首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
An Escherichia coli O157:H7 strain isolated from a patient with hemorrhagic colitis was found to exhibit two slightly different colony morphology types on differential medium. Each morphological type, designated TT12A and TT12B, was isolated, and serological testing using various assays confirmed that both strains carried the O157 and the H7 antigens. Biochemical testing showed that the strains had identical profiles on AP120E analysis and, like typical O157:H7 strains, did not ferment sorbitol or exhibit β-glucuronidase activity. Analysis with a multiplex PCR assay showed that TT12B did not carry the gene for either Shiga toxin 1 (Stx1) or Stx2, whereas these genes were present in TT12A and the toxins were produced. Apart from that, both strains carried the +93 gusA mutation, the cluster I ehxA gene for enterohemolysin, and the eae gene for γ-intimin, which are all characteristics of the O157:H7 serotype. Phenotypic assays confirmed that both strains exhibited enterohemolysin activity and the attachment and effacing lesion on HeLa cells. Multilocus enzyme electrophoresis analysis showed that the strains are closely related genetically and belong in the same clonal group. Pulsed-field gel electrophoresis (PFGE) typing of XbaI-digested genomic DNA revealed that the two strains differed by two bands but shared 90% similarity and clustered in the same clade. All other non-Stx-producing O157:H7 strains examined clustered in a major clade that was distinct from that of Stx-producing O157:H7 strains. The findings that TT12B was identical to TT12A, except for Stx production, and its PFGE profile is also more closely related to that of Stx-producing O157:H7 strains suggest that TT12B was derived from TT12A by the loss of both stx genes.  相似文献   

2.
A cytotoxin to Vero cells (Shiga-like toxin), which was neutralized by antibody against purified Shiga toxin produced by Shigella dysenteriae 1, was purified from Escherichia coli O157:H7, isolated from a patient with hemorrhagic colitis. The purification procedure consisted of ammonium sulfate fractionation, DEAE-cellulose column chromatography, chromatofocusing column chromatography and high performance liquid chromatography. About 200 micrograms of purified Shiga-like toxin was obtained from cell extracts of 14 liters of culture with a yield of about 15%. The purified Shiga-like toxin showed identical physicochemical, biological and immunological properties to those of Shiga toxin. Purified Shiga-like toxin and Shiga toxin also had the same mobilities on polyacrylamide disc gel electrophoresis and polyacrylamide gel isoelectrofocusing. On sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis, purified Shiga-like toxin migrated as two bands corresponding to the A and B subunits, and these migrated to the same positions as A and B subunits of Shiga toxin. The amino acid composition of the purified Shiga-like toxin was also similar to that of Shiga toxin. The purified Shiga-like toxin showed various biological activities: lethal toxicity to mice when injected intraperitoneally, the LD50 being 30 ng per mouse; cytotoxicity to Vero cells, killing about 50% of the cells at 6 pg; and fluid accumulation in rabbit ileal loops at concentrations of more than 1.25 micrograms/loop. These values are comparable with those obtained with Shiga toxin. In an Ouchterlony double gel diffusion test, the lines formed by the purified Shiga-like toxin and Shiga toxin fused, indicating that the two toxins were immunologically identical.  相似文献   

3.
Variation in disease severity among Escherichia coli O157:H7 infections may result from differential expression of Shiga toxin 2 (Stx2). Eleven strains belonging to four prominent phylogenetic clades, including clade 8 strains representative of the 2006 U.S. spinach outbreak, were examined for stx2 expression by real-time PCR and western blot analysis. Clade 8 strains were shown to overexpress stx2 basally, and following induction with ciprofloxacin when compared to strains from clades 1–3. Differences in stx2 expression generally correlated with Stx2 protein levels. Single-nucleotide polymorphisms identified in regions upstream of stx2AB in clade 8 strains were largely absent in non-clade 8 strains. This study concludes that stx2 overexpression is common to strains from clade 8 associated with hemolytic uremic syndrome, and describes SNPs which may affect stx2 expression and which could be useful in the genetic differentiation of highly-virulent strains.  相似文献   

