首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
人红细胞冻干前负载海藻糖最佳化研究   总被引:1,自引:0,他引:1  
为更好的实现海藻糖在红细胞冻干保存中的保护作用,关键是克服质膜对海藻糖的非渗透性,使胞质内海藻糖达到有效浓度。本研究的目的是通过对人红细胞负载海藻糖的规律性研究,筛选出海藻糖负载的最佳负载条件并评价海藻糖负载对红细胞各项理化指标的影响。在不同孵育温度(4、22和37℃)、孵育时间(0、2、4、6、8、10小时)、不同负载缓冲液浓度(0、200、400、600、800、1000mmol/L)条件下检测新鲜红细胞对海藻糖的成功负载量及红细胞各项理化指标;在固定负载条件下,对新鲜红细胞和4℃保存72小时红细胞海藻糖负载、游离血红蛋白(FHb)、血红蛋白(Hb)和红细胞平均体积(MCV)进行了比较。结果表明:红细胞对海藻糖的负载与孵育温度、时间及负载缓冲液海藻糖浓度密切相关。随着温度的升高、时间的延长和负载缓冲液海藻糖浓度的增加,红细胞对海藻糖的摄取量也随之增加。在海藻糖负载最佳条件下,新鲜红细胞和4℃保存72小时红细胞的胞内海藻糖浓度、FHb浓度分别为65.505±6.314mmol/L、66.2±5.002mmol/L和6.567±2.568g/L、16.168±3.922g/L。结论:红细胞负载海藻糖的最佳条件是采用新鲜红细胞,在37℃条件下、海藻糖浓度为800mmol/L的负载缓冲液中孵育8小时,这一条件可使胞内海藻糖达到有效浓度,并保持红细胞细胞理化性质稳定和膜完整性。  相似文献   

2.
目的探寻红细胞负载海藻糖的有效方法,评价负载海藻糖对红细胞各项理化指标的影响。方法设实验组(负载海藻糖红细胞)和对照组(未负载海藻糖红细胞),使用硫酸-蒽酮法测定胞内海藻糖含量,检测负载后红细胞各项理化指标,通过流式细胞术检测负载后红细胞膜的完整性。结果在37℃条件下,红细胞对海藻糖的摄取随胞外海藻糖浓度的增加而增多,当海藻糖浓度为800mmol/L,水浴7h,红细胞负载海藻糖可达到有效浓度;且2组红细胞各项理化指标比较差异无统计学意义(P>0.05);流式结果显示红细胞在高渗环境中负载海藻糖后,细胞膜结合很少量Annexin-V-FITC,并且破损细胞能被有效清除。结论红细胞37℃孵育7h,胞外海藻糖浓度为800mmol/L,能有效摄取海藻糖,且保持红细胞的理化稳定性和膜结构完整性。  相似文献   

3.
目的初步探讨红细胞冻干长期保存的有效方法,并比较冻干前海藻糖的负载与否对红细胞冻干保存效果的影响。方法实验设实验组(负载海藻糖冻干-复水后红细胞):37℃,红细胞负载海藻糖7h后,采用主要成分为含有15%聚乙烯吡咯烷酮(PVP)和150mmol/L,海藻糖的缓冲液作为保护液,在设定的降温程序下冻干保存红细胞;对照组:未负载海藻糖冻干-复水后红细胞。冻干结束后用37℃的再水化液快速水化,检测2组的各项理化指标。结果实验组红细胞冻干再水化后RBC和Hb回收率要高于对照组(P<0.05);ATP酶和葡萄糖-6-磷酸脱氢镁(G-6-PD)活性水平显著差异有统计学意义(P<0.05))。结论胞内海藻糖对红细胞冻干具有明显的保护作用,红细胞在37℃孵育7h的条件负载海藻糖后冻干-复水后能保持细胞的理化稳定性。  相似文献   

4.
目的 探讨红细胞冻干长期保存的有效方法,并评价复水后红细胞各项理化指标的变化。方法 设对照组(常规条件下保存的红细胞)和实验组(负载海藻糖冻干-复水后红细胞),在37℃条件下,红细胞负载海藻糖7h后,采用主要成分为含15%聚乙烯吡咯烷酮(PVP)和150mmol/L海藻糖的缓冲液作为保护液,在设定的降温程序下进行红细胞的冻干保存。冻干后置37℃的再水化液快速水化,检测各项理化指标。结果 红细胞冻干再水化后红细胞和血红蛋白回收率均在80%以上,且各项理化指标与常规保存的对照红细胞间差异无显著性(P〉O.05)。结论 红细胞在37℃孵育7h的条件下负载每藻糖后进行冻干,复水后能保持细胞的理化稳定性和结构形态的完整性,为进一步研究长期冻干保存红细胞奠定了基础。  相似文献   

