首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the identification of a novel neuropeptide from Aplysia nervous tissue. The peptide was termed Pedal peptide (Pep) because it was predominantly synthesized in the pedal ganglia. Pep was purified and sequenced from pooled extracts of pedal ganglia. The following sequence was proposed: Pro-Leu-Asp-Ser-Val-Tyr-Gly-Thr-His-Gly-Met-Ser-Gly-Phe-Ala. Enzymatic hydrolysis procedures indicated that Pep had a free carboxyl terminal. A peptide with the proposed sequence was synthesized and compared with the native peptide. Chromatographic properties of the 2 peptides under 3 different conditioned were compared and found to be identical. Electrophysiological responses to the 2 peptides were compared on an identified neuron in the abdominal ganglia and found to be qualitatively and quantitatively very similar. Both peptides produced net inward currents that were associated with a decrease in membrane conductance. The results from these 2 procedures confirmed that the proposed Pep sequence was correct. Quantitative measurements of the incorporation of 35S-methionine into Pep suggest that cell bodies that synthesize Pep were present predominantly in the pedal ganglia but should also be found in other central ganglia as well. Pep-like immunoreactive neurons are found predominantly in the pedal ganglia and less frequently in the other ganglia (Pearson and Lloyd, 1989). Quantitatively, Pep constitutes one of the predominant peptides in the nervous system of Aplysia. Pep does not appear to be a member of any other previously identified invertebrate or vertebrate peptide family.  相似文献   

2.
In this study, antiserum raised against an insect myotropic peptide, leucokinin I (DPAFNSWGamide), was: used for mapping leucokinin-like immunoreactive (LK-LI) neurons in the gastropod mollusc, Helix pomatia. Immunocytochemistry performed on both whole-mounts and cryostat sections demonstrated LK-LI neurons in all ganglia of the central nervous system (CNS), except the visceral ganglion. Altogether about 700 immunolabelled neurons have been found, with nearly one-half (46%) in the cerebral ganglia. A large proportion of the LK-LI neurons have small cell bodies and are likely to be interneurons. The most prominent LK-LI cell group is represented by the entire neuron population of the mesocerebri, which is the major source of a thick fiber bundle system, encircling and innervating the whole CNS. One single LK-LI giant neuron was found, which is located in the left pedal ganglion and is termed GLPdLKC (giant left pedal leucokinin immunoreactive cell). This cell has not been identified previously. The ganglion neuropils are heavily innervated by varicose LK-LI fiber arborizations. Some integrative centers, such as the medullary neuropil of the procerebri, reveal an extreme density of LK-LI innervation. All major peripheral nerves contain a large number of LK-LI axons, and LK-LI innervation is found in the musculature of different peripheral organs (buccal mass, lip, tentacles, oviduct, intestine). Among the peripheral organs investigated, the intestine contains a rich varicose LK-LI network, composed of both intrinsic and extrinsic elements. Radioimmunoassay (RIA) demonstrates a very high content of LK-LI material in Helix ganglion extracts (about 50 pmol/CNS). This is the first report on the occurrence of a substance resembling the myotropic neuropeptide leucokinin I in a phylum outside arthropods. Based on our immunocytochemical observations, a role for leucokinin-like peptides in both central and peripheral regulatory processes in Helix is suggested. According to double-labelling experiments, only a small number of the LK-LI neurons are labelled with an antibody to the vertebrate tachykinin substance P.  相似文献   

3.
The neuropeptides myomodulin, small cardioactive peptide (SCP), and buccalin are widely distributed in the phylum Mollusca and have important physiological functions. Here, we describe the detailed distribution of each class of peptide in the central nervous system (CNS) of the snail Lymnaea stagnalis by the use of immunocytochemical techniques combined with dye-marking of electrophysiologically identified neurons. We report the isolation and structural characterization of a Lymnaea myomodulin, PMSMLRLamide, identical to myomodulin A of Aplysia californica. Myomodulin immunoreactivity was localized in all 11 ganglia, in their connectives, and in peripheral nerves. In many cases, myomodulin immunoreactivity appeared localized in neuronal clusters expressing FMRFamide-like peptides, but also in a large number of additional neurons. Double-labelling experiments demonstrated myomodulin immunoreactivity in the visceral white interneuron, involved in regulation of cardiorespiration. SCP-like immunoreactivity also appeared in all ganglia, and double-labelling experiments revealed that in many locations it was specifically associated with clusters expressing distinct exons of the FMRFamide gene that are differentially expressed in the CNS. Characterization of the two types of SCP-antisera used in this study, however, suggested that they cross-reacted with both FMRFamide and N-terminally extended FMRFamide-like peptides. Selective preadsorption with these cross-reacting peptides resulted in elimination of the widespread staining and retention of bona fide SCP immunoreactivity in the buccal and pedal ganglia only. Buccalin immunoreactivity was limited to the buccal and pedal ganglia. It did not coincide with the distribution of either myomodulin or SCP. Most immunoreactive clusters were found in the pedal ganglia. © 1994 Wiley-Liss, Inc.  相似文献   

