nephropathy, however, there were no increased incidencesof neoplasms in female mice or in male or female rats. Thisstudy suggests therefore that while nephrotoxicity may havebeen a necessary component, factors other than the marked nephrotoxicityof o-benzyl-p-chloro-phenol were critical to the developmentof renal carcinogenesis induced in only male mice.  相似文献   

14.
Dipropylene glycol (DPG) is a component of many commercial products such as antifreeze, air fresheners, cosmetic products, solvents, and plastics. Male and female F344/N rats and B6C3F1 mice were exposed to DPG in the drinking water for 2 weeks, 3 months, or 2 years. In the 2-week and 3-month studies, rats and mice were exposed to 0, 5000, 10,000, 20,000, 40,000, or 80,000 ppm DPG. There was no mortality in the 2-week studies. In the 3-month rat study, all animals survived to the end of the study. Liver weights of rats exposed to 10,000 ppm or greater and kidney weights of rats exposed to 40,000 and 80,000 ppm were greater than those of the controls. The incidences of liver and kidney lesions were significantly increased in males exposed to 20,000 ppm or greater and females exposed to 80,000 ppm. Focal olfactory epithelial degeneration was present in all rats exposed to 80,000 ppm. In males, the incidences of testicular atrophy, epididymal hypospermia, and preputial gland atrophy were significantly increased in the 80,000 ppm group. In the 3-month mouse study, three males and one female exposed to 80,000 ppm died. Liver weights were increased, as was the incidence of centrilobular hypertrophy in males exposed to 40,000 ppm and males and females exposed to 80,000 ppm. In the 2-year studies, exposure groups were 0, 2500 (rats only), 10,000, 20,000 (mice only) or 40,000 ppm DPG. Survival of male rats exposed to 40,000 ppm and mean body weights of males and females exposed to 40,000 ppm were significantly less than controls. In male rats, exposure to DPG resulted in increased incidences and severities of nephropathy and secondary lesions in the parathyroid and forestomach. Increased incidences of focal histiocytic and focal granulomatous inflammation of the liver were also observed. In male and female rats, there were increased incidences of bile duct hyperplasia and changes in the olfactory epithelium of the nose. In mice, survival of males and females was similar to controls. Mean body weights and water consumption of males exposed to 40,000 ppm were less than that of the controls. Treatment-related nonneoplastic lesions did not occur in mice. Treatment-related neoplastic lesions did not occur in rats or mice.  相似文献   

15.
Benzophenone is used as a photoinitiator, a fragrance enhancer, an ultraviolet curing agent, and occasionally as a flavor ingredient; it is also used in the manufacture of insecticides, agricultural chemicals, and hypnotics, antihistamines, and other pharmaceuticals; and it is used as an additive in plastics, coatings, and adhesive formulations. Benzophenone was nominated for study by the National Institute of Environmental Health Sciences based on its potential for occupational and consumer exposure and the lack of long-term toxicity data. Male and female F344/N rats and B6C3F1 mice were exposed to benzophenone (greater than 99% pure) in feed for 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium, mouse bone marrow cells, and mouse peripheral blood erythrocytes. Results of 14-week toxicity studies in F344/N rats and B6C3F1 mice were reported earlier (NTP, 2000). 2-YEAR STUDY IN RATS: Groups of 50 male and 50 female rats were fed diets containing 0, 312, 625, or 1,250 ppm benzophenone (equivalent to average daily doses of approximately 15, 30, and 60 mg benzophenone/kg body weight to males and 15, 30, and 65 mg/kg to females) for 105 weeks. Survival of 1,250 ppm males was significantly less than that of controls. Mean body weights of 1,250 ppm males were markedly less than those of the controls during year 2 of the study, and weights of exposed females were consistently less than controls throughout the study. Feed consumption by 1,250 ppm males was less than that by the controls after week 70; feed consumption by 1,250 ppm females was generally less than that by the controls throughout the study. There was a positive trend in the incidences of renal tubule adenoma in males, and the incidences in 625 and 1,250 ppm males exceeded the historical control range for all routes; these neoplasms were accompanied by significantly increased incidences of renal tubule hyperplasia. Due to these findings, additional kidney sections were evaluated; results indicated additional renal tubule adenomas in all groups of males and renal tubule hyperplasia in all groups of males and