4.
A cytotoxin to Vero cells (Vero toxin) was purified from Escherichia coli O157:H7 isolated from a patient with hemorrhagic colitis by ammonium sulfate fractionation, DEAE-cellulose column chromatography, repeated chromatofocusing column chromatography and repeated high performance liquid chromatography. About 440 micrograms of purified Vero toxin was obtained from 12 liters of culture with a yield of about 22%. The purified Vero toxin showed similar cytotoxic activity to that of Shiga toxin to Vero cells and killed about 50% of the Vero cells at 1 pg. The activity was lost on heating the toxin at 80 degrees C for 10 minutes, but not at 60 degrees C for 10 minutes. The toxin also showed lethal toxicity to mice when injected intraperitoneally, the LD50 being 1 ng per mouse. The purified Vero toxin consisted of A and B subunits with molecular weights of about 35,000 and 10,700, respectively, which were slightly larger than those of Shiga toxin. On polyacrylamide gel disc electrophoresis, the mobility of the purified Vero toxin differed from that of Shiga toxin. The isoelectric point of the toxin was 4.1, which was also different from that of Shiga toxin (pI = 7.0). Furthermore, Vero toxin and Shiga toxin were found to be immunologically unrelated; anti-Vero toxin did not react with Shiga toxin, and similarly anti-Shiga toxin did not react with the Vero toxin in either the Ouchterlony double gel diffusion test or enzyme-linked immunosorbent assay. The Vero toxin purified in this work was found to be immunologically identical to VT2 and Shiga-like toxin II reported previously.  相似文献   

5.
The primary structures of the A and B subunits of Shiga toxin and of Shiga-like toxin I (VT1), isolated from the culture supernatants of Shigella dysenteriae 1 and Escherichia coli O157:H7, respectively, were analyzed by Edman degradation of intact proteins and peptides in their digests with trypsin or Achromobacter protease I and also by fast atom bombardment mass spectrometry of the digests. The results indicated that the A and B subunits of Shiga toxin and Shiga-like toxin I have the same primary structures. The identity of their primary structures was confirmed by determining the nucleotide sequence of the gene encoding Shiga-like toxin I cloned from a Shiga-like toxin I converting phage. This nucleotide sequence was different from that reported by Jackson et al. (Microbial Pathogenesis 1987; 2: 147-153), by Calderwood et al. (Proc Natl Acad Sci USA 1987; 84: 4364-8) and by Grandis et al. (J Bacteriol 1987; 169: 4313-9) in one base at position 231, which was found to be adenine instead of thymine, which they reported. The amino acid residue at position 45 from the N-terminus of the A subunit of Shiga-like toxin I deduced from the nucleotide sequence determined in this study is threonine, which corresponds with that found by amino acid sequencing, whereas from previous reports by other investigators it is serine. Edman degradation of the intact A subunit of Shiga toxin indicated that the A subunit was nicked between Ala253 and Ser254 to form A1 and A2 fragments linked by a disulfide bond.  相似文献   