5.
二甲基亚砜在人红细胞冻干前负载海藻糖过程中的作用   总被引:1,自引:1,他引:1  
目的研究人红细胞冻干保存前负载海藻糖过程中二甲基亚砜(DMSO)的作用,优化红细胞负载缓冲液配方。方法实验组以浓缩红细胞25份(10ml/份)负载海藻糖,负载缓冲液中添加DMSO;对照组25份负载海藻糖,负载缓冲液中未添加DMSO。37℃条件下孵育8h后,分别检测两组红细胞胞内海藻糖负载量、胞外游离血红蛋白水平、ATP含量、红细胞变形性,并利用流式细胞术检测负载后红细胞膜的完整性。结果实验组与对照组红细胞的胞内海藻糖负载量分别为(57.033±4.883)mmol/L,(49.184±4.858)mmol/L(P<0.05);胞外游离血红蛋白浓度分别为(4.131±0.473)g/L,(5.410±0.501)g/L(P<0.05);ATP浓度分别为(3.874±0.426)μmol/g Hb,(3.358±0.306)μmol/g Hb(P<0.05);红细胞变形指数分别为0.330±0.0211,0.277±0.0232(P<0.01);红细胞胞膜PS表达率分别为(5.04±0.495)%,(8.69±0.862)%(P<0.01)。结论DMSO在红细胞负载海藻糖过程中可有效增加胞内海藻糖负载量,并显著改善负载缓冲液对红细胞胞膜的高渗损伤,更好地发挥海藻糖对红细胞的保护作用。  相似文献   

6.
目的探讨细胞内的海藻糖、蔗糖、葡萄糖对冻干红细胞的影响。方法以海藻糖、蔗糖、葡萄糖、PBS作负载液,将红细胞置各负载液中孵育37℃、7h,然后冻干红细胞。再水化后测定血红蛋白回收率及红细胞内ATP含量,评价海藻糖、蔗糖、葡萄糖对冻干红细胞的影响。结果冻干后血红蛋白回收率:负载海藻糖、蔗糖及葡萄糖的红细胞明显高于PBS负载红细胞(P<0.001),海藻糖与蔗糖负载明显优于葡萄糖负载(P<0.001),海藻糖与蔗糖负载的红细胞无明显差异(P>0.05)。冻干后细胞内ATP含量:葡萄糖负载红细胞明显高于海藻糖及蔗糖负载红细胞(P<0.001),负载海藻糖高于负载蔗糖(P<0.05)。可认为负载海藻糖、蔗糖及葡萄糖的红细胞冻干后,细胞内的ATP水平葡萄糖组最高,海藻糖组其次,蔗糖组最低。结论细胞内的海藻糖、蔗糖、葡萄糖对冻干红细胞均有保护作用,综合血红蛋白回收率及红细胞内ATP含量,海藻糖较蔗糖及葡萄糖保护作用更好。  相似文献   

7.
目的研究影响海藻糖负载多种因素,探讨人红细胞对负载海藻糖的影响因素及规律性。方法根据红细胞海藻糖的负载量衡量,利用硫酸-蒽酮法检测红细胞在不同胞外海藻糖浓度、不同孵育时间、不同孵育温度的条件下对海藻糖的摄取量,并检测红细胞溶血程度。结果红细胞内海藻糖在负载液中的浓度<1000 mmol/L、负载时间<9 h、负载温度<37℃条件下,海藻糖的摄取量呈正相关。在负载液中浓度为0、200、400、600、800、1000mmol/L时,红细胞内海藻糖浓度分别为0、10.03、14.5、41.7、55.3和71.6 mmol/L;在温度为37℃时红细胞在浓度为1 000 mmol/L负载液中分别孵育0、1、3、5、7、9 h,胞内海藻糖浓度分别为0、5.73、6.11、55.7、和61.2 mmol/L。对温度、时间和胞外海藻糖浓度的统计分析显示,温度对负载后胞内海藻糖浓度的影响最大(P<0.01)。结论37℃、采用新鲜红细胞在海藻糖浓度为800 mmol/L的负载缓冲液中孵育7 h能有效摄取海藻糖,使之达到对红细胞起到冻干保护作用的胞内海藻糖理论浓度。  相似文献   