females. The incidences of pelvic transitional epithelium hyperplasia and the severity of nephropathy were significantly increased in all exposed groups of male rats. Increased incidences of mononuclear cell leukemia in all exposed groups of females exceeded the historical control range from feed studies, and the incidence in 625 ppm females was significantly greater than that in the controls. Male rats exposed to 312 or 625 ppm had significantly increased incidences of mononuclear cell leukemia. One 625 ppm female and two 1,250 ppm females had histiocytic sarcomas, and the incidence in the 1,250 ppm group exceeded the range in the historical controls. Liver lesions included significantly increased incidences of hepatocytic centrilobular hypertrophy in all exposed groups of males and females, cystic degeneration in 625 and 1,250 ppm males, and bile duct hyperplasia in all exposed groups of females. Incidences of mammary gland fibroadenoma in females exposed to 625 or 1,250 ppm were lower than expected after adjusting for body weight. 2-YEAR STUDY IN MICE: Groups of 50 male and 50 female mice were fed diets containing 0, 312, 625, or 1,250 ppm benzophenone (equivalent to average daily doses of approximately 40, 80, and 160 mg/kg body weight to males and 35, 70, and 150 mg/kg to females) for 105 weeks. Survival of all exposed groups of mice was generally similar to that of the control groups. Mean body weights of exposed females were less than vehicle controls. Feed consumption by exposed males and females was similar to that by the controls. In male mice, there were significantly increased incidences of hepatocellular adenoma in the 625 and 1,250 ppm groups, and these incidences exceeded the historical control range. All hepatocellular neoplasms combined occurred with a positive trend. In female mice, the incidences of hepatocellular adenoma in the 625 and 1,250 ppm groups were higher than expected after adjusting for the lower body weights in these groups. Incidences of centrilobular hepatocyte hypertrophy were significantly increased in all exposed groups of males and females. All exposed groups of male mice had significant increases in the incidences of multinucleated hepatocytes and chronic active inflammation. The incidences of cystic degeneration of hepatocytes in 625 and 1,250 ppm males were significantly increased. The incidence of histiocytic sarcoma in 625 ppm females was significantly increased and exceeded the historical control range. The incidences of kidney nephropathy and mineralization in exposed groups of females and the severity of nephropathy in exposed groups of males were significantly increased. The incidences of metaplasia of the olfactory epithelium were significantly increased in 1,250 ppm males and females. The incidences of hyperplasia of lymphoid follicles in the spleen were significantly increased in all exposed groups of males and in 312 and 625 ppm females. GENETIC TOXICOLOGY: Benzophenone was not mutagenic in Salmonella typhimurium strains TA98, TA100, TA1535, or TA1537, with or without hamster or rat liver activation enzymes. No significant increases in the frequencies of micronucleated polychromatic erythrocytes were seen in bone marrow samples from male mice administered benzophenone three times by intraperitoneal injection. In addition, no increases in micronucleated normochromatic erythrocytes were noted in peripheral blood of male or female mice administered benzophenone for 14 weeks in dosed feed. CONCLUSIONS: Under the conditions of these 2-year studies, there was some evidence of carcinogenic activity of benzophenone in male F344/N rats based on increased incidences of renal tubule adenoma; mononuclear cell leukemia in male F344/N rats may have been related to benzophenone exposure. There was equivocal evidence of carcinogenic activity of benzophenone in female F344/N rats based on the marginally increased incidences of mononuclear cell leukemia and histiocytic sarcoma. There was some evidence of carcinogenic activity of benzophenone in male B6C3F1 mice based on increased incidences of hepatocellular neoplasms, primarily adenoma. There was some evidence of carcinogenic activity of benzophenone in female B6C3F1 mice based on increased incidences of histiocytic sarcoma; the incidences of hepatocellular adenoma in female B6C3F1 mice may have been related to benzophenone exposure. Administration of benzophenone in feed resulted in increased incidences and/or severities of nonneoplastic lesions in the kidney and liver of male and female rats and in the liver, kidney, nose, and spleen of male and female mice. Decreased incidences of mammary gland fibroadenoma in female rats were related to benzophenone exposure.  相似文献   

16.
