首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose  

Extraction and enhancement of tubular structures are important in image processing applications, especially in the analysis of liver CT scans where delineation of vascular structures is needed for surgical planning. Portal vein cross-sections have circular or elliptical shapes, so an algorithm must accommodate both. A vessel segmentation method based on medial-axis points was developed and tested on portal veins in CT images.  相似文献   

2.

Purpose  

Prostate volume estimation from segmentation of transrectal ultrasound (TRUS) images aids in diagnosis and treatment of prostate hypertrophy and cancer. Computer-aided accurate and computationally efficient prostate segmentation in TRUS images is a challenging task, owing to low signal-to-noise ratio, speckle noise, calcifications, and heterogeneous intensity distribution in the prostate region.  相似文献   

3.

Purpose  

Segmenting the cardiac ventricles in magnetic resonance (MR) images is required for cardiac function assessment. Numerous segmentation methods have been developed and applied to MR ventriculography. Quantitative validation of these segmentation methods with ground truth is needed prior to clinical use, but requires manual delineation of hundreds of images. We applied a well-established method to this problem and rigorously validated the results.  相似文献   

4.

Purpose  

Segmentation of facial soft tissues is required for surgical planning and evaluation, but this is laborious using manual methods and has been difficult to achieve with digital segmentation methods. A new automatic 3D segmentation method for facial soft tissues in magnetic resonance imaging (MRI) images was designed, implemented, and tested.  相似文献   

5.

Purpose  

A cost-sensitive extension of AdaBoost based on Markov random field (MRF) priors was developed to train an ensemble segmentation process which can avoid irregular shape, isolated points and holes, leading to lower error rate. The method was applied to breast tumor segmentation in ultrasonic images.  相似文献   

6.

Purpose  

The purpose of the study is to develop an algorithm for the segmentation of renal calculi on ureteroscopic images. In fact, renal calculi are common source of urological obstruction, and laser lithotripsy during ureteroscopy is a possible therapy. A laser-based system to sweep the calculus surface and vaporize it was developed to automate a very tedious manual task. The distal tip of the ureteroscope is directed using image guidance, and this operation is not possible without an efficient segmentation of renal calculi on the ureteroscopic images.  相似文献   

7.

Purpose  

This paper proposes a new image segmentation technique for identifying nasopharyngeal tumor regions in CT images. The technique is modified from the seeded region growing (SRG) approach that is simple but sensitive to image intensity of the initial seed.  相似文献   

8.

Purpose  

Hypodense liver lesions are commonly detected in CT, so their segmentation and characterization are essential for diagnosis and treatment. Methods for automatic detection and segmentation of liver lesions were developed to support this task.  相似文献   

9.

Purpose  

A fast and robust algorithm was developed for automatic segmentation of the left ventricular endocardial boundary in echocardiographic images. The method was applied to calculate left ventricular volume and ejection fraction estimation.  相似文献   

10.

Purpose

Patient-specific models of anatomical structures and pathologies generated from volumetric medical images play an increasingly central role in many aspects of patient care. A key task in generating these models is the segmentation of anatomical structures and pathologies of interest. Although numerous segmentation methods are available, they often produce erroneous delineations that require time-consuming modifications.

Methods

   We present a new geometry-based algorithm for the reliable detection and correction of segmentation errors in volumetric medical images. The method is applicable to anatomical structures consisting of a few 3D star-shaped components. First, it detects segmentation errors by casting rays from the initial segmentation interior to its outer surface. It then classifies the segmentation surface into correct and erroneous regions by minimizing an energy functional that incorporates first- and second-order properties of the rays lengths. Finally, it corrects the segmentation errors by computing new locations for the erroneous surface points by Laplace deformation so that the new surface has maximum smoothness with respect to the rays-length gradient magnitude.