4.
The localization of crustacean cardioactive peptide-like immunoreactivity in the horseshoe crab Limulus polyphemus was investigated with enzyme-linked immunosorbent assay and fluorescence microscopy. Immunoreactivity was quantified in the opisthosomal nervous system (67.7 ± 11.4 ng/g), cardiac ganglion (45.0 ± 10.3 ng/g), prosomal nervous system (28. 5 ± 6. 6 ng/g), and midgut (24.6 ± 6.7 ng/g). In the brain, immunoreactive somata were observed in ganglion cells of the central body, in the medullary group and within the ventral medial group. Clusters of immunoreactive cells were found in each of the circumesophageal, pedal ganglia, and in the opisthosomal, abdominal ganglia. In the periphery, immunoreactive varicose fibers were observed in branches of the intestinal nerves, and near longitudinal and circular muscle fibers of the midgut. Immunoreactivity was observed in the cardiac ganglion and myocardium of the neurogenic heart. Synthetic crustacean cardioactive peptide had slight excitatory effects on the cardiac rhythm at doses up to 10?6 M. This peptide had excitatory effects on the midgut at nanomolar doses. Ventral nerve cord extracts were partially purified with reverse phase high performance liquid chromatography. Two regions of immunoreactivity were detected, one of which coeluted with the authentic peptide. The distribution of crustacean cardioactive peptide immunoreactivity is compared with other transmitter systems in the Limulus nervous system, and myotropic actions of this peptide are discussed with respect to peptidergic modulation of intestinal motility. © 1995 Wiley-Liss, Inc.  相似文献   

5.
Gamma-aminobutyric acid (GABA) is present in the central nervous system of Aplysia californica (Gastropoda, Opisthobranchia) where its role as a neurotransmitter is supported by pharmacological, biochemical, and anatomical investigations. In this study, the distribution of GABA-immunoreactive (GABAi) neurons and fiber systems in Aplysia was examined by using wholemount immunohistochemistry and nerve backfill methods. GABAi neurons were located in the buccal, cerebral, and pedal ganglia. Major commissural fiber systems were present in each of these ganglia, whereas more limited fiber systems were observed in the ganglionic connectives. Some of the interganglionic fibers were found to originate from two unpaired GABAi neurons, one in the buccal ganglion and one in the right pedal ganglion, each of which exhibited bilateral projections. No GABAi fibers were found in the nerves that innervate peripheral sensory, motor, or visceral organs. Although GABAi cells were not observed in the pleural or abdominal ganglia, these ganglia did receive limited projections of GABAi fibers originating from neurons in the pedal ganglia. The distribution of GABAi neurons suggests that this transmitter system may be primarily involved in coordinating certain bilateral central pattern generator (CPG) systems related to feeding and locomotion. In addition, the presence of specific interganglionic GABAi projections also suggests a role in the regulation or coordination of circuits that produce components of complex behaviors.  相似文献   

6.
Land snails belonging to the genus Helix are commonly used to study several behaviors and their plasticity at the cellular level. Because the knowledge of sensory neurons in these species is far from being complete, we have investigated the presence and distribution in Helix pomatia central nervous system of the immunoreactivity for sensorin, a peptide specific for mechanosensory neurons in Aplysia. We found that the majority of immunopositive cells were grouped in clusters located in all the central ganglia, except for the pedal ganglion, where only a single large neuron was stained. A symmetrical cluster of stained cells in the cerebral ganglia showed homology with the cerebral J clusters in Aplysia. Most of the somata of these Helix cerebral clusters send their axons in the ipsilateral cerebropedal connective and lip nerves and make monosynaptic connections with cells located in a medial adjacent cluster. This monosynaptic circuit can be reestablished in culture, where it shows homosynaptic depression as it does in the ganglionic preparation.  相似文献   

