首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The chicken embryo origin (CEO) infectious laryngotracheitis (ILT) live attenuated vaccines, although capable of protecting against disease and reducing challenge virus replication, can regain virulence. Recombinant ILT vaccines do not regain virulence but are partially successful at blocking challenge virus replication. The objective of this study was to evaluate the effect of rHVT-LT vaccination on CEO replication and how this vaccination strategy enhances protection and limits challenge virus transmission to naïve contact chickens. The rHVT-LT vaccine was administered at 1 day of age subcutaneously and the CEO vaccine was administered at 6 weeks of age via eye-drop or drinking water. CEO vaccine replication post vaccination, challenge virus replication and transmission post challenge were evaluated. After vaccination, only the group that received the CEO via eye-drop developed transient conjunctivitis. A significant decrease in CEO replication was detected for the rHVT-LT?+?CEO groups as compared to groups that received CEO alone. After challenge, reduction in clinical signs and challenge virus replication were observed in all vaccinated groups. However, among the vaccinated groups, the rHVT-LT group presented higher clinical signs and challenge virus replication. Transmission of the challenge virus to naïve contact chickens was only observed in the rHVT-LT vaccinated group of chickens. Overall, this study found that priming with rHVT-LT reduced CEO virus replication and the addition of a CEO vaccination provided a more robust protection than rHVT alone. Therefore, rHVT-LT?+?CEO vaccination strategy constitutes an alternative approach to gain better control of the disease.  相似文献   

2.
Infectious laryngotracheitis (ILT) is an acute respiratory disease in poultry that is commonly controlled by vaccination with conventionally attenuated virus strains. Despite the use of these vaccines, ILT remains a threat to the intensive poultry industry. Our laboratory has developed a novel candidate vaccine strain of infectious laryngotracheitis virus (ILTV) lacking glycoprotein G (ΔgG-ILTV). The aim of the present study was to directly compare this candidate vaccine with three currently available commercial vaccines in vivo. Five groups of specific-pathogen-free chickens were eye-drop inoculated with one of the three commercial vaccine strains (SA2-ILTV, A20-ILTV or Serva-ILTV), or ΔgG-ILTV, or sterile medium. Vaccine safety was assessed by examining clinical signs, weight gain and persistence of virus in the trachea. Vaccine efficacy was assessed by scoring clinical signs and conducting post-mortem analyses following challenge with virulent virus. Following vaccination, birds that received ΔgG-ILTV had the highest weight gain among the vaccinated groups and had clinical scores that were significantly lower than birds vaccinated with SA2-ILTV or A20-ILTV, but not significantly different from those of birds vaccinated with Serva-ILTV. Analysis of clinical scores, weight gain, tracheal pathology and virus replication after challenge revealed a comparable level of efficacy for all vaccines. Findings from this study further demonstrate the suitability of ΔgG-ILTV as a vaccine to control ILT.  相似文献   

3.
Infectious laryngotracheitis (ILT) is an acute respiratory disease of chickens controlled through vaccination with live-modified attenuated vaccines, the chicken embryo origin (CEO) vaccines and the tissue-culture origin (TCO) vaccines. Recently, novel recombinant vaccines have been developed using herpesvirus of turkey (HVT) and fowl pox virus (FPV) as vectors to express ILTV immunogens for protection against ILT. The objective of this study was to assess the protection efficacy against ILT induced by recombinants, live-modified attenuated, and inactivated virus vaccines when administered alone or in combination. Commercial layer pullets were vaccinated with one or more vaccines and challenged at 35 (35 WCH) or 74 weeks of age (74 WCH). Protection was assessed by scoring clinical signs; and by determining the challenge viral load in the trachea at five days post-challenge. The FPV-LT vaccinated birds were not protected when challenged at 35 weeks; the HVT-LT and TCO vaccines in combination provided protection similar to that observed in chickens vaccinated with either HVT-LT or TCO vaccines when challenged at 35 weeks, whereas protection induced by vaccination with HVT-LT followed by TCO was superior in the 74 WCH group compared with the 35 WCH group. Birds given the inactivated ILT vaccine had fewer clinical signs and/or lower viral replication at 74 WCH when combined with TCO or HVT-LT, but not when given alone. Finally, the CEO-vaccinated birds had top protection as indicated by reduction of clinical signs and viral replication when challenged at 35 weeks (74 weeks not done). These results suggest that certain vaccine combinations may be successful to produce long-term protection up to 74 weeks of age against ILT.  相似文献   