Results

   Our evaluation on initial segmentations of 16 abdominal aortic aneurysm and 12 lung tumors in CT scans obtained by both adaptive region-growing and active contours level-set segmentation improved the volumetric overlap error by 66 and 70.5 % respectively, with respect to the ground-truth.

Conclusions

   The advantages of our method are that it is independent of the initial segmentation algorithm that covers a variety of anatomical structures and pathologies, that it does not require a shape prior, and that it requires minimal user interaction.
  相似文献   

11.

Purpose

Since pre-processing and initial segmentation steps in medical images directly affect the final segmentation results of the regions of interesting, an automatic segmentation method of a parameter-adaptive pulse-coupled neural network is proposed to integrate the above-mentioned two segmentation steps into one. This method has a low computational complexity for different kinds of medical images and has a high segmentation precision.

Methods

The method comprises four steps. Firstly, an optimal histogram threshold is used to determine the parameter \(\alpha \) for different kinds of images. Secondly, we acquire the parameter \(\beta \) according to a simplified pulse-coupled neural network (SPCNN). Thirdly, we redefine the parameter V of the SPCNN model by sub-intensity distribution range of firing pixels. Fourthly, we add an offset \(A\times S_{\mathrm{off}}\) to improve initial segmentation precision.

Results

Compared with the state-of-the-art algorithms, the new method achieves a comparable performance by the experimental results from ultrasound images of the gallbladder and gallstones, magnetic resonance images of the left ventricle, and mammogram images of the left and the right breast, presenting the overall metric UM of 0.9845, CM of 0.8142, TM of 0.0726.

Conclusion

The algorithm has a great potential to achieve the pre-processing and initial segmentation steps in various medical images. This is a premise for assisting physicians to detect and diagnose clinical cases.
  相似文献   

12.

Purpose

   Abnormalities of aortic surface and aortic diameter can be related to cardiovascular disease and aortic aneurysm. Computer-based aortic segmentation and measurement may aid physicians in related disease diagnosis. This paper presents a fully automated algorithm for aorta segmentation in low-dose non-contrast CT images.

Methods

   The original non-contrast CT scan images as well as their pre-computed anatomy label maps are used to locate the aorta and identify its surface. First a seed point is located inside the aortic lumen. Then, a cylindrical model is progressively fitted to the 3D image space to track the aorta centerline. Finally, the aortic surface is located based on image intensity information. This algorithm has been trained and tested on 359 low-dose non-contrast CT images from VIA-ELCAP and LIDC public image databases. Twenty images were used for training to obtain the optimal set of parameters, while the remaining images were used for testing. The segmentation result has been evaluated both qualitatively and quantitatively. Sixty representative testing images were used to establish a partial ground truth by manual marking on several axial image slices.

Results

   Compared to ground truth marking, the segmentation result had a mean Dice Similarity Coefficient of 0.933 (maximum 0.963 and minimum 0.907). The average boundary distance between manual segmentation and automatic segmentation was 1.39 mm with a maximum of 1.79 mm and a minimum of 0.83 mm.

Conclusion

   Both qualitative and quantitative evaluations have shown that the presented algorithm is able to accurately segment the aorta in low-dose non-contrast CT images.  相似文献   

13.

Purpose

In the current standard of care, real-time transrectal ultrasound (TRUS) is commonly used for prostate brachytherapy guidance. As TRUS provides limited soft tissue contrast, segmenting the prostate gland in TRUS images is often challenging and subject to inter-observer and intra-observer variability, especially at the base and apex where the gland boundary is hard to define. Magnetic resonance imaging (MRI) has higher soft tissue contrast allowing the prostate to be contoured easily. In this paper, we aim to show that prostate segmentation in TRUS images informed by MRI priors can improve on prostate segmentation that relies only on TRUS images.