6.
Shiga toxin-producing Escherichia coli (STEC) serotypes including O157:H7 (n = 129) from dairy cows, cull dairy cow feces, cider, salami, human feces, ground beef, bulk tank milk, bovine feces, and lettuce; and O157:H7- (n = 24) isolated from bovine dairy and bovine feedlot cows were evaluated for antimicrobial resistance against 26 antimicrobials and the presence of antimicrobial resistance genes (tetA, tetB, tetC, tetD, tetE, tetG, floR, cmlA, strA, strB, sulI, sulII, and ampC). All E. coli exhibited resistance to five or more antimicrobial agents, and the majority of isolates carried one or more target antimicrobial resistance gene(s) in different combinations. The majority of E. coli showed resistance to ampicillin, aztreonam, cefaclor, cephalothin, cinoxacin, and nalidixic acid, and all isolates were susceptible to chloramphenicol and florfenicol. Many STEC O157:H7 and O157:H7-isolates were susceptible to amikacin, carbenicillin, ceftriaxone, cefuroxime, ciprofloxacin, fosfomycin, moxalactam, norfloxacin, streptomycin, tobramycin, trimethoprim, and tetracycline. The majority of STEC O157:H7 (79.8%) and O157:H7- (91.7%) carried one or more antimicrobial resistance gene(s) regardless of whether phenotypically resistant or susceptible. Four tetracycline resistant STEC O157:H7 isolates carried both tetA and tetC. Other tetracycline resistance genes (tetB, tetD, tetE, and tetG) were not detected in any of the isolates. Among nine streptomycin resistant STEC O157:H7 isolates, eight carried strA-strB along with aadA, whereas the other isolate carried aadA alone. However, the majority of tetracycline and streptomycin susceptible STEC isolates also carried tetA and aadA genes, respectively. Most ampicillin resistant E. coli of both serotypes carried ampC genes. Among sulfonamide resistance genes, sulII was detected only in STEC O157:H7 (4 of 80 sulfonamide-resistant isolates) and sulI was detected in O157:H7- (1 of 16 sulfonamide resistant isolates). The emergence and dissemination of multidrug resistance in STEC can serve as a reservoir for different antimicrobial resistance genes. Dissemination of antimicrobial resistance genes to commensal and pathogenic bacteria could occur through any one of the horizontal gene transfer mechanisms adopted by the bacteria.  相似文献   

7.
The presence of commensal flora reduced colonization of Escherichia coli O157:H7 and production of Shiga toxin (Stx) in the murine intestine. Stx production was not detected in mice colonized with E. coli that were resistant to the Shiga toxin phage, but it was detected in mice colonized with phage-susceptible E. coli.  相似文献   

8.
A hemolytic determinant of enterohemorrhagic Escherichia coli O157:H7 is encoded on a 90-kbp plasmid (pO157). This enterohemorrhagic E. coli toxin (Ehx) is a newly described RTX cytotoxin. The prototype RTX toxin is the E. coli hemolysin (Hly) associated with extraintestinal E. coli infections. We expressed Ehx from E. coli K-12 strains harboring either pSK3, a pO157 derivative marked with Tn801 unlinked to Ehx, or a recombinant plasmid containing an 11.9-kbp subclone (pEO40) of pSK3. The Ehx activities and antibody reactivities were compared with those of Hly. Little Ehx was secreted extracellularly from the strain harboring pSK3; however, when the Hly transport genes hlyBD were supplied in trans, both intracellular and extracellular levels of Ehx were enhanced more than 15-fold. The strain harboring pEO40 secreted at least 140-fold more Ehx than did the strain harboring pSK3, and neither intracellular nor extracellular levels were significantly enhanced by the addition of hlyBD in trans. Polyclonal anti-HlyA antiserum and several anti-HlyA monoclonal antibodies, including the monoclonal antibody A10, which is panreactive for nearly all RTX toxins, reacted with EhxA antigen by immunoblot analysis. In hemolysis and 51Cr release assays, Ehx demonstrated similar efficiencies in lysis of BL-3 cells (cells from a bovine lymphoma cell line) and sheep and human erythrocytes. Surprisingly, it demonstrated very little activity against two human lymphoma cell lines. In contrast, Hly lysed all five cell types tested, each to a greater extent than that demonstrated by comparable amounts of Ehx. As with other RTX toxins, Ehx activity was calcium dependent and heat labile.  相似文献   