4.
Infectious laryngotracheitis (ILT) is an acute infectious viral disease that affects chickens, causing respiratory disease, loss of production and mortality in severe cases. Biosecurity measures and administration of attenuated viral vaccine strains are commonly used to prevent ILT. It is notable that most recent ILT outbreaks affecting the intensive poultry industry have been caused by vaccine-related virus strains. The purpose of this study was to characterize and compare viral replication and transmission patterns of two attenuated chicken embryo origin ILT vaccines delivered via the drinking water. Two groups of specific pathogen free chickens were each inoculated with SA-2 ILT or Serva ILT vaccine strains. Unvaccinated birds were then placed in contact with vaccinated birds at regular intervals. Tracheal swabs were collected every 4 days over a period of 60 days and examined for the presence and amount of virus using a quantitative polymerase chain reaction. A rapid increase in viral genome copy numbers was observed shortly after inoculation with SA-2 ILT virus. In contrast, a comparatively delayed virus replication was observed after vaccination with Serva ILT virus. Transmission to in-contact birds occurred soon after exposure to Serva ILT virus but only several days after exposure to SA-2 ILT virus. Results from this study demonstrate in vivo differences between ILT vaccine strains in virus replication and transmission patterns.  相似文献   

5.
6.
In a recent study (Oldoni & García, 2007), some field strains of infectious laryngotracheitis viruses (ILTV) were characterized as genotypically different (group VI) from ILT vaccine strains. The objective of this study was to evaluate the protection elicited by one chicken embryo origin (CEO) and one tissue culture origin (TCO) vaccine against a field isolate from group VI after direct and indirect exposure to ILTV live attenuated vaccines. In phase 1 of the experiment, non-vaccinated chickens were placed into contact with the eye drop vaccinates for a period of four weeks after vaccination. Transmission of the vaccine virus to these in-contact birds was demonstrated by real time PCR and antibody production, although the in-contact birds did not become protected against disease when subsequently challenged in phase 2 of the experiment. This emphasized the importance of uniform vaccination to obtain adequate protection, both to avoid the occurrence of susceptible chickens, and to minimize the potential for reversion to virulence of live-attenuated vaccines. In phase 2, protection against challenge with a group VI field virus was assessed four weeks after vaccination by scoring clinical signs and mortality, and quantifying weight gain. Sentinel birds were added to the groups one day after challenge to assess shedding of challenge virus, using real time PCR and virus isolation, during the period 2 to 12 days post challenge. The results showed that the CEO and TCO eye drop-vaccinated chickens were protected against challenge with the group VI virus, even though it was genetically different from the vaccine strains, and that challenge virus was not transmitted from these protected birds to the sentinels.  相似文献   

7.
8.
M X Motha 《Avian pathology》1982,11(3):475-486
Effects of reticuloendotheliosis virus (REV) on the response to infectious laryngotracheitis virus (ILTV) were investigated in young chickens with and without maternally derived antibody (MAb) to REV. In the first experiment a group of 1-day-old chickens without REV MAb were inoculated at 1 day of age with REV whilst another group of similar chickens were left uninoculated. All chickens were vaccinated with ILTV at 7 days of age. There was a significantly higher proportion of infectious laryngotracheitis (ILT) post-vaccinal ophthalmia (p.v.o.) in the group inoculated with REV. In the second experiment chickens with and without MAb to REV were inoculated at 1 day old with REV. These chickens, together with others not inoculated with REV, were vaccinated with ILTV isolate SA-2 8 days later. A virulent ILTV isolate, G, was used to challenge all the chickens 20 days after vaccination. Again the chickens without MAb to REV inoculated with REV showed a higher proportion of ILT p.v.o. and a significantly higher mortality rate due to ILT following vaccination. In the chickens inoculated with REV at 1 day of age and not vaccinated but challenged with ILTV there was a significantly higher mortality and rate of clinical signs due to ILT in those birds without than in those with REV MAb. In both experiments chickens from REV negative parents were found to be free of REV neutralising MAb. However, only 30% of chickens originating from a flock known to be infected with REV had a titre of 1/40 or higher. In spite of this, this group was significantly more resistant than the group without REV MAb to the immunosuppressive effect of inoculation at 1 day old with REV. This was demonstrated by their lower susceptibility (i.e. less p.v.o. and mortality) to the vaccination and challenge with ILTV. Chickens without REV MAb developed neutralising antibodies within 2 weeks of inoculation with REV. Irrespective of the REV MAb status 1-day-old chickens inoculated with REV were viraemic within a week.  相似文献   

