首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wolf-Hirschhorn (4p-) syndrome (WHS), caused by partial deletion of the short arm of chromosome 4, has been extensively described in children and young adults. Knowledge on fetuses with WHS is still limited due to the small number of published cases. We report on a fetus with prenatally diagnosed severe intrauterine growth retardation, reduced thoracal diameter, clubfeet deformity and midface hypoplasia including slight microretrognathia indicative for fetal karyotyping. Chromosome analysis after amniocentesis revealed a de novo terminal deletion of chromosome 4p [karyotype: 46,XX,del(4) (p16)] which was confirmed by FISH. Analyses of a set of polymorphic markers mapping in 4pter->4p15.3 showed absence of paternal haplotypes. These observations corroborate the preferential paternal origin of the de novo 4p deletion in WHS patients. Furthermore, the distal breakpoint could be narrowed to band 4p16.1. At autopsy, the fetus showed typical craniofacial dysmorphic signs of WHS, severe IUGR and delayed bone age. This report suggests the possibility of recognising the particular phenotype of WHS in utero by prenatal ultrasound and emphasises the importance of karyotyping fetuses with severe IUGR, especially when the amount of amniotic fluid is normal.  相似文献   

2.
ObjectiveTo present molecular cytogenetic characterization of an inverted duplication with terminal deletion of 10q, or inv dup del(10q) in a fetus with two concurrent chromosomal rearrangements.Materials, Methods and ResultsA 39-year-old woman underwent amniocentesis at 20 weeks of gestation because of advanced maternal age. Amniocentesis revealed a der(10) with additional material at the end of the long arm of chromosome 10, a der(9) and a der(22). Parental karyotypes were normal. A de novo unbalanced complex chromosomal rearrangement (CCR) was diagnosed by conventional cytogenetics, but the breakpoints could not be defined. The pregnancy was subsequently terminated, and a malformed fetus was delivered with facial dysmorphism. Postnatal analysis of fetal tissues using spectral karyotyping, fluorescence in situ hybridization, multicolor banding, and array-comparative genomic hybridization identified an inv dup del(10q) with an inverted duplication of 10q25.1→q26.2 and a terminal deletion of 10q26.2→qter, and a balanced reciprocal translocation between chromosomes 9 and 22. Microsatellite analysis determined a paternal origin of the inv dup del(10q). The karyotype of the fetus was 46,XX,t(9;22)(p23;q13),der(10)del(10)(q26.2) dup(10)(q26.2q25.1)dn.ConclusionA de novo inv dup del(10q) can be associated with a concurrent de novo balanced reciprocal translocation and should be differentiated from an unbalanced CCR by molecular cytogenetic techniques.  相似文献   

3.
ObjectiveTo present molecular cytogenetic characterization of prenatally detected inverted duplication and deletion of 9p, or inv dup del(9p).Materials, Methods, and ResultsA 35-year-old primigravid woman underwent amniocentesis at 16 weeks of gestation because of advanced maternal age. Amniocentesis revealed a derivative chromosome 9, or der(9) with additional material at the end of the short arm of one chromosome 9. Parental karyotypes were normal. Level II ultrasound showed ventriculomegaly and normal male external genitalia. Repeated amniocentesis was performed at 20 weeks of gestation. Array comparative genomic hybridization revealed a 0.70-Mb deletion at 9p24.3 and an 18.36-Mb duplication from 9p24.3 to 9p22.1. The distal 9p deletion encompassed the genes of DOCK8, ANKRD15, FOXD4, DMRT1, and DMRT3. Fluorescence in situ hybridization analysis using bacterial artificial chromosome clone probes specific for 9p confirmed that the der(9) was derived from the inv dup del(9p). The karyotype of the fetus was 46,XY,inv dup del(9)(:p22.1→p24.3::p24.3→qter)dn or 46,XY,der(9) del(9)(p24.3) inv dup(9)(p22.1p24.3)dn. Polymorphic DNA marker analysis determined a maternal origin of the inv dup del(9p). A 512-g male fetus was subsequently terminated at 22 weeks of gestation with facial dysmorphism. The fetus had normal male external genitalia without sex reversal.ConclusionFluorescence in situ hybridization and array comparative genomic hybridization are useful to determine the nature of a prenatally detected aberrant chromosome derived from the inv dup del. Male fetuses with inv dup del(9p) and haploinsufficiency of DMRT1 and DMRT3 may present normal male external genitalia without sex reversal.  相似文献   