8.
目的研究人血小板冻干保存前负载海藻糖至细胞内过程中DMSO的作用,优化血小板负载缓冲液配方。方法实验设对照组(负载缓冲液中未添加DMSO)和实验组(负载缓冲液中添加DMSO),使用流式细胞仪检测血小板负载海藻糖4h后膜表面糖蛋白分子CD62p、PAC-1的表达,通过激光共聚焦荧光显微镜观察血小板负载荧光物质LYCH4h后其胞内LYCH的分布,同时检测实验组和对照组负载海藻糖4h后血小板平均体积(MPV)。结果两组结果比较,实验组CD62p、PAC-1的表达显著低于对照组(P<0.05),实验组LYCH均匀分布在血小板胞质中,而对照组LYCH大部分分布在几个有限细胞器内,两组MPV未有显著性差别(P>0.05)。结论DMSO在血小板负载海藻糖过程中可有效抑制血小板体外激活,并使胞质内海藻糖均匀分布,更好发挥海藻糖对细胞的保护作用。  相似文献   

9.
人血小板冻干前海藻糖负载技术的优化   总被引:6,自引:2,他引:6  
本研究以建立血小板负载海藻糖基本技术为基础,进一步优化海藻糖负载技术,包括负载温度、负载时间、海藻糖负载浓度和负载溶液。通过比较缓冲液和血浆负载效果,比较生理温度(37℃)和相变温度(16℃)下血小板胞内海藻糖浓度与负载时间曲线、血小板平均体积(MPV)与负载时间、海藻糖负载浓度的曲线、计算海藻糖的负载率,优选负载率较高的负载溶液、负载温度、负载时间和海藻糖浓度等血小板海藻糖负载技术参数。结果表明:37℃血浆负载率高于缓冲液负载率,且血浆负载4小时,在37℃海藻糖负载率可高达19.51%,明显高于16℃的负载率6、16%;血小板MPV在16℃比在37℃明显增大43、2%,随海藻糖负载时间(1—4小时)延长和负载浓度(0—100mmol/L)增加未见明显改变;血小板MPV在37℃与海藻糖负载时间和负载浓度呈正相关性,且海藻糖负载时间与负载浓度存在协同效应,海藻糖负载浓度高于50mmol/L,MPV随浓度(0—100mmol/L)、负载时间(1—4小时)增加而增大。结论:在原血浆中负载海藻糖、温度37℃、时间4小时、浓度低于50mmot/L可以作为优化后血小板海藻糖负载技术基本参数,负载浓度需根据冻干保存需要进行调整。  相似文献   

10.
本研究旨在评价冻干保护剂人血白蛋白、葡聚糖、聚乙烯吡咯烷酮和甘油对海藻糖负载后红细胞冰冻干燥保存的影响,筛选最佳冻干保护体系。将浓缩红细胞在37℃,浓度为800 mmol/L的海藻糖溶液中孵育7 h,经PBS液冲洗3遍后制成海藻糖负载的浓缩红细胞。对照组为海藻糖负载红细胞不添加保护剂,直接冻干;实验组将人血白蛋白、葡聚糖、聚乙烯吡咯烷酮、甘油等组成的冻干保护体系与海藻糖负载浓缩红细胞混合,两组样品在常温下平衡30 min,移入-80℃深低温冰箱,预冻24 h,入冻干机冻干处理24 h。用温度为37℃,6%羟乙基淀粉40注射液快速再水化样品,用氰化血红蛋白试剂盒测定血红蛋白溶血率,计算血红蛋白回收率,同时测定干燥样品含水量。结果表明:当样品含水量在3%-4%时,对照组冻干红细胞血红蛋白回收率为(33.57±2.89)%,白蛋白组血红蛋白回收率为(51.15±1.98)%,差异有显著性意义(P〈0.05)。选用不同浓度的葡聚糖为冻干保护剂,血红蛋白回收率较对照组明显降低,随浓度增加,血红蛋白回收率逐渐升高,当浓度为36%时,血红蛋白回收率为(22.15±4.12)%,差异有显著性意义(P〈0.05)。不同浓度的聚乙烯吡咯烷酮(PVP)组成的冻干保护体系,当浓度小于40%时,血红蛋白回收率明显低于对照组,差异有显著性意义(P〈0.05)。10%甘油组血红蛋白回收率为(3.93±1.80)%,差异有显著性意义(P〈0.05)。结论:人血白蛋白在海藻糖负载的冻干红细胞中发挥重要保护作用,葡聚糖与浓度小于40%PVP可削弱细胞内海藻糖的保护作用。液态的甘油不宜作为红细胞冰冻干燥保存的保护剂。  相似文献   