7.
The distribution of myomodulin-like peptides in the nervous system of Aplysia californica was examined by using immunocytochemical techniques. Neurons and cell clusters containing immunoreactive material were located in each of the major central ganglia. Myomodulin-like immunoreactivity was also present in fibers in each of the connectives between the ganglia and in peripheral nerves. Varicosities containing immunoreactive material were located on specific regions of peripheral tissues associated with the feeding, digestive, cardiovascular, and reproductive systems. Double-labeling experiments were used to demonstrate myomodulin-like immunoreactivity in two identified neurons, the motor neuron B16 in the buccal ganglion and the widely acting interneuron L10 in the abdominal ganglion. Structures in the eye and cerebral ganglion that may correspond to the optic circadian pacemaker system were also stained. The central and peripheral distribution of myomodulin-like immunoreactivity indicates that this family of neuropeptides is present in specific efferent, afferent, and interneuronal elements that participate in a diversity of neural circuits in Aplysia.  相似文献   

8.
Neuropeptide-like immunoreactivity to antisera raised against Leu- and Met-enkephalin, vasoactive intestinal peptide (VIP), neuropeptide Y (NPY) and substance P (SP) have been studied immunohistochemically in middle cervical and stellate ganglia of dogs. To investigate the relationship of the peptides to one another as well as to preganglionic and postganglionic neurons, intact and chronically decentralized middle cervical and stellate ganglia were studied. Ganglia were processed for immunohistochemistry in unoperated dogs and in dogs two weeks after unilateral ganglionic decentralization. The immunoreactivity for each peptide had a characteristic distribution in the ganglia. These distributions differed from one another and from the distribution of cardiac postganglionic sympathetic neurons. Camera lucida drawings of peptide distributions were made to compare different peptides and counts were made to determine the percentages of cells immunoreactive for a given peptide. The results demonstrated that enkephalin-like immunoreactivity in axons was present in both the stellate and middle cervical ganglia, but was heaviest in the caudal 2/3 of the stellate ganglia. Enkephalin-like immunoreactive fibers formed pericellular baskets around stellate ganglion neurons. VIP-like immunoreactive cell bodies and processes were distributed sparsely, but widely, in the stellate ganglia and to a lesser extent in the middle cervical ganglia. One of two commercial antisera to SP resulted in immunoreactive staining of cell bodies and processes in the stellate ganglia. SP-like immunoreactivity in neurons represented about 10% or less of the cells in the stellate ganglia. At least 80-85% of the neurons in the stellate and middle cervical ganglia were immunoreactive for NPY antisera. Decentralization eliminated enkephalin-like immunoreactive staining in the middle cervical and stellate ganglia, but not the VIP-, NPY- and SP-like immunoreactive staining of neurons in these ganglia. In summary, the enkephalin-like immunoreactive axons in the thoracic autonomic ganglia appear to be derived from extrinsic neurons, most likely from preganglionic spinal neurons. VIP-, SP- and NPY-like immunoreactivity were not significantly affected by decentralization. The results provide anatomical evidence for substrates related to neuropeptidergic synaptic mechanisms in thoracic autonomic ganglia.  相似文献   

9.
Composition of the pelvic nerve   总被引:1,自引:1,他引:0  
Surgical interruption of the pelvic nerve elevated immunoreactive vasoactive intestinal polypeptide in the major pelvic ganglion of the rat. Two changes were noted: (i) varicose and smooth fibers appeared in the neuropil and (ii) a small number of ganglion cells became highly reactive for the polypeptide. A more proximal transection of preganglionic parasympathetic fibers, at their origin from spinal nerves, had no effect on vasoactive intestinal polypeptide immunoreactivity. Ganglion cells were labeled when a dye was applied to the cut distal end of the pelvic nerve. We conclude that a population of vasoactive intestinal polypeptide-containing neurons in the major pelvic ganglion send their axons proximally in the pelvic nerve.  相似文献   

