首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The effect of enzyme-inhibiting adjuvants on L-DOPA + benserazide-induced contralateral turning in unilateral 6-hydroxydopamine (6-OHDA)-lesioned rats was studied. Both the number of turns and the duration of turning were examined. Inhibition of MAO-A with 10mg/kg Ro 41–1049 increased both parameters; inhibition of COMT with 10mg/kg Ro 40–7592 had a similar effect. In contrast, inhibition of MAO-B with 10mg/kg Ro 19–6327 did not change turning behavior. A further potentiation of turning behavior was observed after the combined administration of both the MAO-A and COMT inhibitor. MAO-A inhibition in conjunction with MAO-B inhibition prolonged the duration of L-DOPA-induced turning but had no effect on the number of turns. However, in conjunction with COMT inhibition, 10mg/kg of the MAO-B inhibitor, Ro 19–6327, significantly affected both the number and duration of turning behavior. An even further potentiation of turning behavior was observed after the combined administration of all three enzyme-inhibitors.Deceased  相似文献   

2.
Intra- and extra-synaptosomal activity of monoamine oxidase-A (MAO-A) and -B (MAO-B), dopamine (DA) and its main metabolites were examined to clarify the mechanism of action(s) of p-hydroxyamphetamine (p-OHA) in animal behaviour mediated by central dopaminergic systems. Intrasynaptosomal DA was oxidized by MAO-A and MAO-B and this oxidation is inhibited by p-OHA. The inhibition is due to two effects: 1) uptake of DA is inhibited by p-OHA, and 2) p-OHA also inhibits intrasynaptosomal oxidation of DA by MAO-A and MAO-B. The inhibition of oxidation by MAO-A is predominant. Administration (ICV) of 80 and 160 micrograms p-OHA to mice, doses that cause various behavioural, significantly reduced striatal DA and 3,4-dihydroxyphenylacetic acid (DOPAC) levels, but greatly increased 3-methoxytyramine, without significantly changing homovanillic acid (HVA). The release of DA and blockade of DA uptake into dopaminergic neurons by p-OHA, together with preferential inhibition of the DA metabolizing enzyme, MAO-A, may contribute to p-OHA-induced behaviour mediated by the central dopaminergic systems.  相似文献   

3.
In neurodegenerative diseases, including Parkinson's and Alzheimer's diseases, apoptosis is a common type of cell death, and mitochondria emerge as the major organelle to initiate death cascade. Monoamine oxidase (MAO) in the mitochondrial outer membrane produces hydrogen peroxide by oxidation of monoamine substrates, and induces oxidative stress resulting in neuronal degeneration. On the other hand, a series of inhibitors of type B MAO (MAO-B) protect neurons from cell death. These results suggest that MAO may be involved in the cell death process initiated in mitochondria. However, the direct involvement of MAO in the apoptotic signaling has been scarcely reported. In this paper, we present our recent results on the role of MAO in activating and regulating cell death processing in mitochondria. Type A MAO (MAO-A) was found to bind an endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol, and induce apoptosis in dopaminergic SH-SY5Y cells containing only MAO-A. To examine the intervention of MAO-B in apoptotic process, human MAO-B cDNA was transfected to SH-SY5Y cells, but the sensitivity to N-methyl(R)salsolinol was not affected, even though the activity and protein of MAO-B were expressed markedly. MAO-B oxidized dopamine with production of hydrogen peroxide, whereas in control cells expressing only MAO-A, dopamine autoxidation produced superoxide and dopamine-quinone, and induced mitochondrial permeability transition and apoptosis. Rasagiline and other MAO-B inhibitors prevent the activation of apoptotic cascade and induce prosurvival genes, such as bcl-2 and glial cell line-derived neurotrophic factor, in MAO-A-containing cells. These results demonstrate a novel function of MAO-A in the induction and regulation of apoptosis. Future studies will clarify more detailed mechanism behind regulation of mitochondrial death signaling by MAO-A, and bring out new strategies to cure or ameliorate the decline of neurons in neurodegenerative disorders.  相似文献   