11.
为研究苯甲醇对海藻糖负载红细胞的影响,在4℃条件下将红细胞孵育在浓度分别为10、30、50、100mmol/L的苯甲醇-海藻糖溶液中24小时,用氰化血红蛋白试剂盒测定海藻糖负载红细胞的溶血率,用硫酸-蒽酮法检测红细胞内海藻糖浓度水平。结果表明:在100mmol/L苯甲醇-海藻糖溶液组,其红细胞内海藻糖浓度为72±12.98mmol/L,与其它各组相比,有显著统计学差异(p=0.000);溶血率为17.99±3.75%,与其它各组相比,有显著统计学差异(p=0.000)。结论:苯甲醇可提高海藻糖负载红细胞的负载率,随着苯甲醇浓度的升高红细胞海藻糖负载率也提高,100mmol/L的苯甲醇浓度为可用浓度。  相似文献   

12.
海藻糖负载红细胞及其冻干保存研究   总被引:3,自引:1,他引:3  
为了研究海藻糖负载红细胞方法的可行性及红细胞内海藻糖对冻干红细胞的影响,利用红细胞膜在37℃时细胞膜上部分脂质由固态变为液态、流动性增大和膜通透性增加的性质,将红细胞置于高浓度海藻糖负载液中孵育7小时,并以磷酸缓冲盐溶液中孵育的红细胞作为对照,对红细胞的海藻糖负载率、形态学、渗透脆性、变形性、ATP含量及2,3-DPG含量进行评价。结果表明:负载后红细胞内海藻糖含量为36.56±7.95mmol/L,实验组红细胞溶血率为(15.663±3.848)%,对照组红细胞溶血率为(5.03±1.85)%,差异显著(P<0.05);实验组红细胞变形指数是0.0289±0.00738,对照组红细胞变形指数是0.1200±0.0121,差异显著(P<0.05);负载后实验组红细胞内ATP含量为2.67±0.54μmol/gHb,对照组红细胞内ATP含量为5.22±1.10μmol/gHb(P>0.05),实验组红细胞渗透脆性降低,明显低于对照组。尽管负载组的红细胞大小不一,形态各异,但在透射电镜下绝大多数红细胞膜完整,胞内血红蛋白密度均匀,而对照组有近一半的细胞膜不完整并有漏孔,胞内血红蛋白密度变浅。实验组与对照组中2,3-DPG含量均为零。实验组红细胞冻干再水化后,血红蛋白回收率46.44±4.14%,对照组血红蛋白回收率8.33±2.34%,差异显著(P<0.001)。结论:海藻糖负载的红细胞功能符合输注标准,负载方法可行,负载入细胞内的海藻糖能够保持细胞膜的完整性,大大提高了冻干红细胞的回收率,为红细胞的冷冻干燥成功迈出了第一步。  相似文献   

13.
14.
尽管高浓度葡萄糖孵育有利于深低温或冰冻干燥保存人红细胞的存活,但是高浓度葡萄糖仍然对红细胞造成一定损伤。本研究探讨海藻糖对高浓度葡萄糖导致的红细胞损伤的影响。将红细胞于含有一定浓度海藻糖的葡萄糖缓冲液中孵育3小时后,用流式细胞术分析红细胞磷脂酰丝氨酸(PS)分布和细胞渗透脆性,用TBA法检测膜脂质过氧化损伤。结果表明:葡萄糖可以导致红细胞PS暴露、脂质过氧化损伤和细胞渗透脆性增高,而且其效率和葡萄糖浓度和温度密切相关。然而,海藻糖却可以很好地抑制高浓度葡萄糖诱导的红细胞PS暴露、渗透脆性增高和过氧化损伤。随着海藻糖浓度的增加,红细胞PS标记率、丙二醛(MDA)浓度和细胞碎片率呈逐步下降的趋势。结论:高浓度葡萄糖可以导致细胞PS暴露、脂质过氧化损伤和渗透脆性增高,而且这3种损伤之间存在一定关系;海藻糖可以有效地抑制高浓度葡萄糖导致的红细胞PS暴露、渗透脆性增高以及过氧化损伤,这对于应用小分子糖类保存红细胞研究具有重要意义。  相似文献   