10.
The distribution of neurons reacting with an antibody raised against an insect neuropeptide, locustatachykinin I, was investigated in the CNS of the snail Helix pomatia. The localization of the neurons was compared with that of the substance P-like immunoreactive (SPLI) neurons in the different ganglia. Altogether, there are 800–1000 locustatachykinin-like immunoreactive (LomTKLI) neurons in the Helix CNS, occurring with an overwhelming dominancy (83.5%) in the cerebral ganglia. Within the cerebral ganglia, the majority of LomTKLI neurons were localized in the procerebrum. The number of SPLI neurons was high; 2000 SPLI nerve cells were found in the Helix CNS. The majority (44.5%) of SPLI neurons was also found in the cerebral ganglia and they were also concentrated in the procerebrum. The neuropils of all ganglia were densely innervated by both LomTKLI and SPLI fibers except the medullary mass of the procerebrum where only SPLI elements form an extremely dense innervation. In addition to the neuropil processes, LomTKLI neurons sent axon processes to the peripheral nerves. SPLI fibers also formed a dense network of varicose fibers in the connective tissue sheath around the ganglia where they innervated the blood vessel walls too. Immunolabeling on alternating cryostat sections revealed that LomTKLI and SPLI neurons are localized near each other in most cases; co-localization of the two immunoreactive materials could be seen in a very small number of neurons of the pedal and pleural ganglia. The present results show that the Helix CNS possesses distinct neuronal populations using different tachykinin-related peptides. It is suggested that the differential distribution of these neuropeptides also implies a diversity in their central and peripheral functions.  相似文献   

11.
The digenetic trematode Schistosoma mansoni that causes the form of schistosomiasis found in the Western Hemisphere requires the freshwater snail Biomphalaria glabrata as its primary intermediate host. It has been proposed that the transition from the free-living S. mansoni miracidium to parasitic mother sporocyst depends on uptake of biogenic amines, e.g. serotonin, from the snail host. However, little is known about potential sources of serotonin in B. glabrata tissues. This investigation examined the localization of serotonin-like immunoreactivity (5HTli) in the central nervous system (CNS) and peripheral tissues of B. glabrata. Emphasis was placed on the cephalic and anterior pedal regions that are commonly the sites of S. mansoni miracidium penetration. The anterior foot and body wall were densely innervated by 5HTli fibers but no peripheral immunoreactive neuronal somata were detected. Within the CNS, clusters of 5HTli neurons were observed in the cerebral, pedal, left parietal, and visceral ganglia, suggesting that the peripheral serotonergic fibers originate from the CNS. Double-labeling experiments (biocytin backfill × serotonin immunoreactivity) of the tentacular nerve and the three major pedal nerves (Pd n. 10, Pd n. 11, and Pd n. 12) disclosed central neurons that project to the cephalopedal periphery. Overall, the central distribution of 5HTli neurons suggests that, as in other gastropods, serotonin regulates the locomotion, reproductive, and feeding systems of Biomphalaria. The projections to the foot and body wall indicate that serotonin may also participate in defensive, nociceptive, or inflammation responses. These observations identify potential sources of host-derived serotonin in this parasite-host system. Inc.  相似文献   

12.
The neuropeptide buccalin A was originally purified and sequenced from a nerve-muscle system used in feeding-related behaviors of Aplysia californica in which it has been proposed that it acts as a modulatory cotransmitter. The distribution of buccalin-like immunoreactivity in the central ganglia and in peripheral tissues of Aplysia californica was examined by whole mount immunohistochemical techniques. Immunoreactive material was located in specific cell bodies and clusters of neurons in each of the ganglia. Immunoreactive fibers were present in each of the connectives between ganglia, in tracts coursing through the ganglia, and in the majority of the peripheral nerves. Most fibers were smooth in contour, but some had regularly spaced swellings. Varicosities containing immunoreactive material were located on specific neuronal somata and on certain tissues associated with the feeding, circulatory, digestive, and reproductive systems. The specific and widespread distribution of buccalin-like immunoreactivity supports the hypothesis that members of the buccalin peptide family act as neuromodulators or neurotransmitters in a variety of central and peripheral circuits in Aplysia.  相似文献   