9.
Shiga toxin-producing Escherichia coli (STEC), a cause of food-borne colitis and hemolytic-uremic syndrome in children, can be serotype O157:H7 (O157) or other serotypes (non-O157). E. coli O157 can be detected by culture with sorbitol-MacConkey agar (SMAC), but non-O157 STEC cannot be detected with this medium. Both O157 and non-O157 STEC can be detected by immunoassay for Shiga toxins 1 and 2. The objectives of this study were first to compare the diagnostic utility of SMAC to that of the Premier EHEC enzyme immunoassay (Meridian Diagnostics) for detection of STEC in children and second to compare the clinical and laboratory characteristics of children with serotype O157:H7 STEC and non-O157:H7 STEC infections. Stool samples submitted for testing for STEC between April 2004 and September 2009 were tested by both SMAC culture and the Premier EHEC assay at Children's Hospital Boston. Samples positive by either test were sent for confirmatory testing and serotyping at the Hinton State Laboratory Institute (HSLI). Chart review was performed on children with confirmed STEC infection. Of 5,110 children tested for STEC, 50 (0.9%) had STEC infection confirmed by culture; 33 were O157:H7 and 17 were non-O157:H7. The Premier EHEC assay and SMAC culture detected 96.0% and 58.0% of culture-confirmed STEC isolates (any serotype), respectively, and 93.9% and 87.9% of STEC O157:H7 isolates, respectively. There were no significant differences in disease severity or laboratory manifestations of STEC infection between children with O157:H7 and those with non-O157 STEC. The Premier EHEC assay was significantly more sensitive than SMAC culture for diagnosis of STEC, and O157:H7 and non-O157:H7 STEC caused infections of similar severity in children.  相似文献   

10.
Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 is a food-borne pathogen that causes significant morbidity and mortality in developing and industrialized nations. EHEC infection of host epithelial cells is capable of inhibiting the gamma interferon (IFN-γ) proinflammatory pathway through the inhibition of Stat-1 phosphorylation, which is important for host defense against microbial pathogens. The aim of this study was to determine the bacterial factors involved in the inhibition of Stat-1 tyrosine phosphorylation. Human HEp-2 and Caco-2 epithelial cells were challenged directly with either EHEC or bacterial culture supernatants and stimulated with IFN-γ, and then the protein extracts were analyzed by immunoblotting. The data showed that IFN-γ-mediated Stat-1 tyrosine phosphorylation was inhibited by EHEC secreted proteins. Using two-dimensional difference gel electrophoresis, EHEC Shiga toxins were identified as candidate inhibitory factors. EHEC Shiga toxin mutants were then generated and complemented in trans, and mutant culture supernatant was supplemented with purified Stx to confirm their ability to subvert IFN-γ-mediated cell activation. We conclude that while other factors are likely involved in the suppression of IFN-γ-mediated Stat-1 tyrosine phosphorylation, E. coli-derived Shiga toxins represent a novel mechanism by which EHEC evades the host immune system.  相似文献   

11.
The purpose of this study was to assess a simplified method for interstrain differentiation of Escherichia coli O157:H7 and other Shiga-like toxin-producing E. coli (SLTEC) strains. A method based on the use of nucleic acid probes from Shiga-like toxin (SLT) I and II structural genes was used to generate restriction fragment length polymorphism (RFLP) patterns of SLTEC strains, (SLT-RFLP patterns) resulting from digestion of isolated genomic DNA with four different restriction enzymes (BamHI, EcoRI, HindIII, and PvuII) used separately. A total of 165 SLTEC strains from clinical, food, and environmental sources, including O157:H7 isolates from four food-borne outbreaks in Canada and the United States, were analyzed in the study. SLT-RFLP demonstrated that E. coli O157:H7 strains from each food-borne outbreak had the same unique SLT-RFLP pattern. Fifty-two SLT-RFLP types were found among 96 E. coli O157:H7 isolates from sporadic cases of hemorrhagic colitis and hemolytic uremic syndrome in Washington state. The use of the SLT probes proved to be a very powerful method for interstrain differentiation of SLTEC strains. Although the use of each of the enzymes alone did not give enough differentiative power to be used in epidemiological studies, the combination of patterns generated by two restriction enzymes (EcoRI and PvuII, used separately) provided the desired sensitivity for such studies. The results clearly demonstrate the usefulness of the method for studying the molecular epidemiology of E. coli O157:H7. The method is also suitable for establishing an epidemiological database, in terms of both sensitivity and ease of compilation and interpretation of results.  相似文献   