4.
We report on a 4-year-old child with psychomotor retardation, general hypotonia and only mild dysmorphic features. Her chromosome constitution was 46,XX, t (6;9) (q27;q22.1), dup (9) (q21.2q22.1). This de novo interstitial duplication was confirmed using fluorescence in situ hybridisation (FISH) with band-specific probes. This is the second report of a patient with an interstitial duplication of this region of the long arm of chromosome 9. It is concluded that in a child with an abnormal phenotype and a de novo (apparently) balanced translocation, the possibility of a small duplication or deletion should be considered.  相似文献   

5.
ObjectiveWe present molecular cytogenetic characterization of prenatally detected inverted duplication and deletion of 10p [inv dup del(10p)].Case reportA 39-year-old, primigravid woman underwent amniocentesis at 17 weeks of gestation because of advanced maternal age. Amniocentesis revealed a derivative chromosome 10 with additional material at the end of the short arm of one chromosome 10. Simultaneous array comparative genomic hybridization (aCGH) analysis revealed the result of arr 10p15.3 (136,361–451,013) × 1, 10p15.3p12.1 (536,704–25,396,900) × 3 [GRCh37 (hg19)] with a 0.31-Mb deletion of 10p15.3 encompassing ZMYND11 and DIP2C, and a 24.86-Mb duplication of 10p15.3p12.1. The pregnancy was subsequently terminated, and a female fetus was delivered with facial dysmorphism. Postnatal aCGH analysis showed that the umbilical cord had the same result as that of amniotic fluid, whereas the placenta had only the deletion of 10p15.3. Fluorescence in situ hybridization (FISH) analysis of the cord blood confirmed inverted duplication and deletion of 10p. The cord blood had a karyotype of 46,XX,der(10) del(10) (p15.3)dup(10) (p15.3p12.1)dn. Polymorphic DNA marker analysis confirmed a maternal origin of the chromosome 10 aberration.ConclusionPrenatal diagnosis of inv dup del(10p) with haploinsufficiency of ZMYND11 should include a genetic counseling of mental retardation and chromosome 10p15.3 microdeletion syndrome. aCGH, FISH and polymorphic DNA marker analysis are useful for perinatal investigation of inv dup del(10p).  相似文献   

6.
The Wolf-Hirschhorn syndrome (WHS) is characterized by severe pre- and postnatal growth retardation, specific pattern of dysmorphisms, and severe developmental delay. These clinical findings are the result of a deletion within the short arm of chromosome 4. Most cases occur de novo and are of paternal origin. Cases due to a balanced translocation are mostly of maternal origin and the deletion of distal 4p, including the WHS critical region, is often combined with a duplication of the other chromosomal segment involved in the rearrangement. Here, we report on a newborn female infant with WHS and pure tertiary monosomy due to a 3:1 segregation of a balanced maternal 4;15 translocation. In this context, importance of fluorescence in situ hybridization (FISH) with specific probes to determine the exact breakpoints in unbalanced chromosomal rearrangements with breakpoints localized around known microdeletion syndromes is emphasized.  相似文献   

7.
We describe a 10-month-old boy with 22q13 deletion syndrome. Chromosomal analysis showed a partial duplication of 22p11.2-pter and a terminal deletion of 22q13.31-qter. Maternal chromosomal analysis showed a pericentric inversion of chromosome 22, with breakpoints at p11.2 and q13.31 [inv(22)(p11.2q13.31)]. The deleted chromosome resulted from a recombinant chromosome inherited from his mother. This is a rare case of 22q13 deletion syndrome associated with parental pericentric inversion of chromosome 22.  相似文献   

8.
We describe the finding of three cell lines involving different structural abnormalities of chromosome 8 detected in a prenatal diagnosis. Chorionic villi sampling (CVS) was performed on a pregnant woman because of advanced maternal age. Semidirect cytogenetic analysis showed a mos46,XX,i(8q)/46,XX,del(8)(p11.2) karyotype, confirmed by fluorescence in situ hybridization (FISH). Amniocentesis was subsequently performed, and the karyotype obtained was 46,XX,dup(8)(p23p11.2). The pregnancy was terminated; pathologic findings included clubfeet, clenched left hand, subcutaneous edema and bilateral hydrocephalus. Molecular studies using chromosome 8 microsatellites performed on parents' blood and fetal tissues revealed a maternal meiotic origin of the inv dup(8p) with deletion of the distal p23 region and duplication of the remaining 8p. We propose a model to explain the cytogenetic findings, which includes a first maternal meiotic error giving rise to a large dicentric isochromosome 8 present in the ovum, a second error in one of the first zygote divisions with misdivision of the dicentric 8 giving rise to a cell line with del(8p) confined to the trophoblast and another cell line with inv dup(8p) confined to the fetal tissue and a third error in the trophoblast giving rise to a further cell line with isochromosome 8q.  相似文献   