13.
Each eye of Aplysia contains a population of electrically coupled pacemaker neurons whose synchronous activity can be recorded from the optic nerve as a compound action potential (CAP). The CAP frequency continues to show a circadian rhythm even when the eye is isolated from the animal and maintained in constant conditions, and thus it contains an autonomous circadian pacemaker, which may reside in the pacemaker neurons. The pacemaker neurons, along with retinal photoreceptors, send axons out of the optic nerve, which connects to the cerebral ganglion of the central nervous system (CNS). Pacemaker neurons, but not photoreceptors, may contain an aminergic transmitter, possibly dopamine (DA). We describe the central projections of optic nerve fibers using horseradish peroxidase filling of the cut optic nerve, and transport of radiolabeled macromolecules after selective exposure of the eye to [3H] leucine, which labels both pacemaker neurons and photoreceptors. We were able to determine the projections of pacemaker axons by exposing the eye to [3H]-3,4-dihydroxyphenylalanine [( 3H] DOPA and [3H]DA, which is preferentially taken up and transported by the pacemaker neurons. Pacemaker axons project bilaterally to the cerebral, pedal, and pleural ganglia and may extend as far as the abdominal ganglion. We corroborate this anatomical evidence by recording an orthodromic CAP in the optic nerve that had originated in the eye and subsequently recording the CAP in the CNS connectives and nerves that contained [3H]DOPA-labeled fibers. These results suggest that circadian pacemaker information from the eye is widely distributed throughout the CNS, including neural structures known from studies by others to mediate circadian-regulated behaviors, such as locomotion. Thus, Aplysia can now be used as a model system to examine the influence of the central projections of an identified circadian pacemaker on behavior, such as locomotion, at the level of identified central neurons.  相似文献   

14.
The distribution of Substance P-like immunoreactivity in the jugular and nodose ganglia of rabbits and pigeons has been studied using immunocytochemical staining techniques. Substance P-like immunoreactivity is localized to neuronal cell bodies and processes in the jugular and nodose ganglia, and to pericellular fiber plexi in the nodose ganglia of both species. The numbers and sizes of cells which exhibited Substance P-like immunoreactivity in each ganglion were determined using quantitative morphometric techniques. The distribution of Substance P-like immunoreactivity in the rabbit and pigeon vagal sensory ganglia is characterized by several general features. In most of the ganglia, immunoreactive neurons factor into discrete types which can be distinguished from one another, and from non-immunoreactive neurons, by size. In addition, immunoreactive nodose and jugular ganglion cells, respectively, are distinguishable on the basis of size. Finally, a considerably higher percentage of immunoreactive neurons is found in the jugular ganglion than in the nodose ganglion. Substance P-like immunoreactivity was also seen in pericellular fiber plexi which encircle individual neurons in the nodose ganglion of rabbits and pigeons. These plexi are composed of varicose fibers which appear to terminate as boutons on the surfaces of the cells which they encircle. The distribution of Substance P-like immunoreactivity within the vagal sensory ganglia is discussed with respect to the possible peripheral targets and functions of Substance P-containing vagal afferents. Our findings suggest that Substance P-containing vagal sensory neurons are involved in a variety of visceral and somatic afferent functions.  相似文献   