12.
Uropathogenc Escherichia coli (UPEC) CFT073 has a pathogenicity-associated island (PAI(CFT073)), which causes pyelonephritis and cystitis. Using PCR method, we found the prrA gene of PAI(CFT073) in E. coli O157:H7 EDL933. Further detailed PCR screening of 38 open reading frames, the right and left junction sequences of PAI(CFT073), revealed that it is the prrA-modD-yc73-fepC gene cluster but not the PAI(CFT073) present in E. coli O157:H7 EDL933. A rapid preliminary analysis suggested that the prrA-modD-yc73-fepC gene cluster of the PAI(CFT073), is present in 43 strains of E. coli O157:H7 containing Shiga toxin (Stx) gene but absent in 19 strains of E. coli O157:H7 without Stx gene. A strict co-occurrence of the prrA-modD-yc73-fepC gene cluster and Stx genes was observed, regardless of their origin. The prrA-modD-yc73-fepC gene cluster encode proteins probably involved in iron uptake system, which strongly suggests the importance of iron metabolism in the Stx-mediated virulence. In addition, the prrA-modD-yc73-fepC gene cluster may be used as a diagnostic marker to distinguish E. coli O157:H7 strains containing Stx gene from that without Stx gene, and possibly to quickly detect other pathogenic gram-negative bacteria containing the Stx gene.  相似文献   

13.
Three Shiga toxin (Stx)-producing Escherichia coli (STEC) strains from patients with diarrhoea were identified, each of which contained three distinct stx genes (stx1, stx2 and stx2c). The strains belonged to the serotypes O52:H19, O75:H- and O157:H- and harboured eae and EHEC-hly sequences. Colony-blot immunoassay was used to demonstrate that both major types of Stx were expressed. The association of stx genes with either phage or phage DNA was demonstrated in all three strains. Isolated phage DNA from all strains contained stx1 sequences, but stx2 sequences were found only in phage DNA of two of these strains. The presence of three distinct stx genes may enhance the virulence of STEC strains and should be monitored. The observations demonstrate not only the potential of stx genes to spread within different serotypes, but also their capacity to accumulate within a single strain.  相似文献   

14.
The isolation and characterization of Escherichia coli O157:H7 and non-O157 Shiga toxin-producing E. coli (STEC) strains from sheep are described. One flock was investigated for E. coli O157:H7 over a 16-month period that spanned two summer and two autumn seasons. Variation in the occurrence of E. coli O157:H7-positive sheep was observed, with animals being culture positive only in the summer months but not in the spring, autumn, or winter. E. coli O157:H7 isolates were distinguished by pulsed-field gel electrophoresis (PFGE) of chromosomal DNA and toxin gene restriction fragment length polymorphism (RFLP) analysis. Ten PFGE patterns and five RFLP patterns, identified among the isolates, showed that multiple E. coli O157:H7 strains were isolated from one flock, that a single animal simultaneously shed multiple E. coli O157:H7 strains, and that the strains shed by individuals changed over time. E. coli O157:H7 was isolated only by selective enrichment culture off 10 g of ovine feces. In contrast, strains of eight STEC serotypes other than O157:H7 were cultured from feces of sheep from a separate flock without enrichment. The predominant non-O157 STEC serotype found was O91:NM (NM indicates nonmotile), and others included O128:NM, O88:NM, O6:H49, and O5:NM. Irrespective of serotype, 98% of the ovine STEC isolates possessed various combinations of the virulence-associated genes for Shiga toxin(s) and the attaching-and-effacing lesion (stx1, stx2, and eae), suggesting their potential for human pathogenicity. The most common toxin-eae genotype was positive for stx1, stx2, and eae. A Vero cell cytotoxicity assay demonstrated that 90% of the representative STEC isolates tested expressed the toxin gene. The report demonstrates that sheep transiently shed a variety of STEC strains, including E. coli O157:H7, that have potential as human pathogens.  相似文献   