9.
We report on a female who presents with an atrial septal defect (ASD), mild hypotelorism, a prominent nasal bridge, a long smooth philtrum, mild developmental delay and a de novo interstitial deletion of the short arm of chromosome 2p, del (2)(p16.2p21). This is the first report of a deletion in chromosome 2 involving those particular breakpoints. We propose that this may represent a new recognizable chromosomal phenotype.  相似文献   

10.
OBJECTIVES: To present the prenatal diagnosis of mosaic distal 5p deletion and a review of the literature. CLINICAL SUBJECT AND METHODS: A 37-year-old woman, gravida 2, para 1, underwent genetic amniocentesis at 17 weeks' gestation because of advanced maternal age. Cytogenetic analysis of the cultured amniocytes revealed mosaicism for a distal 5p deletion, mos 46,XX,del(5)(p15.1)/46,XX (23 colonies/23 colonies). Repeat amniocentesis showed a consistent karyotype of mos 46,XX,del(5)(p15.1)/46,XX (12 colonies/15 colonies). The parental karyotypes were normal. Prenatal ultrasound demonstrated microcephaly and cerebellar hypoplasia. The pregnancy was terminated at 21 weeks' gestation. Postnatally, the fetus displayed microcephaly, a triangular face, hypertelorism, epicanthic folds, down-slanting palpebral fissures, low-set ears, and micrognathia. A karyotype of mos 46,XX,del(5)(p15.1)/46,XX was found in the cord blood, liver, lungs, and skin, whereas the placenta had a different karyotype of mos 46,XX,dup(5)(qter-->p15.3::p15.3-->p10)/46,XX, and the karyotype of the amnion was mos 46,XX,del(5)(p15.1)/46,XX,dup(5)(qter-->p15.3::p15.3-->p10)/46,XX,trp(5)(qter-->p15.3::p15.3-->p10::p10-->p15.3)/46,XX. The deletion, duplication, and triplication of the terminal region of the short arm of chromosome 5 were confirmed by the studies of fluorescence in situ hybridization. CONCLUSION: The cri-du-chat syndrome can be identified prenatally because of advanced maternal age, familial cri-du-chat syndrome, parental balanced translocations involving chromosome 5, sonographically detected fetal structural abnormalities, and/or an abnormal maternal serum test. Fetuses with the mosaic distal 5p deletion may be associated with the sonographic findings of microcephaly and cerebellar hypoplasia, and fetoplacental and fetoamnionic chromosomal discrepancies.  相似文献   

11.
Partial trisomy 1q is rare and mostly the result of an abnormal segregation of parental translocation chromosomes and their homologues. Only 31 cases have been described with pure partial trisomy 1q. In the fetus presented, chromosome analysis after amniocentesis had shown an unbalanced male karyotype with an aberrant chromosome 1. A de novo terminal duplication of the long arm was suspected but could not be verified by FISH in 1994. Five years after fetal death, retrospective identification of the additional material in 1q could finally be achieved by comparative genomic hybridization (CGH) using DNA extracted from formalin-fixed and paraffin-embedded fetal tissues. A direct duplication dir dup (1)(pter-->q44::q32.1-->qter) was found. Only 6 other individuals with duplication of this segment have been described so far. Comparative delineation of a dup1q phenotype with regard to size and origin of the dup (1q) segment evidenced that large duplications as well as proximal and interstitial duplications coincide with more severe visceral malformations, severe mental retar- dation and a short life span. Terminal duplications (1q32-->qter) concur with less severe malformations and longer periods of survival, but marked mental retardation. With small terminal duplications (1q42-->qter) dysmorphisms are usually mild and intellectual performance is mostly in the normal range.  相似文献   