15.
Although a well-developed plexus of nerves and ganglia is known to be present in the wall of the gallbladder, little has previously been learned about the function or organization of this innervation. The current study was undertaken in order to evaluate the hypothesis that the ganglionated plexus of the gallbladder is analogous to elements of the enteric nervous system (ENS). The ganglionated plexus of the gallbladder was found to resemble closely the submucosal plexus of the small intestine in its organization into two irregular anastomosing and interwoven networks of ganglia, in the numbers of neurons per ganglion, and in the manifestation of histochemically demonstrable acetylcholinesterase activity in virtually all ganglion cells. In common with enteric ganglia, laminin immunoreactivity was observed to be excluded from the interiors of gallbladder ganglia, which were surrounded by a periganglionic laminin-immunoreactive sheath. As in the submucosal plexus, intrinsic substance P-, vasoactive intestinal polypeptide (VIP)-, and neuropeptide Y (NPY)-immunoreactive neurons were seen in the ganglionated plexus of the gallbladder. Extrinsic nerves in the gallbladder that degenerated following chemical sympathectomy with 6-hydroxydopamine (6-OHDA), and which contained NPY, tyrosine hydroxylase (TH), and dopamine-beta-hydroxylase (DBH) immunoreactivities, formed a perivascular plexus closely associated with blood vessels. Endogenous catecholamines could also be demonstrated in these perivascular nerves by aldehyde-induced histofluorescence. In addition to perivascular nerves, paravascular nerve bundles were observed that were loosely associated with vessels, did not degenerate following administration of 6-OHDA, and contained NPY immunoreactivity. Other paravascular nerves, probably visceral sensory axons, coexpressed substance P and calcitonin-gene-related peptide (CGRP) immunoreactivities. The ganglionated plexus of the gallbladder resembled enteric ganglia in having intrinsic 5-hydroxytryptamine (5-HT)-immunoreactive cells and highly varicose nerve fibers. The 5-HT-immunoreactive gallbladder axons were, like those of the gut, resistant to 6-OHDA, and separate from fibers that expressed TH immunoreactivity. Differences between the ganglionated plexus of the gallbladder and enteric ganglia of the small intestine included in the gallbladder are 1) the presence of TH-immunoreactive cells that contain an endogenous catecholamine, but not DBH; 2) DBH-immunoreactive neurons, some of which coexpress substance P immunoreactivity, but which contain neither a catecholamine nor TH immunoreactivity; 3) an apparent absence of CGRP-immunoreactive cell bodies.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The distribution of gamma-aminobutyric acid (GABA)-like immunoreactivity was investigated in the pedal ganglia (PG) of Mytilus galloprovincialis (Mollusca, Bivalvia) with the aid of an antiserum raised against GABA coupled to bovine serum albumin. Examination of whole-mount preparations and serial vibratome and semithin sections showed the presence of different types of immunoreactive neurons. Small unipolar neurons were the most numerous, and were located mainly in the lateral ganglion cortex. A few bipolar and small multipolar neurons were scattered in the cortex, and, more rarely, in the neuropile. Furthermore, two large symmetrical multipolar neurons, the processes of which extended over large fields in the ipsilateral and contralateral neuropile, were consistently observed in each ganglion. Immunoreactive fibers formed networks in the neuropile and ran parallel in the commissure and in all nerves and connectives. The morphology and distribution of neurons and fibers immunostained by the anti-GABA serum were similar to those of GAD-like immunoreactive elements, which indicates that the neurotransmitter and its biosynthetic enzyme are present in the same neurons. Moreover, comparison of serial semithin sections alternatively incubated in postembedding with anti-GABA and antiserotonin sera revealed that immunoreactivity for these two substances was present in different neuronal populations. However, close association between serotoninlike and GABA-like immunoreactive elements was observed in a few PG areas. GABA-like immunoreactivity was demonstrated on ultrathin sections by using secondary antiserum coupled to colloidal gold particles. Labeling was found over somata, fibers, and varicosities containing a distinct type of small (63 nm), pleomorphic, dense-cored vesicle.  相似文献   

17.
E Senba  M Tohyama 《Brain research》1988,449(1-2):386-390
Indirect immunofluorescence method was employed to investigate the involvement of calcitonin gene-related peptide (CGRP) in the autonomic efferent innervations of the pelvic visceral organs of the rat. Cells labeled with Fast blue (FB) injected into the pelvic ganglia were observed in the sacral parasympathetic nucleus; about 30% of these neurons showed CGRP-like immunoreactivity. These CGRP-like immunoreactive neurons were located in the dorsomedial part of the sacral parasympathetic nucleus, extending their dendrites mediolaterally. FB-labeled cells were also found in the upper lumbar level (L1, L2) of the spinal cord. Some of these neurons also showed CGRP-like immunoreactivity. CGRP-like immunoreactive varicose fibers were seen in the pelvic ganglia surrounding individual ganglion cells. Considerable amount of these fibers were not affected by sensory deafferentation, so they probably originated from autonomic efferent neurons.  相似文献   