4.
Summary Utilizing the cerebral microdialysis technique, we have compared in vivo the effects of selective MAO-A, MAO-B, and nonselective MAO inhibitors on striatal extracellular levels of dopamine (DA) and DA metabolites (DOPAC and HVA). The measurements were made in rats both under basal conditions and following L-DOPA administration. Extracellular levels of dopamine were enhanced and DA metabolite levels strongly inhibited both under basal conditions and following L-DOPA administration by pretreatment with the nonselective MAO inhibitor pargyline and the MAO-A selective inhibitors clorgyline and Ro 41-1049. The MAO-B inhibitor deprenyl had no effect on basal DA, HVA, or DOPAC levels. Nervertheless, deprenyl significantly increased DA and decreased DOPAC levels following exogenous L-DOPA administration, a finding compatible with a significant glial metabolism of DA formed from exogenous L-DOPA. We conclude that DA metabolism underbasal conditions is primarily mediated by MAO-A. In contrast, both MAO-A and MAO-B mediate DA formation when L-DOPA is administered exogenously. The efficacy of newer, reversible agents which lack the cheese effect such as Ro 41-1049 are comparable to the irreversible MAO-A inhibitor clorgyline. The possible relevance of these findings for the treatment of Parkinson's disease is discussed.  相似文献   

5.
We have previously shown that subordination causes a reduction in the levels of 5-hydroxytryptamine and dopamine selectively in the frontal cortex [6]. These monoamines are catabolised mainly by the enzyme monoamine oxidase (MAO) which exists in two isoforms. MAO-A and MAO-B. The present study was carried out to determine whether there is any change in the activity of these two iso-enzymes induced by subordination and if any such alteration is confined to the frontal cortex. The animal model of dominance-subordination used was a worker-parasite paradigm in male Wistar rats. The enzyme activities were measured in five brain regions, the frontal cortex, entorhinal cortex, hippocampus, hypothalamus and striatum, using kynuramine as the substrate. Clorgyline and -deprenyl were used in vitro to block the activities of MAO-A and MAO-B, respectively. There was a significant (P < 0.001) reduction in the activity of MAO-A as well as MAO-B selectively in the frontal cortex of the subordinate animals. This finding may suggest a reduced neurotransmitter turnover in the serotonergic and dopaminergic neurons terminating in the frontal cortex.  相似文献   

6.
Patients with Parkinson’s disease receive selective irreversible monoamine oxidase (MAO)-B inhibitors, but their effects on MAO-A activity are not known during long-term application. We determined MAO-A inhibition in plasma samples from patients with MAO-B inhibitor intake or without MAO-B inhibitor treatment and from healthy controls. We detected a 70 % reduction of MAO-A activity in patients with MAO-B inhibitor therapy in comparison to the other groups. Our results suggest that treatment with MAO-B inhibitor may also influence MAO-A activity in vivo, when administered daily.  相似文献   

7.
Summary Two individuals with an X-chromosomal deletion were recently found to lack the genes encoding monoamine oxidase type A (MAO-A) and MAO-B. This abnormality was associated with almost total (90%) reductions in the oxidatively deaminated urinary metabolites of the MAO-A substrate, norepinephrine, and with marked (100-fold) increases in an MAO-B substrate, phenylethylamine, confirming systemic functional consequences of the genetic enzyme deficiency. However, urinary concentrations of the deaminated metabolites of dopamine and serotonin (5-HT) were essentially normal. To investigate other deaminating systems besides MAO-A and MAO-B that might produce these metabolites of dopamine and 5-HT, we examined plasma amine oxidase (AO) activity in these two patients and two additional patients with the same X-chromosomal deletion. Normal plasma AO activity was found in all four Norrie disease-deletion patients, in four patients with classic Norrie disease without a chromosomal deletion, and in family members of patients from both groups. Marked plasma amine metabolite abnormalities and essentially absent platelet MAO-B activity were found in all four Norrie disease-deletion patients, but in none of the other subjects in the two comparison groups. These results indicate that plasma AO is encoded by gene(s) independent of those for MAO-A and MAO-B, and raise the possibility that plasma AO, and perhaps the closely related tissue AO, benzylamine oxidase, as well as other atypical AOs or MAOs encoded independently from MAO-A and MAO-B may contribute to the oxidative deamination of dopamine and 5-HT in humans.  相似文献   