p,pN-Dichlorodiphenyl sulfone is used as a starting material in the production of polysulfones and polyethersulfones and as a component in reactive dyes in the textile industry; it is also a by-product of pesticide production. p,pN-Dichlorodiphenyl sulfone was nominated for study by the National Cancer Institute because of its history of high production and use, the prospect of increased production and use, and the absence of adequate toxicity testing. Male and female F344/N rats and B6C3F1 mice were exposed top,pN-dichlorodiphenyl sulfone (greater than 99% pure)in feed for 14 weeks or 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium,cultured Chinese hamster ovary cells, and mouse bone marrow. 14-WEEK STUDY IN RATS: Groups of 10 male and 10 female F344/N rats were fed diets containing 0, 30, 100, 300, 1,000, or 3,000 ppm p,pN-dichlorodiphenyl sulfone (equivalent to average daily doses of approximately 2, 6, 19, 65, or 200 mgp,pN-dichlorodiphenyl sulfone/kg body weight) for 14 weeks. All rats survived until the end of the study. Mean body weights of groups exposed to 300 ppm or greater were significantly less than those of the controls. Liver weights of groups exposed to 100 ppm or greater and kidney weights of 1,000 and 3,000 ppm male rats were significantly greater than those of the controls. Centrilobular hepatocyte hypertrophy of the liver was observed in most male rats exposed to 100 ppm or greater and in all female rats exposed to 300 ppm or greater, and the severities were increased in 300 ppm males and 1,000 and 3,000 ppm males and females. The incidences of nephropathy in 1,000 and 3,000 ppm female rats were significantly increased. Dose-related increases in severity of nephropathy were observed in male rats. 14-WEEK STUDY IN MICE: Groups of 10 male and 10 female B6C3F1 mice were fed diets containing 0, 30, 100, 300, 1,000, or 3,000 ppm p,pN-dichlorodiphenyl sulfone (equivalent to average daily doses of approximately 3.5, 15, 50, 165,or 480 mg/kg) for 14 weeks. All mice survived until the end of the study. Mean body weights of groups exposed to 300 ppm or greater were significantly less than those of the controls. Liver weights of groups exposed to 300 ppm or greater were significantly increased. Centrilobular hypertrophy of the liver was observed in most males exposed to 100 ppm or greater and in all females exposed to 1,000 or 3,000 ppm, and the severities generally increased with increasing exposure concentration. 2-YEAR STUDY IN RATS: Groups of 50 male and 50 female rats were fed diets containing 0, 10 (males), 30, 100, or 300 (females) ppm p,pN-dichlorodiphenyl sulfone for 105 weeks. Dietary concentrations of 10, 30, and 100 ppm resulted in average daily doses of approximately 0.5, 1.5, and 5.0 mg/kg to males. Dietary concentrations of 30, 100,and 300 ppm resulted in average daily doses of approximately 1.6, 5.4, and 17 mg/kg to females. Additional groups of 10 male and 10 female rats were fed the same p,pN-dichlorodiphenyl sulfone-containing diets for 18 months and bled for plasma determinations of p,pN-dichlorodiphenyl sulfone at approximately 2 weeks and 3, 12, and 18 months. Survival of all exposed groups of male and female rats was similar to that of the control groups. Mean body weights of 30 and 100 ppm males were generally less than those of the controls during the latter part of the study, and mean body weights of 100 and 300 ppm female rats were less from weeks 30 and 18,respectively. Feed consumption by the exposed groups was similar to that by the controls throughout the study. The incidences of centrilobular hepatocyte hypertrophy in 100 ppm male and 100 and 300 ppm female rats were significantly greater than those in the controls. The incidences of bile duct hyperplasia and centrilobular degeneration were also significantly increased in 100 and 300 ppm females. No neoplasms were related to chemical exposure. 