15.
We isolated Shiga toxin-producing Escherichia coli O157:H7 strains resistant to third-generation cephalosporins. The resistant strains harbored blaCMY-2, a plasmid-mediated AmpC β-lactamase. Genotyping of isolates revealed the possible spread of this problematic bacterium. Results suggested the importance of the investigation and surveillance of enterobacteria with plasmids harboring blaCMY-2.  相似文献   

16.
Characterization of Escherichia coli serotype O157:H7.   总被引:8,自引:8,他引:8       下载免费PDF全文
A total of 174 strains of Escherichia coli serotype O157:H7 representing human isolates obtained from outbreaks and sporadic cases of hemorrhagic colitis, hemolytic-uremic syndrome, and nonbloody diarrheal illnesses as well as from asymptomatic carriers across Canada and the United States were examined. E. coli serotype O157:H7 possessed distinct biochemical markers, a 100% negative reaction for beta-glucuronidase and sorbitol, and a 100% positive reaction for raffinose and dulcitol; all strains otherwise were biochemically typical of E. coli. The vast majority (97%) of the strains were susceptible to commonly used antimicrobial agents. All strains produced readily detectable levels of Verotoxin; however, with polymyxin extraction, nearly 50% of the strains showed up to a 10-fold increase in the toxin level. None were found to mediate hemagglutination of human group A erythrocytes with or without D-mannose. The majority (approximately 70%) of the strains showed localized and diffuse adherence to HEp-2 cells and Henle 407 cells, and the adherence patterns were not very different from those observed among other E. coli strains. Twenty phage types were recognized, with phage types 1 and 2 accounting for 65% of the test strains. Plasmid analysis indicated three basic plasmid profiles: profile I was characterized by 68.7- and 4.2-megadalton (MDa) plasmids (62% of strains), profile II was characterized by 66.2- and 1.8-MDa plasmids (20% of strains), and profile III was characterized by a 62.5-MDa plasmid (18% of strains). A small number (19%) of the strains carried at least one additional plasmid over the basic complements, and these could be considered to constitute a miscellaneous category. None of the above-described characteristics of E. coli serotype O157:H7 could be directly correlated with one another, with the nature of infection, or with the geographical distribution of strains.  相似文献   

17.
Pulsed-field gel electrophoresis (PFGE) analysis revealed that enterohaemorrhagic Escherichia coli (EHEC) O157:H7 strains had considerable variations in their genomes. This study investigated whether or not the molecular profile of Shiga toxin (Stx) 1- and Stx2-converting phages isolated from EHEC O157:H7 strains, derived from various sources in the USA and Japan, corresponded to the variations of host strains' genotypes as determined by PFGE. A total of 51 Stx-converting phages including 12 Stx1-converting phages and 37 Stx2-converting phages was isolated from seven USA isolates and 20 Japanese isolates. The average Dice coefficient values showed 44% similarity between phage DNAs in Stx2-converting phages digested with SmaI and 55% in Stx1-converting phages digested with HindIII, indicating considerable variation among phage DNA. In particular, restriction fragment length polymorphism (RFLP) patterns of Stx2-converting phage DNA varied according to the PFGE type of their host strain, which suggests that the phage genomes have altered their genotypic characteristics with those of host genomes. However, there are several exceptions: the RFLP patterns of some Stx2-converting phages were quite similar irrespective of the different genotypes of the host strains, indicating that horizontal transfer of Stx2-converting phage may also occur under some circumstances.  相似文献   