8.
Monoamine oxidases A and B gene polymorphisms in migraine patients   总被引:3,自引:0,他引:3  
Abnormal cortical activity and brainstem functioning are considered the possible etiopathogenetic factors of migraine. Monoamine oxidase A and B (MAO-A and -B) regulate the levels of monoamine neurotransmitters, so changes in their activity could participate in migraine pathogenesis. We have investigated the possible association of MAO-A and -B alleles and haplotypes with two common types of migraine, i.e. migraine without aura (MO) and migraine with aura (MA), on the sample of 110 migraineours (80 MO and 30 MA) and 150 controls. MAO-A promoter and MAO-B intron 13 polymorphisms were genotyped by the PCR-based methods. In addition, we have reevaluated the reported association between MAO-B intron 13 polymorphism and platelet MAO-B activity. The platelet MAO-B activity was determined fluorimetrically using kynuramine as a substrate. We have found a tendency toward association of the shorter variant of MAO-A gene promoter with migraine without aura in male subjects. Regarding investigated MAO-B polymorphism, no association with migraine or with platelet MAO-B activity was found. The suggestive association of the variant in MAO-A gene with migraine is considered worthy of independent replication. On the other hand, further studies on MAO-B polymorphism in migraine do not seem promising.  相似文献   

9.
Specificity of antisera prepared against pure bovine MAO-B   总被引:10,自引:0,他引:10  
Antisera have been prepared against purified bovine MAO-B that appear to react selectively with MAO-B and not MAO-A, Rabbit and mouse antisera indirectly immune precipitated [125I]bovine MAO-B using inactivated Staphylococcus aureus cells, and binding of antibodies to bovine and rat MAO-B did not inhibit enzyme activity. Two continuous rat cell lines, hepatoma line MH1C1 and glioma line C6, were used to elucidate the specificity of the antisera. MH1C1 cells, which express both MAO-A and MAO-B, showed immune-specific staining with rabbit antiserum, and staining was blocked with pure MAO-B. Further, MAO-B activity and [3H]pargyline-labeled MAO molecules could be immune precipitated from solubilized mitochondrial preparations of MH1C1 cells; and immune fixation of mitochondrial proteins following SDS polyacrylamide gel electrophoresis (SDS-PAGE) revealed staining of the MAO-B, but not of the MAO-A, flavin-containing subunit. In contrast, no immune-specific immunocytochemical staining was observed in C6 cells, which have only MAO-A activity; no MAO-A activity or [3H]pargyline-labeled MAO could be immune precipitated from solubilized mitochondrial preparations of these cells, and no stained bands were observed for mitochondrial proteins resolved by SDS-PAGE and processed for immune fixation. Further support for the selectivity of this antiserum for MAO-B comes from immunocytochemical staining of rat tissues which express varying amounts of MAO-A and MAO-B activities. Hypothalamus and liver, with high levels of MAO-A and MAO-B activities showed a large number of immunoreactive cells, whereas spleen, heart and superior cervical ganglia, with high MAO-A and low MAO-B activities showed only a few or no stained cells. Catecholamine neurons in the substantia nigra, thought to contain MAO-A, did not show immune-specific staining. Skeletal muscle cells with low MAO-A and MAO-B activities did not stain. These studies provide additional evidence that MAO-A and MAO-B are distinct molecules, differentially expressed in different cell types.  相似文献   