12.
The terminal deletion of chromosome 1q is a disease of rare incidence. It might be hereditary or caused by spontaneous changes within the chromosome. Phenotypic characteristics including typical facial appearance, microcephaly, psychomotor retardation and variable other anomalies are suggested to be based on the loss of macrochromosomal materials within the long arm of chromosome 1. The number of symptoms is related to the loss of genetic material. To date, only very few cases of terminal 1q deletion syndrome have been diagnosed in utero, mainly after 20 weeks of gestation. Here, we present a case of del(1q)syndrome in a first-trimester fetus. Besides other structural anomalies of the fetus, prenatal ultrasound at 13 weeks' gestation demonstrated severe microgenia and suspicion of cardiac defect. Chorionic villous sampling was performed, and cytogenetic analysis showed a de novo terminal chromosome 1 long arm deletion. We discuss the structural features of antenatally diagnosed fetuses with terminal deletion of chromosome 1 and try to give an answer to the question whether there is a characteristic antenatal 1q deletion phenotype.  相似文献   

13.
ObjectiveThe 18q terminal deletion with inverted duplication is an extremely rare abnormality, with only three confirmed cases in Europe to date. Here, we report, for the first time, a case of de novo 18q inv-dup-del in a Turkish pregnant woman.Case reportA 30-year-old pregnant woman was referred for genetic analysis at her 25th gestational week due to foetal diaphragmatic hernia and rocker bottom feet. Cytogenetic analysis of the parents revealed a karyotype of 46,XX,inv(18) (p11.3q21.3) of the mother and a normal karyotype of the father. The foetal karyotype was defined as 46,XX,rec(18)del(18q)inv(18) (p11.3q21.3)mat.ConclusionTo our knowledge, this is the first report of a prenatal diagnosis. Genetic counselling issues for this family, particularly affected individuals, include an increased likelihood of reduced fertility and a risk of recurrence of parental inversion equal to 1/2 in surviving offspring.  相似文献   

14.
Wolf-Hirschhorn syndrome (WHS) and Patau syndrome are two of the most severe conditions resulting from chromosome abnormalities. WHS is caused by a deletion of 4p16, while Patau syndrome is caused by trisomy for some or all regions of chromosome 13. Though the etiologies of these syndromes differ, they share several features including pre- and postnatal growth retardation, microcephaly, cleft lip and palate, and cardiac anomalies. We present here a female fetus with deletion of 4p16 --> pter and duplication of 13q32 --> qter due to unbalanced segregation of t(4;13)(p16;q32) in the father. She displayed overlapping features of both of these syndromes on ultrasound. To the best of our knowledge, this is the first report of a fetus with both partial trisomy 13 and deletion of 4p16, the critical region for WHS.  相似文献   

15.
We report prenatal and early postnatal findings in a newborn with a partial trisomy of chromosome 7 (7q31.3-qter), arising from meiotic recombination of a paternal pericentric inversion, inv(7)(p22q31.3). The inversion breakpoints were localized and the regions of duplication and deletion were defined by fluorescence in situ hybridization (FISH) analysis using a series of locus-specific and subtelomeric probes. To our knowledge, only three cases involving a recombinant 7 with duplication of 7q have been reported, two of these being first cousins. The clinical findings in our patient included skeletal abnormalities, facial dysmorphism, dilated cerebral ventricles, microretrognathia and short neck. These findings and some aspects of the neonatal course were consistent with the phenotype previously reported for duplication of distal 7q, without associated monosomy for sequences from another chromosome.  相似文献   

16.
Two rare de novo structural aberrations of the Y chromosome were detected during routine prenatal diagnosis: a satellited non-fluorescent Y chromosome (Yqs), the first de novo Yqs to be reported in a fetus, and a terminal deletion of the Y chromosome long arm del(Y)(q11). In both cases detailed cytogenetic and molecular analyses were undertaken. In the case of the Yqs it was demonstrated by fluorescence in situ hybridization (FISH) that the satellites were derived from chromosome 15. In the case of the del(Yq), it was shown with molecular analysis by polymerase chain reaction (PCR) amplification of sequence-tagged sites (STS-PCR) that the deleted portion of the long arm of chromosome Y included the azoospermia factor loci, AZFb and AZFc. The clinical significance of these findings is discussed.  相似文献   