2-YEAR STUDY IN MICE: Groups of 50 male and 50 female mice were fed diets containing 0, 30, 100, or 300 ppm p,pN-dichlorodiphenyl sulfone for 105 to 106 weeks. Dietary concentrations of 30, 100, and 300 ppm delivered average daily doses of approximately 4, 13, and 40 mg/kg to males and approximately 3, 10, and 33 mg/kg to females. Additional groups of 10 male and 10 female mice were fed the same p,pN-dichlorodiphenyl sulfone-containing diets for up to 12 months;three mice in each group were bled for plasma determinations of p,pN-dichloro-diphenyl sulfone at approximately 2 weeks or 3 or 12 months. Survival of all exposed groups of male and female mice was similar to that of the control groups. Mean body weights of 300 ppm mice were less than those of the controls throughout most of the study. Feed consumption by the exposed groups was similar to that by the controls throughout the study. The incidences of centrilobular hepatocyte hypertrophy in all exposed groups of male mice and in 100 and 300 ppm females were significantly greater than those in the controls. The incidence of eosinophilic foci in 300 ppm females was significantly increased. No neoplasms were related to chemical exposure. PHARMACOKINETICS OF p,pN-DICHLORODIPHENYL SULFONE: p,pN-Dichlorodiphenyl sulfone is rapidly absorbed from the gut and metabolized by a saturable process. Although some p,pN-dichlorodiphenyl sulfone is eliminated unchanged in feces and urine, most of the elimination is via metabolism. Mathematical modeling of the toxicokinetics supports the view that p,pN-dichlorodiphenyl sulfone induces enzymes involved in its metabolism. GENETIC TOXICOLOGY: p,pN-Dichlorodiphenyl sulfone was not mutagenic in any of several strains of Salmonella typhimurium, with or without metabolic activation enzymes (S9). Results of the sister chromatid exchange test in cultured Chinese hamster ovary cells were judged to be negative in the presence of S9 and equivocal in the absence of S9, but no induction of chromosomal aberrations was noted, with or without S9. In contrast to the in vitro results, positive results were obtained in an acute in vivo mouse bone marrow micronucleus assay with p,pN-dichlorodiphenyl sulfone administered by intraperitoneal injection three times over a dose range of 200 to 800 mg/kg. CONCLUSIONS: Under the conditions of these 2-year feed studies, there was no evidence of carcinogenic activity* of p,pN-dichlorodiphenyl sulfone in male F344/N rats exposed to 10, 30, or 100 ppm or in female F344/N rats exposed to 30, 100, or 300 ppm. There was no evidence of carcinogenic activity of p,pN-dichlorodiphenyl sulfone in male or female B6C3F1 mice exposed to 30,100, or 300 ppm. Exposure to p,pN-dichlorodiphenyl sulfone for 2 years caused increased incidences of nonneoplastic lesions of the liver in male and female rats and mice.  相似文献   

17.
To elucidate possible mechanism(s) of carcinogenic action of tetrahydrofuran (THF) that had been demonstrated in previous inhalation studies, groups of male F344 rats and female B6C3F(1) mice were exposed to dynamic atmospheric concentrations of 0, 600, 1800, or 5400 mg/m(3) for 6 h per day, either for 5 consecutive days or for a period of 4 weeks (5 days per week). The reversibility of treatment-related changes was investigated in rats and mice exposed for 5 days and sacrificed 21 days after the last exposure. Female B6C3F(1) mice exposed to 5400 mg/m(3) showed significantly increased cytochrome P450 content, increased ethoxyresorufin-O-deethylase and pentoxyresorufin-O-depentylase activities, increased cell proliferation (5-bromo-2'-deoxyuridine-method) and an increased mitotic index in liver zones 2 (midzonal region) and 3 (central vein region). The changes were found to be reversible after a 3-week treatment-free period (cell proliferation examined, only). Male F344 rats showed dose-related alpha2u-globulin (alpha2u) accumulation in the renal cortex after 5 or 20 exposures, and there were no signs of reversal after a 3-week treatment-free period. After 20 exposures at 5400 mg/m(3), the alpha2u accumulation was found to be associated with increased cell proliferation in "hot spots" of the renal cortex and increased apoptosis. Increased cell proliferation was also detected after 20 exposures at 1800 mg/m(3). There were no effects at 600 mg/m(3). It is concluded that THF enhances tumor formation in male rat kidney and female mouse liver via induction of cell proliferation. These features present essential elements that should be taken into account for the carcinogenic risk assessment of THF.  相似文献   

18.