10.
Production of hydrogen peroxide as a by-product of the breakdown of catecholamines by the enzyme monoamine oxidase (MAO) has been hypothesized to contribute to the increased proclivity of dopaminergic neurons for oxidative injury. We established clonal dopaminergic PC12 cell lines which have elevated MAO activity levels resulting from transgenic expression of the B isoform of the enzyme. Both MAO-A and MAO-B have relatively equivalent affinities for dopamine, and since PC12 primarily express the A and not the B form of the enzyme, this allowed us to distinguish the transgenic MAO activity in these cells from endogenous using the MAO-B specific substrate PEA. Elevation of MAO activity levels in the MAO-B+ cells resulted in higher levels of both free radicals and free radical damage compared with controls. In addition, increased MAO-B levels within PC12 cells caused a dose-dependent increase in sensitivity to the toxin MPTP. Our data suggests that oxidation of catecholamines by MAO can contribute to free radical damage in catecholaminergic neurons and that the low MAO-B activity levels found endogenously in these cells likely accounts for their relative resistance to MPTP toxicity. © 1996 Wiley-Liss, Inc.  相似文献   

11.
12.
Nagatsu T 《Neurotoxicology》2004,25(1-2):11-20
Monoamine oxidase (MAO) is an enzyme that oxidizes various physiologically and pathologically important monoamine neurotransmitters and hormones such as dopamine, noradrenaline, adrenaline, and serotonin. Two types of MAO, i.e. type A (MAO-A) and type B (MAO-B), were first discovered pharmacologically. MAO-A is inhibited by clorgyline; and MAO-B, by deprenyl. cDNAs MAO-A and MAO-B were cloned and their structures determined. MAO-A and MAO-B are made of similar but different polypeptides and encoded by different nuclear genes located on the X chromosome (Xp11.23). MAO-A and MAO-B genes consist of 15 exons with identical intron-exon organization, suggesting that they were derived from a common ancestral gene. Both enzymes require a flavin cofactor, flavin adenine dinucleotide (FAD), which binds to the cysteine residue of a pentapeptide sequence (Ser-Gly-Gly-Cys-Tyr). Both enzymes exist on the outer membrane of mitochondria of various types of cells in various tissues including the brain. In humans, MAO-A is abundant in the brain and liver, whereas the liver, lungs and intestine are rich in MAO-B. MAO-A oxidizes noradrenaline and serotonin; and MAO-B, mainly beta-phenylethylamine. In the human brain, MAO-A exists in catecholaminergic neurons, but MAO-B is found in serotonergic neurons and glial cells. MAO-A knockout mice exhibit increased serotonin levels and aggressive behavior, whereas MAO-B knockout mice show little behavioral change. The gene knockout mice of MAO-A or MAO-B, together with the observation that some humans lack MAO-A, MAO-B, or both have contributed to our understanding of the function of MAO-A and MAO-B in health and disease. MAO-A and MAO-B may be closely related to various neuropsychiatric disorders such as depression and Parkinson's disease, and inhibitors of them are the subject of drug development for such diseases.  相似文献   

13.
14.
Catecholamines and other biogenic amines may play a role in early embryogenesis in addition to functioning as neurotransmitters after neuronal differentiation. Regulation of amine levels is mediated by several different parameters including activity levels of degradative enzymes. Since monoamine oxidase (EC 1.4.3.4) is the primary degradative enzyme for these biogenic amines, we have begun to characterize MAO activity during quail embryogenesis. Our results demonstrate that MAO activity is present at all stages of development examined (stages 2–22) and that the MAO specific activity levels are highest during the earliest stages (stages 2–6). Two types of MAO activity similar to adult avian and mammalian MAO-A and MAO-B have been demonstrated by differential clorgyline sensitivity of tryptamine deamination. In addition, SDS-PAGE of embryonic quail [3H]pargyiine-labeled MAO demonstrates that the quail MAO-A and MAO-B flavin-containing subunits have apparent molecular weights of 63,000 and 62,000 respectively.We have begun to assess the functional significance of embryonic quail MAO activity by daily injection of MAO inhibitors (clorgyline or clorgyline plus deprenyl) into fertilized eggs. Clorgyline injection selectively and completely inhibited MAO-A activity, while injection of clorgyline and deprenyl inhibited both MAO-A and MAO-B activities when embryos were assayed after either 2 or 7 days of embryonic development. This paradigm will allow a detailed examination of the effects of MAO inhibition on the developing embryo.  相似文献   