17.
ObjectiveTo present prenatal diagnosis and molecular cytogenetic characterization of Wolf-Hirschhorn syndrome (WHS) associated with microduplications at 8p and 10p in a fetus with an apparently pure 4p deletion.Case ReportA 35-year-old gravida 2, para 1 woman underwent amniocentesis at 18 weeks of gestation because of advanced maternal age. Her husband was 38 years of age. There was no family history of congenital malformations. Amniocentesis revealed a karyotype of 46,XY,del(4p16.1). The parental karyotypes were normal. Array comparative genomic hybridization (aCGH) analysis revealed a 6.5-Mb deletion at 4p16.3-p16.1, a 1.2-Mb microduplication at 8p22-p21.3, and a 1.1-Mb microduplication at 10p15.3, or arr cgh 4p16.3p16.1 (0–6,531,998 bp)×1, 8p22p21.3 (18,705,388–19,940,445 bp)×3, 10p15.3 (0–1,105,065 bp)×3. Polymorphic DNA marker analysis confirmed a paternal origin of 4p deletion. Prenatal ultrasound revealed facial dysmorphism and hypospadias. The aCGH analysis of the parents revealed no genomic imbalance. Fluorescence in situ hybridization study showed an unbalanced reciprocal translocation between chromosomes 4 and 10 at bands 4p16.1 and 10p15.3. The cytogenetic result, thus, was 46,XY,der(4)t(4;10)(p16.1;p15.3),dup(8)(p21.3p22). The parents elected to terminate the pregnancy, and a 470-g malformed fetus was delivered.ConclusionThe present case provides evidence that an apparently pure 4p deletion can be associated with subtle chromosome imbalances in other chromosomes.  相似文献   

18.
Fetuses with omphalocele have an increased risk for chromosomal abnormalities. The risk varies with maternal age, gestational age at diagnosis, association with umbilical cord cysts, complexity of associated anomalies, and the contents of omphalocele. There is considerable evidence that genetics contributes to the etiology of omphalocele. This article provides an overview of chromosomal abnormalities associated with omphalocele and a comprehensive review of associated full aneuploidy such as trisomy 18, trisomy 13, triploidy, trisomy 21, 45,X, 47,XXY, and 47,XXX, partial aneuploidy such as dup (3q), dup (11p), inv (11), dup (1q), del (1q), dup (4q), dup (5p), dup (6q), del (9p), dup (15q), dup(17q), Pallister-Killian syndrome with mosaic tetrasomy 12p and Miller-Dieker lissencephaly syndrome with deletion of 17p13.3, and uniparental disomy (UPD) such as UPD 11 and UPD 14. Omphalocele is a prominent marker for chromosomal abnormalities. Perinatal identification of omphalocele should alert chromosomal abnormalities and familial unbalanced translocations, and prompt thorough cytogenetic investigations and genetic counseling.  相似文献   

19.
Fetuses with neural tube defects (NTDs) carry a risk of chromosomal abnormalities. The risk varies with maternal age, gestational age at diagnosis, association with other structural abnormalities, and family history of chromosome aberrations. This article provides a comprehensive review of structural chromosomal abnormalities associated with NTDs, such as del(13q), r(13), dup(2p), del(2q), del(1p), del(1q), dup(1q), del(3p), dup(3p), del(3q), dup(3q), del(4p), dup(4p), del(4q), dup(4q), del(5p), del(6p), dup(6q), del(6q), dup(7p), del(7q), dup(8q), del(9p), del(10q), del(11q), dup(11q), dup(12p), dup(14q), del(14q), del(15q), dup(16q), del(18q), r(18), dup(20p), +i(20p), del(22q), del(Xp), and dup(Xq). NTDs may be associated with aneuploidy. Perinatal identification of NTDs should alert one to the possibility of chromosomal abnormalities and prompt a thorough cytogenetic investigation and genetic counseling.  相似文献   

20.
This is a case report of the prenatal diagnosis of a de novo interstitial duplication of chromosome 2 (46,XX,dup(2)(p13p21) de novo) with an associated phenotypic abnormality. This chromosomal duplication is rare, only one has previously been described prenatally. Postnatal reports of similar duplications in this region have described associated dysmorphic features and significant neurodevelopmental delay. In our case, the only ultrasound finding was moderately severe ventriculomegaly. At post-mortem, ventriculomegaly was confirmed and there was associated macrocephaly (head circumference above the 97th centile) with no dysmorphic features seen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号