Methods

First, we compare the TRUS-based prostate segmentation used in the treatment of 598 patients with a high-quality MRI prostate atlas and observe inconsistencies at the apex and base. Second, motivated by this finding, we propose an alternative TRUS segmentation technique that is fully automatic and uses MRI priors. The algorithm uses a convolutional neural network to segment the prostate in TRUS images at mid-gland, where the gland boundary can be clearly seen. It then reconstructs the gland boundary at the apex and base with the aid of a statistical shape model built from an MRI atlas of 78 patients.

Results

Compared to the clinical TRUS segmentation, our method achieves similar mid-gland segmentation results in the 598-patient database. For the seven patients who had both TRUS and MRI, our method achieved more accurate segmentation of the base and apex with the MRI segmentation used as ground truth.

Conclusion

Our results suggest that utilizing MRI priors in TRUS prostate segmentation could potentially improve the performance at base and apex.
  相似文献   

14.

Purpose

In prostate brachytherapy, intraoperative dosimetry would allow for evaluation of the implant quality while the patient is still in treatment position. Such a mechanism, however, requires 3-D visualization of the deposited seeds relative to the prostate. It follows that accurate and robust seed segmentation is of critical importance in achieving intraoperative dosimetry.

Methods

Implanted iodine brachytherapy seeds are segmented via a region-based implicit active contour model. Overlapping seed groups are then resolved using a template-based declustering technique.

Results

Ground truth seed coordinates were obtained through manual segmentation. A total of 57 clinical C-arm images from 10 patients were used to validate the proposed algorithm. This resulted in two failed images and a 96.0% automatic detection rate with a corresponding 2.2% false-positive rate in the remaining 55 images. The mean centroid error between the manual and automatic segmentations was 1.2 pixels.

Conclusions

Robust and accurate iodine seed segmentation can be achieved through the proposed segmentation workflow.  相似文献   

15.

Purpose

Breast cancer is the most common form of cancer among women worldwide. Ultrasound imaging is one of the most frequently used diagnostic tools to detect and classify abnormalities of the breast. Recently, computer-aided diagnosis (CAD) systems using ultrasound images have been developed to help radiologists to increase diagnosis accuracy. However, accurate ultrasound image segmentation remains a challenging problem due to various ultrasound artifacts. In this paper, we investigate approaches developed for breast ultrasound (BUS) image segmentation.

Methods

In this paper, we reviewed the literature on the segmentation of BUS images according to the techniques adopted, especially over the past 10 years. By dividing into seven classes (i.e., thresholding-based, clustering-based, watershed-based, graph-based, active contour model, Markov random field and neural network), we have introduced corresponding techniques and representative papers accordingly.

Results

We have summarized and compared many techniques on BUS image segmentation and found that all these techniques have their own pros and cons. However, BUS image segmentation is still an open and challenging problem due to various ultrasound artifacts introduced in the process of imaging, including high speckle noise, low contrast, blurry boundaries, low signal-to-noise ratio and intensity inhomogeneity

Conclusions

To the best of our knowledge, this is the first comprehensive review of the approaches developed for segmentation of BUS images. With most techniques involved, this paper will be useful and helpful for researchers working on segmentation of ultrasound images, and for BUS CAD system developers.
  相似文献   

16.

Purpose

Patient-specific quantitative assessments of muscle mass and biomechanical musculoskeletal simulations require segmentation of the muscles from medical images. The objective of this work is to automate muscle segmentation from CT data of the hip and thigh.

Method

We propose a hierarchical multi-atlas method in which each hierarchy includes spatial normalization using simpler pre-segmented structures in order to reduce the inter-patient variability of more complex target structures.

Results

The proposed hierarchical method was evaluated with 19 muscles from 20 CT images of the hip and thigh using the manual segmentation by expert orthopedic surgeons as ground truth. The average symmetric surface distance was significantly reduced in the proposed method (1.53 mm) in comparison with the conventional method (2.65 mm).

Conclusion

We demonstrated that the proposed hierarchical multi-atlas method improved the accuracy of muscle segmentation from CT images, in which large inter-patient variability and insufficient contrast were involved.
  相似文献   

17.