15.
Incubation of rat brain mitochondria with ubiquitin followed by mitochondria sedimentation was accompanied by reduction of ubiquitin content in the supernatant only when ATP was included into the incubation mixture. Subsequent incubation of resedimented mitochondria revealed higher sensitivity to trypsin of MAO-A in ubiquitin-incorporated mitochondria. In control mitochondria (initially incubated with ATP) 0.5 mg/ml trypsin caused a decrease of MAO-A activity by 32.2 +/- 4.2%, whereas in ubiquitin-incorporated mitochondria (initially incubated with ATP + ubiquitin) reduction of MAO-A activity was significantly higher (51.4 +/- 2.5%, p < 0.02). Activity of MAO-B was resistant to trypsinolysis and incorporation of ubiquitin did not influence sensitivity of MAO-B to trypsin. Although there is no direct evidence yet that mitochondrial MAO is a target for ubiquitination the increased sensitivity to trypsinolysis of MAO-A suggests that incorporation of ubiquitin into mitochondria may increase susceptibility of MAO to certain proteases involved into degradation of these enzymes.  相似文献   

16.
Recently it was reported that there is an increase in monoamine oxidase B (MAO-B) activity in post-mortem brains of patients with Alzheimer's disease. It was postulated that this increase in MAO-B activity was due to gliosis associated with neuronal degeneration. The aim of the present investigation was to evaluate the effect on MAO of neuronal degeneration primarily affecting the cholinergic system. The specific cholinergic toxin AF64A (3 and 4.5 nmol) was injected bilaterally into the cerebral ventricles of rats. We then estimated MAO-A, MAO-B, dopamine (DA) uptake rates and choline acetyltransferase (ChAT) activities in hippocampus, striatum and cortex, 1, 2.5 and 4.5 weeks after the injection. Marked long-lasting reduction in ChAT activities appeared only in hippocampus, consistent with previous reports. The MAO-A activity was unchanged as were DA uptake rates. Neither was there any change in MAO-B activity found 1 week after the injection. However, a significant increase in MAO-B activity appeared after 2.5 weeks and persisted after 4.5 weeks in all 3 brain regions investigated. This result is likely to reflect progressive gliosis after cholinergic neuronal degeneration. Previous results have shown an increased MAO-B activity with age and a further accelerated increase in Alzheimer's disease. Experimentally, hemitransection and injection of kainic acid have been shown to cause a similar increase. The present results show that changes in MAO-B activity also reflect degenerative processes in brain mainly affecting the cholinergic system.  相似文献   

17.
A screening system of prodrugs selective for MAO-A or MAO-B   总被引:1,自引:0,他引:1  
We synthesized several prodrugs of glycine and gamma-aminobutyric acid. In order to establish a screening system from the prodrugs of selective activity to MAO-A or MAO-B, we examined purification conditions such as solubilization with Triton X-100, precipitation with ammonium sulfate, gel filtration and anion exchange chromatography. MAO-B was purified from various tissues such as guinea pig brain, kidney and spleen. MAO-A from human placenta without MAO-B was unstable in above purifications and used as crude. At each purification step, we checked sensitivity of the enzyme to specific inhibitors by developing a convenient fluorescence assay, in which hydrogen peroxide produced by the enzyme was reacted with p-hydroxyphenylpropionic acid. A fluorescence microplate reader measured a fluorescence of the fluorescent product from p-hydroxyphenylpropionic acid with horseradish peroxidase. In comparison with milacemide, N,N-bis(carbamoylmethyl)-N-pentylamine was the best and exclusive substrate for MAO-B. 2-N-(phenylethylamino)-acetoamide was the good substrate for MAO-A and MAO-B same as milacemide. 4-N-(n-pentylamino)-butyric acid and 4-(N-phenylethylamino)-butyric acid were the moderate substrates for both enzymes, which should release gamma-aminobutyric acid. These drugs will be new leading compounds.  相似文献   