9.
Infectious laryngotracheitis virus (ILTV), an alphaherpesvirus, causes respiratory disease in chickens and is commonly controlled by vaccination with conventionally attenuated virus strains. These vaccines have limitations due to residual pathogenicity and reversion to virulence. To avoid these problems and to better control disease, attention has recently turned towards developing a novel vaccine strain that lacks virulence gene(s). Glycoprotein G (gG) is a virulence factor in ILTV. A gG-deficient strain of ILTV has been shown to be less pathogenic than currently available vaccine strains following intratracheal inoculation of specific pathogen free chickens. Intratracheal inoculation of gG-deficient ILTV has also been shown to induce protection against disease following challenge with virulent virus. Intratracheal inoculation, however, is not suitable for large-scale vaccination of commercial poultry flocks. In this study, inoculation of gG-deficient ILTV via eye-drop, drinking water and aerosol were investigated. Aerosol inoculation resulted in undesirably low levels of safety and protective efficacy. Inoculation via eye-drop and drinking water was safe, and the levels of protective efficacy were comparable with intratracheal inoculation. Thus, gG-deficient ILTV appears to have potential for use in large-scale poultry vaccination programmes when administered via eye-drop or in drinking water.  相似文献   

10.
Polyvalent infectious bronchitis virus vaccination is common worldwide. The possibility of vaccine interference after simultaneous combined vaccination with Arkansas (Ark) and Massachusetts (Mass)-type vaccines was evaluated in an effort to explain the high prevalence of Ark-type infectious bronchitis virus in vaccinated chickens. Chickens ocularly vaccinated with combinations of Ark and Mass showed predominance of Mass vaccine virus before 9 days post-vaccination (DPV) in tears. Even when Mass and Ark vaccines were inoculated into separate eyes, Mass vaccine virus was able to outcompete Ark vaccine virus. Although Mass vaccine virus apparently had a replication advantage over Ark vaccine in ocular tissues, Ark vaccine virus appeared to have an advantage in spreading to and/or replicating in the trachea. When chickens vaccinated with Ark or Mass vaccine were housed together, Mass vaccine virus was able to spread to Ark-vaccinated chickens, but the Ark vaccine was not detected in Mass-vaccinated chickens. Only Mass vaccine was detected in tears of sentinel birds introduced into groups receiving both vaccines. Furthermore, Ark vaccine virus RNA was not detectable until 10 DPV in most tear samples from chickens vaccinated with both Ark and Mass vaccines at varying Ark vaccine doses, while high concentrations of Mass virus RNA were detectable at 3–7 DPV. In contrast, Ark vaccine virus replicated effectively early after vaccination in chickens vaccinated with Ark vaccine alone. The different replication dynamics of Ark and Mass viruses in chickens vaccinated with combined vaccines did not result in reduced protection against Ark challenge at 21 DPV. Further studies are needed to clarify if the viral interference detected determines differences in protection against challenge at other time points after vaccination.  相似文献   

11.
ABSTRACT

Infectious laryngotracheitis (ILT) is a highly contagious respiratory disease of chickens, pheasants, and peafowl. It is caused by the alpha herpesvirus, infectious laryngotracheitis virus (ILTV). Glycoprotein D (gD) of ILTV is immunogenic and helps in its binding to the susceptible host cell receptor. In the present study, a recombinant gD protein was expressed in a prokaryotic system to develop a single serum dilution ELISA. In addition, two immunogenic peptides, corresponding to regions 77–89 and 317–328, were identified in gD protein. The peptides were synthesized using solid-phase peptide synthesis, purified using reversed-phase HPLC, and characterized using mass spectrometry. The peptides displayed a good titre and were found to be promising antigens to coat the ELISA plate to detect the ILTV antibodies in the serum sample. The developed ELISA showed 96.9% sensitivity, 87.5% specificity, and 95.3% accuracy as compared to OIE referenced standard indirect ILTV ELISA (whole viral coated). The assay may not differentiate vaccinated from infected birds when the flocks are administered with live attenuated vaccines. However, the assay could be useful to detect the disease condition in birds vaccinated with recombinant vaccine expressing glycoproteins other than gD. The developed ILTV single serum dilution ELISA could be an alternative to the existing diagnostics for the detection of ILTV antibodies.  相似文献   