Objective

The segmentation of ultrasound (US) images is useful for several applications in computer aided interventions including the registration of pre-operative CT or MRI to intra-operative US. Shadowing, intensity inhomogeneity and speckle are the common effects on US images. They render the segmentation algorithms developed for other modalities inappropriate due to poor robustness. We present a novel method for classification of hepatic structures including vasculature and liver parenchyma on US images.

Methods

The method considers B-mode US images as a dynamic texture. The dynamics of each pixel are modelled as an auto regressive (AR) process perturbed with Gaussian noise. The linear coefficients and noise variance are estimated pixel-wise using Neumaier and Schneider’s algorithm. Together with mean intensity they comprise a parametric space in which classification (maximum a posteriori or K-nearest neighbour) of each pixel is performed. We emphasize the novelty of studying dynamics rather than static features such as intensity in the segmentation of various structures.

Results

We assessed the automatic segmentations of ten US sequences using Dice Similarity Coefficients. The algorithm’s capability of vessel extraction was tested on three sequences where Doppler US failed to capture vasculature.

Conclusion

The modelling of image dynamics with AR process combined with MAP classifier produced robust segmentation results indicating that the method has a good potential for intra-operative use.  相似文献   

18.

Purpose

A framework for radiographic image segmentation under topological control based on two-dimensional (2D) image analysis was developed. The system is intended for use in common radiological tasks including fracture treatment analysis, osteoarthritis diagnostics and osteotomy management planning.

Methods

The segmentation framework utilizes a generic three-dimensional (3D) model of the bone of interest to define the anatomical topology. Non-rigid registration is performed between the projected contours of the generic 3D model and extracted edges of the X-ray image to achieve the segmentation. For fractured bones, the segmentation requires an additional step where a region-based active contours curve evolution is performed with a level set Mumford–Shah method to obtain the fracture surface edge. The application of the segmentation framework to analysis of human femur radiographs was evaluated. The proposed system has two major innovations. First, definition of the topological constraints does not require a statistical learning process, so the method is generally applicable to a variety of bony anatomy segmentation problems. Second, the methodology is able to handle both intact and fractured bone segmentation.

Results

Testing on clinical X-ray images yielded an average root mean squared distance (between the automatically segmented femur contour and the manual segmented ground truth) of 1.10 mm with a standard deviation of 0.13 mm. The proposed point correspondence estimation algorithm was benchmarked against three state-of-the-art point matching algorithms, demonstrating successful non-rigid registration for the cases of interest.

Conclusions

A topologically constrained automatic bone contour segmentation framework was developed and tested, providing robustness to noise, outliers, deformations and occlusions.  相似文献   

19.

Purpose  

We propose an automated pancreas segmentation algorithm from contrast-enhanced multiphase computed tomography (CT) and verify its effectiveness in segmentation.  相似文献   

20.

Purpose

The aim of this study is to introduce a fully automatic and reproducible short echo-time (STE) magnetic resonance imaging (MRI) segmentation approach for MR-based attenuation correction of positron emission tomography (PET) data in head region.

Procedures

Single STE-MR imaging was followed by generating attenuation correction maps (μ-maps) through exploiting an automated clustering-based level-set segmentation approach to classify head images into three regions of cortical bone, air, and soft tissue. Quantitative assessment was performed by comparing the STE-derived region classes with the corresponding regions extracted from X-ray computed tomography (CT) images.

Results

The proposed segmentation method returned accuracy and specificity values of over 90 % for cortical bone, air, and soft tissue regions. The MR- and CT-derived μ-maps were compared by quantitative histogram analysis.

Conclusions

The results suggest that the proposed automated segmentation approach can reliably discriminate bony structures from the proximal air and soft tissue in single STE-MR images, which is suitable for generating MR-based μ-maps for attenuation correction of PET data.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号