18.
The localization in the guinea pig enteric nervous system (ENS) of monoamine oxidase (MAO) types A and B was investigated at the light and electron microscopic levels. Immunocytochemistry was used to visualize the enzyme protein and histochemistry was employed to study catalytic activity. Type specificity was achieved in histochemical studies by using deprenyl (0.5 microM) to inhibit MAO-B or clorgyline (0.1 microM) to inhibit MAO-A. The distribution of MAO-B immunoreactivity in the ENS corresponded to that of the sites of MAO activity found histochemically to be inhibited by deprenyl, but not clorgyline. MAO-B was observed to be the primary type of MAO found in the intrinsic elements of the ENS and was located in subsets of neurons in both submucosal and myenteric plexuses. MAO-B was not demonstrated immunocytochemically or histochemically in enteric glia, nor, at the light microscopic level, was there significant MAO-B activity or immunoreactivity in serotonin (5-HT)-immunoreactive neuronal cell bodies. In the submucosal plexus about 50% of the neurons expressed MAO-B; these neurons also contained neuropeptide y (NPY) and/or calcitonin gene related peptide (CGRP), but not substance P or vasoactive intestinal polypeptide (VIP). About 10% of myenteric neurons were intensely reactive for MAO-B; again MAO-B was co-localized with NPY and/or CGRP. In contrast to intrinsic neurons, extrinsic CGRP-immunoreactive nerve fibers contained no demonstrable MAO activity or immunoreactivity. Moreover, the sympathetic innervation, identified as varicose axons that degenerated after administration of 6-hydroxydopamine, contained abundant MAO-A, but no MAO-B activity or immunoreactivity. It is concluded that MAO-B is characteristic of a subset of intrinsic enteric neurons, while MAO-A is confined to the sympathetic innervation, which is extrinsic. At the electron microscopic level individual cells varied greatly in their degree of immuno- or cytochemically demonstrable MAO-B, which was most concentrated on the outer membranes of mitochondria. MAO-B immunoreactivity (but not cytochemical activity) was found on mitochondria in some serotoninergic perikarya identified by the simultaneous radioautographic detection of the uptake of 3H-5-HT. Mitochondria in most serotoninergic axon terminals displayed both MAO-B activity and immunoreactivity. Neurons receiving serotoninergic synapses often, but not invariably, contained MAO-B. Inhibition of neither MAO-B nor MAO-A appeared to slow the disappearance of 3H-5-HT loaded into enteric neurons significantly, even when intraneuronal storage of 5-HT was inhibited with tetrabenazine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Although nicotine is considered to be responsible for the addictive properties of tobacco, growing evidence underlines the importance of non-nicotine components in smoking reinforcement. It has been shown that tobacco smoke contains monoamine oxidase (MAO) A and B inhibitors and decreases MAO-A and MAO-B activity in smokers. Here, we investigated the effects of clorgyline hydrochloride (irreversible MAO-A inhibitor; 2 mg/kg/day), selegiline (irreversible MAO-B inhibitor; 4 mg/kg) and the beta-carboline norharmane hydrochloride (reversible MAO-B inhibitor; 5 mg/kg/day) treatments on nicotine self-administration (30 microg/kg/infusion, free base) in rats. Independent of the responsiveness to novelty and locomotor activity stimulation, only clorgyline hydrochloride treatment increased the intake of nicotine in a fixed-ratio schedule (FR5) of reinforcement. When a progressive-ratio schedule was implemented, both clorgyline hydrochloride and norharmane hydrochloride treatments potentiated the reinforcing effects of nicotine, whereas selegiline had no effect. Taken together, these results indicate that MAO-A inhibition interacts with nicotine to enhance its rewarding effects in rats and suggest that other compounds present in tobacco, such as beta-carboline, may also play an important role in sustaining smoking behavior in humans.  相似文献   

20.
Summary MAO-B activity was compared in healthy volunteers following oral treatment with clinically effective doses of the selective MAO-A inhibitors brofaromine (100 mg q.d. for 14 days), moclobemide (150 mg t.i.d. for 14 days) and clorgyline (5 mg t.i.d. for 10 days). Brofaromine and clorgyline did not alter platelet MAO activity. Following moclobemide treatment, MAO-B activity was reduced by 32% (p<0.05). It recovered during the 5 subsequent days after discontinuation of treatment. These results confirm earlier findings. The explanation for this finding may be that metabolities of moclobemide are active inhibitors of MAO-B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号