12.
Infectious laryngotracheitis (ILT) is an economically important disease of chickens caused by a type I gallid herpesvirus, infectious laryngotracheitis virus (ILTV). The vaccines currently available are modified live viruses, which are effective in preventing disease outbreaks. However, they have often been associated with a variety of adverse effects including spread of vaccine virus to non-vaccinates, inadequate attenuation, production of latently infected carriers, and increased virulence as a result of in vivo passage. In this study, a recombinant fowlpox virus expressing glycoprotein B (gB) of ILTV (rFPV-ILTVgB) was constructed. Protection of specific pathogen free (SPF) and commercial chickens from ILT with the rFPV-ILTVgB and commercial ILTV vaccine (Nobilis ILT) were compared after challenge with a lethal dose of virulent ILTV.Both the rFPV-ILTVgB- and the Nobilis ILT-vaccinated SPF chickens were completely protected from death, while 90% of the unvaccinated chickens died after challenge. The immunized commercial chickens were also 100% protected with rFPV-ILTVgB, compared with 85% protected with Nobilis ILT. The protective efficacy was also measured by the antibody response to ILTV gB, isolation of challenge virus and polymerase chain reaction amplification of the ILTV thymidine kinase gene after challenge. The results showed that rFPV-ILTVgB could be a potential safe vaccine to replace current modified live vaccines for preventing ILT.  相似文献   

13.
Viral vector vaccines using fowl poxvirus (FPV) and herpesvirus of turkey (HVT) as vectors and carrying infectious laryngotracheitis virus (ILTV) genes are commercially available to the poultry industry in the USA. Different sectors of the broiler industry have used these vaccines in ovo or subcutaneously, achieving variable results. The objective of the present study was to determine the efficacy of protection induced by viral vector vaccines as compared with live-attenuated ILTV vaccines. The HVT-LT vaccine was more effective than the FPV-LT vaccine in mitigating the disease and reducing levels of challenge virus when applied in ovo or subcutaneously, particularly when the challenge was performed at 57 days rather than 35 days of age. While the FPV-LT vaccine mitigated clinical signs more effectively when administered subcutaneously than in ovo, it did not reduce the concentration of challenge virus in the trachea by either application route. Detection of antibodies against ILTV glycoproteins expressed by the viral vectors was a useful criterion to assess the immunogenicity of the vectors. The presence of glycoprotein I antibodies detected pre-challenge and post challenge in chickens vaccinated with HVT-LT indicated that the vaccine induced a robust antibody response, which was paralleled by significant reduction of clinical signs. The chicken embryo origin vaccine provided optimal protection by significantly mitigating the disease and reducing the challenge virus in chickens vaccinated via eye drop. The viral vector vaccines, applied in ovo and subcutaneously, provided partial protection, reducing to some degree clinical signs, and challenge VIRUS replication in the trachea.  相似文献   

14.
Infectious laryngotracheitis virus (ILTV) continues to cause respiratory disease in Egypt in spite of vaccination. The currently available modified live ILTV vaccines provide good protection but may also induce latent infections and even clinical disease if they spread extensively from bird-to-bird in the field. Four field ILTV isolates, designated ILT-Behera2007, ILT-Giza2007, ILT-Behera2009, and ILT-Behera2010 were isolated from cross-bred broiler chickens. The pathogenicity based on intratracheal pathogenicity index, tracheal lesion score, and mortality index for chicken embryos revealed that ILT-Behera2007, ILT-Behera2009 and ILT-Behera2010 isolates were highly pathogenic whereas ILT-Giza2007 was non-pathogenic. To study the molecular epidemiology of these field isolates, the infected cell protein 4 gene was amplified and sequenced. Phylogenetic analysis revealed that ILT-Behera2007, ILT-Behera2009, and ILT-Behera2010 are chicken embryo origin (CEO) vaccine-related isolates while ILT-Giza2007 is a tissue culture origin vaccine-related isolate. These results suggest that CEO laryngotracheitis vaccine viruses could increase in virulence after bird-to-bird passages causing severe outbreaks in susceptible birds.  相似文献   

15.
Infectious laryngotracheitis (ILT) is an upper respiratory tract disease in chickens caused by infectious laryngotracheitis virus (ILTV), an alphaherpesvirus. Despite the extensive use of attenuated, and more recently recombinant, vaccines for the control of this disease, ILT continues to affect the intensive poultry industries worldwide. Innate and cell-mediated, rather than humoral immune responses, have been identified as responsible for protection against disease. This review examines the current understandings in innate and adaptive immune responses towards ILTV, as well as the role of ILTV glycoprotein G in modulating the host immune response towards infection. Protective immunity induced by ILT vaccines is also examined. The increasing availability of tools and reagents for the characterisation of avian innate and cell-mediated immune responses are expected to further our understanding of immunity against ILTV and drive the development of new generation vaccines towards enhanced control of this disease.  相似文献   