This study was conducted to evaluate the subchronic toxicityof 4-vinylcyclohexene (VCH). Male and female Sprague–Dawleyrats and B6C3F1 mice were exposed by inhalation to VCH 6 hr/day, 5 days/week for 13 weeks. Rats were exposed to 0, 250,1000, or 1500 ppm, and mice were exposed to 0, 50, 250, or 1000ppm. In addition, another group of rats and mice was exposedto 1000 ppm butadiene so that a comparison could be made betweenthe two compounds. Exposure to 1000 ppm VCH resulted in deathsof all male mice and 5/10 female mice on Test Days 11 or 12.Three additional female mice exposed to 1000 ppm VCH died priorto study completion. The most notable compound-related clinicalsign was lethargy observed in the 1500 ppm VCH-exposed ratsand 1000 ppm VCH-exposed mice. Male rats exposed to 1500 ppmVCH had significantly lower body weights compared to controls,and male and female rats in the 1500 ppm group had signifi cantlylower body weight gains. None of the VCH-exposed animals orbutadiene-exposed rats showed any compound-related hemato logicaleffects. However, mice exposed to 1000 ppm butadiene exhibitedmild macrocytic anemia. Clinical chemistry evaluation and urinalysisshowed no compound-related effects in rats exposed to eitherVCH or butadiene. Male and female rats exposed to 1000 or 1500ppm VCH or 1000 ppm butadiene had increased absolute and/orrelative liver weights, and male rats in these same exposuregroups had increased relative kidney weights. Microscopically,in creased accumulation of hyaline droplets was observed inthe kid neys of male rats from all VCH exposure groups. Althoughcompound–related, the droplets were not accompanied bycytotoxicity. In mice, the most notable adverse histopathologicaleffect was ovarian atrophy in females exposed to 1000 ppm VCHor 1000 ppm butadiene. The atrophy was slightly more severein the VCH exposed females than in the butadiene–exposedfemales. There were no other compound–related pathologicaleffects in male or female mice exposed to VCH. Additionally,butadiene–exposed male mice had decreased testicular weights,accompanied by slight testicular degeneration and atrophy. ForVCH exposure, the no–observed-adverse–effect–levelis 1000 ppm for rats based on leth argy and lowered body weightsand 250 ppm for mice based on mortality and ovarian atrophy.  相似文献   

19.
The 1990 Clean Air Act Amendments require that oxygenates be added to automotive fuels to reduce emissions of carbon monoxide and hydrocarbons. One potential oxygenate is the aliphatic ether ethyl tertiary butyl ether (ETBE). Our objective was to provide data on the potential toxic effects of ETBE. Male and female Fisher 344 rats and CD-1 mice were exposed to 0 (control), 500, 1750, or 5000 ppm of ETBE for 6 h/day and 5 days/wk over a 13-week period. ETBE exposure had no effect on mortality and body weight with the exception of an increase in body weights of the female rats in the 5000-ppm group. No major changes in clinical pathology parameters were noted for either rats or mice exposed to ETBE for 6 (rats only) or 13 weeks. Liver weights increased with increasing ETBE-exposure concentration for both sexes of rats and mice. Increases in kidney, adrenal, and heart (females only) weights were noted in rats. Degenerative changes in testicular seminiferous tubules were observed in male rats exposed to 1750 and 5000 ppm but were not seen in mice. This testicular lesion has not been reported previously for aliphatic ethers. Increases in the incidence of regenerative foci, rates of renal cell proliferation, and alpha2u-globulin containing protein droplets were noted in the kidneys of all treated male rats. These lesions are associated with the male rat-specific syndrome of alpha2u-globulin nephropathy. Increases in the incidence of centrilobular hepatocyte hypertrophy and rates of hepatocyte cell proliferation were seen in the livers of male and female mice in the 5000-ppm group, consistent with a mitogenic response to ETBE. These two target organs for ETBE toxicity, mouse liver and male rat kidney, have also been reported for methyl tertiary butyl ether and unleaded gasoline.  相似文献   

20.
alpha-Methylstyrene (AMS) is a chemical intermediate used in the synthesis of specialty polymers and copolymers. Inhalation studies of AMS were conducted because of the lack of toxicity data and the structural similarity of AMS to styrene, a toxic and potentially carcinogenic chemical. Male and female B6C3F1 mice were exposed to 0, 600, 800, or 1000 ppm AMS 6 h/day, 5 days/week, for 12 days. After 1 exposure, 21% (5/24) of female mice were found dead in the 1000-ppm group, 56% (10/18) in the 800-ppm group, and 6% (1/18) in the 600-ppm concentration group. After 12 exposures, relative liver weights were significantly increased and relative spleen weights were significantly decreased in both male and female mice at all concentrations. No microscopic treatment-related lesions were observed. A decrease in hepatic glutathione (GSH) was associated with AMS exposure for 1 and 5 days. Male and female F344 rats were exposed to 0, 600 or 1000 ppm AMS for 12 days. No mortality or sedation occurred in AMS-exposed rats. Relative liver weights were significantly increased in both males and females after 12 exposures to 600 or 1000 ppm. An increased hyaline droplet accumulation was detected in male rats in both concentration groups; no significant microscopic lesions were observed in other tissues examined. Exposure of male and female F344 rats and male NBR rats to 0, 125, 250 or 500 ppm AMS, 6 h/day for 9 days resulted in increased accumulation of hyaline droplets in the renal tubules of male F344 rats in the 250 and 500 ppm concentration groups. Although AMS and styrene are structurally very similar, AMS was considerably less toxic for mice and more toxic for male rats than styrene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号