15.
保存前去除白细胞对浓缩红细胞保存质量影响研究   总被引:8,自引:0,他引:8  
为了研究保存前去除白细胞对不同方法制备的浓缩红细胞 (RCC)保存质量的可能影响 ,分别取分离血浆后所得浓缩红细胞 (RCC1)和分离富含血小板血浆后所得含少量血浆的浓缩红细胞 (RCC2 )各 8袋 ,每袋等量分为两份 :过滤组和对照组。过滤组在保存当天用去白细胞滤器过滤 ,然后按常规方法 4℃保存 35天 ;对照组直接 4℃常规保存 5周。每周取样本测定平均红细胞体积 (MCV)、平均红细胞血红蛋白含量 (MCH)和平均红细胞血红蛋白浓度 (MCHC) ,血浆K+浓度和乳酸脱氢酶 (LDH) ,游离血红蛋白 (FHb)和红细胞ATP水平 ,同时做细菌培养污染监测。结果表明 :两种方法制备的RCC在过滤组与对照组中MCV ,MCH和MCHC无显著差别 ;红细胞ATP水平在保存第 0 ,1,2和 3周过滤组与对照组无显著差异 ,第 4和 5周过滤组红细胞ATP水平低于对照组 (P <0 .0 5 ) ;在保存过程中过滤组K+水平低于对照组 ,除了RCC1在保存第 0 ,1,2和 3周与对照组无显著差别外 ,均有显著差异 (P <0 .0 5 )。过滤组血浆LDH释放量显著低于对照组 (P <0 .0 1) ,在分离血小板后制备的RCC2这种差别更为明显。在保存期间RCC2组血浆的FHb水平过滤组显著低于对照组 (P <0 .0 5 ) ,而RCC1两组间FHb水平无显著差异。各组细菌培养均为无细菌生长。结论 :保存前去白细胞过  相似文献   

16.
紫外线照射对储存血液红细胞的影响   总被引:1,自引:0,他引:1  
紫外线照射血液在灭活血液病毒和减少细菌污染,降低免疫细胞抗原呈递作用,预防同种免疫,增加受血者免疫耐受性,减少移植物抗宿主病方面有重要意义[1~4];紫外线照射加充氧自血疗法在提高机体红细胞携氧功能,治疗多种疾病方面也得到公认[5、6].但也有材料报道,其对细胞造成一定损害,溶血率达2%.为此,笔者观察了库血经紫外线照射并保存不同时间后血浆游离血红蛋白和红细胞渗透脆性的变化,报道如下.  相似文献   

17.
人红细胞对糖类摄取的规律性研究   总被引:2,自引:0,他引:2  
人红细胞冰冻干燥保存在临床应用中具有重要意义.一些糖类,特别是海藻糖,能提高一些低等生物或细胞对干燥环境的耐受性,但如何将糖类导入细胞内又是一个挑战.本研究探讨人红细胞对糖类摄取的规律性.于不同温度(4、25和37℃)、不同浓度(0、0.2、0.4、0.6、0.8、1 mol/L)及不同培育时间(1、3、5、7、9小时)条件下检测了红细胞对海藻糖和葡萄糖的吸收率及游离血红蛋白量,并测定了红细胞变性指数.结果表明:随着温度的上升和细胞外糖浓度的增加,红细胞的糖吸收率也随之上升,细胞内的海藻糖和葡萄糖浓度分别可以达到30 mmnol/L和40 mmol/L以上.但孵育时间对海藻糖和葡萄糖的吸收率影响不同,随着时间的延长,细胞内海藻糖浓度呈先升高而后降低的趋势,而葡萄糖吸收率则呈稳定上升的趋势.但是糖吸收过程对红细胞的游离血红蛋白和变形性产生不利的影响,尤其是海藻糖,这主要来源于渗透压伤害.结论:红细胞的糖吸收率与孵育温度、外源糖浓度和孵育时间的关系密切,而且在一定条件下的糖吸收效率也较高,但此过程对红细胞有一定的伤害,这可能会影响糖类在红细胞冰冻干燥保存研究中的应用前景.今后的研究工作应集中于如何处理细胞伤害和糖吸收效率的关系.  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号