18.
We examined the patterns of coexistence of immunoreactivity to the neurokinin-1 (NK(1)) tachykinin receptor, nitric oxide synthase, and neuropeptides in the sphenopalatine and otic ganglia of guinea pigs using a combination of multiple-labeling immunohistochemistry and pathway tracing in vitro. Most neurons had immunoreactivity to vasoactive intestinal peptide (85-96%) and neuropeptide Y (60%). Subpopulations of vasoactive intestinal peptide-immunoreactive neurons also had immunoreactivity to nitric oxide synthase (37-48%) or enkephalin (25-35%), but these formed mutually exclusive populations. Almost all neurons expressing NK(1) receptor immunoreactivity contained immunoreactivity to enkephalin, vasoactive intestinal peptide, and neuropeptide Y, but not nitric oxide synthase. Using a combination of retrograde axonal tracing and axonal crushing, we found that most neurons with immunoreactivity to nitric oxide synthase projected along the nasopalatine and ethmoidal nerves to the nasal mucosa. In contrast, most neurons with immunoreactivity to enkephalin followed the zygomatic nerve to the facial skin and lacrimal gland. Based on their peptide content, we conclude that the neurons with immunoreactivity to enkephalin and NK(1) receptor projected selectively to the skin. In both the sphenopalatine and the otic ganglia, about half of the neurons with NK(1) receptor immunoreactivity were surrounded by varicose nerve fibers with substance P immunoreactivity. Many of these fibers are likely to have originated in the trigeminal ganglion. Taken together, these observations establish a strong anatomical basis for a range of interactions between trigeminal and cranial parasympathetic pathways that may underlie pathophysiological conditions such as trigeminal neuralgia.  相似文献   

19.
The origin, density and distribution of calcitonin gene-related peptide (CGRP) immunoreactivity in cerebral perivascular nerves and the trigeminal ganglion of rats were examined in this study. CGRP immunoreactive axons were abundant on the walls of the rostral circulation of the major cerebral arteries in the circle of Willis. The fibers form a grid- or meshwork of longitudinal and circumferential axons studded with numerous varicose swellings. The density of CGRP fibers was particularly high at the bifurcation of major arteries. A few CGRP fibers cross the midline to innervate arteries on the contralateral side of the arterial tree. The arteries of the caudal circulation were sparsely innervated by CGRP fibers. In the trigeminal ganglion, about 30% of the ganglion cells had CGRP immunoreactivity. The cell size of most (75%) of CGRP neurons was less than 30 micron in diameter. There was no significant difference in staining density between small and large CGRP neurons. Unilateral transection of the maxillary and mandibular divisions of the trigeminal nerve caused a substantial decrease of CGRP immunoreactivity in the ipsilateral dorsal two-thirds of the trigeminal nucleus and cervical spinal cord but did not noticeably change the diameter of the vascular lumen or the densities of CGRP fibers in the walls of the cerebral arteries. In contrast, unilateral transection that included the ophthalmic division eliminated CGRP fibers on the ipsilateral cerebral arteries and eliminated CGRP immunoreactivity throughout the trigeminal nucleus in the brainstem and rostral cervical cord. In addition, these lesions caused a significant reduction in the diameter of the denervated arteries. The present study demonstrates that CGRP, a putative neurotransmitter/neuromodulator, is especially abundant in the rostral cerebral circulation and is derived from the ipsilateral ophthalmic division of the trigeminal nerve. In addition, the loss of CGRP perivascular nerves is associated with a reduction of the arterial lumen. This suggests that CGRP is a strong candidate as a nerve-derived trophic factor at trigeminal terminals and provides additional evidence that CGRP is a component in the trigeminovascular system influencing vascular diameter.  相似文献   

20.
In our initial effort to study the ontogeny of the gastropod nervous system, we used histological techniques to examine the post-embryonic development of cells which exhibit serotoninlike immunoreactivity in Lymnaea (Croll and Chiasson, J. Comp. Neurol. 230:122-142, '89). The present study complements that report by examining the embryonic development of these neurons. The first serotoninlike immunoreactive (SLIR) cells to be detected in the embryos are the paired C4 neurons of the cerebral ganglia. These cells are faintly visible at about 37-38% of embryonic development and have already produced axons which traverse the cerebral commissure. By about 2-3% later the axon tips reach the pedal ganglia and appose the next SLIR cells to appear, the EPe1 neurons. Over the next 30% of development four more pairs of cerebral neurons are added adjacent to the C4 neurons and over ten cells are added to each of the pedal ganglia. At about 70% of development SLIR fibers are first detected in the parietal and visceral ganglia forming the abdominal ring. Around this time the somata of the C1 neurons also first appear in the cerebral ganglia together with their prominent axons projecting to the buccal ganglia. The last 30% of development is marked by a massive addition of SLIR cells (up to 60) in each pedal ganglion. The early appearance of the first SLIR cells suggests that they may be among the first nerve cells to differentiate and that they may play central roles in the formation of the CNS. We hypothesize that most of the animal's neural circuitry is laid down during embryogenesis by a stereotypic ontogenetic program with post-embryonic neurogenesis subserving mostly compensatory and modulatory purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号