18.
Twenty-one Escherichia coli O157:H7 strains isolated in northern Italy from sporadic cases of hemolytic-uremic syndrome and from cattle and food were characterized by virulence gene analysis, pulsed-field gel electrophoresis (PFGE) of XbaI-digested DNA, enterobacterial repetitive intergenic consensus (ERIC) sequence-based PCR (ERIC-PCR), and antibiotic resistance patterns and compared to 18 strains isolated in France from human cases of diarrhea, cattle, and the environment. Strains isolated in Sicily (southern Italy) from a local farm (one strain) and from calves just imported from France (11 strains) and Spain (six strains) were also typed. Whereas the eae and hlyA genes were always detected, Shiga toxin gene (stx) analysis showed some differences related to geographic areas. Isolates from northern Italy showed a high frequency of stx(1) and stx(2), while strains isolated in France and from French and Spanish calves imported to Sicily more frequently possessed the stx(2c) gene. The majority of the strains isolated in northern Italy were also resistant to one or more antibiotics, while most of the strains isolated in France and Sicily were fully susceptible. ERIC-PCR analysis was not able to differentiate the strains. PFGE typing after XbaI DNA digestion produced a total of 54 distinct restriction endonuclease digestion profiles (REDPs) among the 57 strains. Phylogenetic analysis was unable to cluster REDPs according to geographic origin. All epidemiologically related isolates showed either identical or >/=91% similar REDPs. Our findings suggest a peculiar circulation of antibiotic-resistant, genetically unrelated strains in northern Italy.  相似文献   

19.
Escherichia coli O157:H7 is a food-borne pathogen causing hemorrhagic colitis and hemolytic-uremic syndrome, especially in children. The main virulence factor responsible for the more serious disease is the Shiga toxin 2 (Stx2), which is released in the gut after oral ingestion of the organism. Although it is accepted that the amount of Stx2 produced by E. coli O157:H7 in the gut is critical for the development of disease, the eukaryotic or prokaryotic gut factors that modulate Stx2 synthesis are largely unknown. In this study, we examined the influence of prokaryotic molecules released by a complex human microbiota on Stx2 synthesis by E. coli O157:H7. Stx2 synthesis was assessed after growth of E. coli O157:H7 in cecal contents of gnotobiotic rats colonized with human microbiota or in conditioned medium having supported the growth of complex human microbiota. Extracellular prokaryotic molecules produced by the commensal microbiota repress stx2 mRNA expression and Stx2 production by inhibiting the spontaneous and induced lytic cycle mediated by RecA. These molecules, with a molecular mass of below 3 kDa, are produced in part by Bacteroides thetaiotaomicron, a predominant species of the normal human intestinal microbiota. The microbiota-induced stx2 repression is independent of the known quorum-sensing pathways described in E. coli O157:H7 involving SdiA, QseA, QseC, or autoinducer 3. Our findings demonstrate for the first time the regulatory activity of a soluble factor produced by the complex human digestive microbiota on a bacterial virulence factor in a physiologically relevant context.  相似文献   

20.
The production of Shiga toxin (Stx) (verocytotoxin) is a major virulence factor of Escherichia coli O157:H7 strains (Shiga toxin-producing E. coli [STEC] O157). Two types of Shiga toxins, designated Stx1 and Stx2, are produced in STEC O157. Variants of the Stx2 type (Stx2, Stx2c) are associated with high virulences of these strains for humans. A bacteriophage designated 2851 from a human STEC O157 encoding the Stx2c variant was described previously. Nucleotide sequence analysis of the phage 2851 genome revealed 75 predicted coding sequences and indicated a mosaic structure typical for lambdoid phages. Analyses of free phages and K-12 phage 2851 lysogens revealed that upon excision from the bacterial chromosome, the loss of a phage-encoded IS629 element leads to fusion of phage antA and antB genes, with the generation of a recombined antAB gene encoding a strong antirepressor. In wild-type E. coli O157 as well as in K-12 strains, phage 2851 was found to be integrated in the sbcB locus. Additionally, phage 2851 carries an open reading frame which encodes an OspB-like type III effector similar to that found in Shigella spp. Investigation of 39 stx2c E. coli O157 strains revealed that all except 1 were positive for most phage 2851-specific genes and possessed a prophage with the same border sequences integrated into the sbcB locus. Phage 2851-specific sequences were absent from most stx2c-negative E. coli O157 strains, and we suggest that phage 2851-like phages contributed significantly to the dissemination of the Stx2c variant toxin within this group of E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号