16.
17.
The strain of infectious laryngotracheitis (ILT virus utilised for these vaccine-development studies was isolated from an outbreak of the disease in Hungary. Inactivating agents tested included beta-propio-lactone, methyleneimine, ethyleneimine EI and formalin. ILT virus preparations inactivated with EI appeared to be the most antigenic when inoculated into chickens in the absence of adjuvant. For formulation of a trial oil-emulsion ILT vaccine for experimentation, ILT virus inactivated with 1200 mug/ml of EI was mixed with an equal volume of 50% incomplete Freund's adjuvant and then homogenised. Experimental vaccination of chickens with inactivated ILT vaccine elicited satisfactory serological response and protection to challenge both under laboratory and field conditions. Although only minor increases in antibody titres could be achieved by repeated vaccination with inactivated ILT vaccine at 2 to 5 weeks after primary vaccination at 10-weeks-old with attenuated or inactivated ILT vaccines, the protection conferred by vaccination with a single dose of the trial inactivated ILT vaccine appeared to be effective for at least 12 months. Hence, there would appear to be potential for inactivated-ILT vaccines in control of ILT, especially on sites that are regularly affected by this infection.  相似文献   

18.
Infectious laryngotracheitis (ILT) is an important respiratory disease of chickens and annually causes significant economic losses in the poultry industry world-wide. ILT virus (ILTV) belongs to alphaherpesvirinae and the Gallid herpesvirus 1 species. The transmission of ILTV is via respiratory and ocular routes. Clinical and post-mortem signs of ILT can be separated into two forms according to its virulence. The characteristic of the severe form is bloody mucus in the trachea with high mortality. The mild form causes nasal discharge, conjunctivitis, and reduced weight gain and egg production. Conventional polymerase chain reaction (PCR), nested PCR, real-time PCR, and loop-mediated isothermal amplification were developed to detect ILTV samples from natural or experimentally infected birds. The PCR combined with restriction fragment length polymorphism (RFLP) can separate ILTVs into several genetic groups. These groups can separate vaccine from wild type field viruses. Vaccination is a common method to prevent ILT. However, field isolates and vaccine viruses can establish latent infected carriers. According to PCR-RFLP results, virulent field ILTVs can be derived from modified-live vaccines. Therefore, modified-live vaccine reversion provides a source for ILT outbreaks on chicken farms. Two recently licensed commercial recombinant ILT vaccines are also in use. Other recombinant and gene-deficient vaccine candidates are in the developmental stages. They offer additional hope for the control of this disease. However, in ILT endemic regions, improved biosecurity and management practices are critical for improved ILT control.  相似文献   

19.
The safety spreading properties and potency of three commercial vaccines used for the prevention of avian infectious laryngotracheitis have been studied. Results showed that the different strains are not safe when administrated by the intratracheal route; when administrated by the ocular route, the vaccinal reaction was limited to a transitory conjunctivitis. Under certain conditions of proximity the vaccine viruses spread from vaccinated to contact chickens. Good protection was afforded by vaccination by ocular route, but not when the vaccines were administrated in the drinking water. There was concordance between the level of protection following vaccination and the neutralising antibodies titres. The protection was relatively short-lived: 10 to 15 weeks after vaccination, half of challenged birds showed clinical signs of the disease, and 20 weeks after vaccination all of them were sick.  相似文献   

20.
Infectious laryngotracheitis virus (ILTV) has a high proclivity to replicate in the larynx and trachea of chickens causing severe lesions. There is a lack of knowledge on the ability of ILTV to replicate in other respiratory associated tissues apart from in the trachea. The objective of this study was to investigate how tissues that first encounter the virus dictate further sites of viral replication during the lytic stage of infection. Replication patterns of the pathogenic strain 63140 and the chicken embryo origin (CEO) vaccine in the conjunctiva, the Harderian gland, nasal cavity and trachea were evaluated after ocular, oral, intranasal or intratracheal inoculation of specific pathogen-free chickens. Viral replication was assessed by detection of microscopic cytolytic lesions, detection of viral antigen and viral genome load. The route of viral entry greatly influenced virus replication of both strain 63140 and CEO vaccine in the conjunctiva and trachea, while replication in the nasal cavity was not affected. In the Harderian gland, independently of the route of viral entry, microscopic lesions characteristic of lytic replication were absent, whereas viral antigen and viral genomes for either virus were detected, suggesting that the Harderian gland may be a key site of antigen uptake. Findings from this study suggest that interactions of the virus with the epithelial-lymphoid tissues of the nasal cavity, conjunctiva and the Harderian gland dictate patterns of ILTV lytic replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号