首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As one of external visible characteristics (EVCs) in forensic phenotyping, age estimation is essential to providing additional information about a sample donor. With the development of epigenetics, age-related DNA methylation may be used as a reliable predictor of age estimation. With the aim of building a feasible age estimation model for Japanese individuals, 53 CpG sites distributed between 11 candidate genes were selected from previous studies. The DNA methylation level of each target CpG site was identified and measured on a massive parallel platform (synthesis by sequencing, Illumina, California, United States) from 60 forensic blood samples during the initial training phase. Multiple linear regression and quantile regression analyses were later performed to build linear and quantile age estimation models, respectively. Four CpG sites on four genes— ASPA, ELOVL2, ITGA2B, and PDE4C —, were found to be highly correlated with chronological age in DNA samples from Japanese individuals (|R| > 0.75). Subsequently, an independent validation dataset (n = 30) was used to verify and evaluate the performance of the two models. Comparison of mean absolute deviation (MAD) with other indicators showed that both models provide accurate age predictions (MAD: linear = 6.493 years; quantile = 6.243 years). The quantile model, however, can provide the changeable prediction intervals that grow wider with increasing age, and this tendency is consistent with the natural aging process in humans. Hence, the quantile model is recommended in this study.  相似文献   

2.
The analysis of DNA methylation has become an established method for chronological age estimation. This has triggered interest in the forensic community to develop new methods for age estimation from biological crime scene material. Various assays are available for age estimation from somatic tissues, the majority from blood. Age prediction from semen requires different DNA methylation markers and the only assays currently developed for forensic analysis are based on SNaPshot or pyrosequencing. Here, we describe a new assay using massively parallel sequencing to analyse 13 candidate CpG sites targeted in two multiplex PCRs. The assay has been validated by five consortium laboratories of the VISible Attributes through GEnomics (VISAGE) project within a collaborative exercise and was tested for reproducible quantification of DNA methylation levels and sensitivity with DNA methylation controls. Furthermore, DNA extracts and stains on Whatman FTA cards from two semen samples were used to evaluate concordance and mimic casework samples. Overall, the assay yielded high read depths (> 1000 reads) at all 13 marker positions. The methylation values obtained indicated robust quantification with an average standard deviation of 2.8% at the expected methylation level of 50% across the 13 markers and a good performance with 50 ng DNA input into bisulfite conversion. The absolute difference of quantifications from one participating laboratory to the mean quantifications of concordance and semen stains of remaining laboratories was approximately 1%. These results demonstrated the assay to be robust and suitable for age estimation from semen in forensic investigations. In addition to the 13-marker assay, a more streamlined protocol combining only five age markers in one multiplex PCR was developed. Preliminary results showed no substantial differences in DNA methylation quantification between the two assays, indicating its applicability with the VISAGE age model for semen developed with data from the complete 13-marker tool.  相似文献   

3.
The recent studies reported that DNA methylation markers show changes with age, and expected that the DNA methylation markers can be effectively used for estimation of age in forensic genetics. In this study, we applied droplet digital PCR (ddPCR) method to investigate the DNA methylation pattern in the CpG sites, and we constructed an age prediction model based on the ddPCR method. The ddPCR is capable of highly sensitive quantitation of nucleic acid and detection of sequence variations in gene by separating the sample into large number of partitions and clonally amplifying nucleic acids in each partition. We extracted DNA from saliva samples collected from several age groups. The DNA was bisulfite converted and subjected to ddPCR using specifically designed primers and probes. The methylation ratio of each sample was calculated and correlation between the methylation ratio and the chronological age was analyzed. In the results, methylated DNA ratio at the 4 CpG sites (cg14361627, cg14361627, cg08928145 and cg07547549) showed strong correlation with chronological age. Percent-methylation values at 4 CpG markers and chronological ages of the 76 individuals were analyzed by multiple regression analysis, and we constructed an age prediction model. We observed a strong correlation (Spearman’s rho = 0.922) between predicted and chronological ages of 76 individuals with a MAD from chronological age of 3.3 years. Collectively, the result in this study showed the potential applicability of ddPCR to predict age from saliva.  相似文献   

4.
Age prediction of an individual based on biological traces remained in a crime scene is of ultimate importance for criminal investigation. Growing evidence indicates that some CpG sites may have age-related methylation changes and thus may be a promising tool for age prediction. In this study, we utilized the pyrosequencing approach to screen age-related CpG (AR-CpG) sites for age prediction. Five AR-CpGs were identified as age-related markers from thirty-eight candidates, among which three CpG sites, ITGA2B_1, NPTX2_3, and NPTX2_4 were never reported in previous studies. We fit a linear regression model for age prediction based on methylation assay for 89 blood samples from donors aged 9–75 years old. The model included four AR-CpG markers in three gene fragments ASPA, ITGA2B and NPTX2 and enabled the age prediction with R2 = 0.819. The mean absolute deviation (MAD) from chronological age of the model was 7.870. We validated the linear regression model with a validation set of 40 blood samples, and the prediction MAD was 7.986. There was no statistically significant difference in age prediction between 20 pairs of blood samples and bloodstains. Six pairs of fresh and old bloodstains were analyzed using our assay. The obtained results showed the assay still performed an effective prediction on bloodstains after four-month storage in room conditions. This study indicates that our DNA methylation assay is a reliable and effective method for age prediction for forensic purposes.  相似文献   

5.
In a previous study, we have provided the first proof that chronological age can be estimated through DNA methylation (DNAm) patterns in fingernails and toenails. DNAm data of 15 CpGs located in 4 genetic markers (ASPA, EDARADD, ELOVL2 and PDE4C) were evaluated, of which variable selection yielded age prediction models with a mean absolute deviation (MAD) ranging from 7.68 to 9.36 years, depending on the sampling location. Three additional age-associated markers (KLF14, MIR29B2CHG and TRIM59) were assessed in the current study with the goal of increasing the prediction accuracy of the model initially constructed for toenails. This new and improved age estimation assay yielded an MAD of 4.82 and 5.61 years for the training and test set, respectively. The feasibility of the application for post-mortem cases was also demonstrated through testing a limited set of samples collected from deceased individuals.  相似文献   

6.
DNA methylation analysis in a variety of genes has brought promising results in age estimation. The main aim of this study was to evaluate DNA methylation levels from four age-correlated genes, ELOVL2, FHL2, EDARADD and PDE4C, in blood samples of healthy Portuguese individuals. Fifty-three samples were analyzed through the bisulfite polymerase chain reaction (PCR) sequencing method for CpG dinucleotide methylation status. Linear regression models were used to analyze relationships between methylation levels and chronological age. The highest age-associated CpG in each locus was chosen to build a multi-locus age prediction model (APM), allowing to obtain a Mean Absolute Deviation (MAD) between chronological and predicted ages of 5.35 years, explaining 94.1% of age variation. Validation approaches demonstrated the accuracy and reproducibility of the proposed multi-locus APM. Testing the APM in 51 blood samples from deceased individuals a MAD of 9.72 years was obtained. Potential differences in methylation status between samples from living and deceased individuals could exist since the highest age-correlated CpGs were different in some genes between both groups. In conclusion, our study using the bisulfite PCR sequencing method is in accordance with the high age prediction accuracy of DNA methylation levels in four previously reported age-associated genes. DNA methylation pattern differences between blood samples from living and deceased individuals should be taken into account in forensic contexts.  相似文献   

7.
8.
Over the past decade, age prediction based on DNA methylation has become a vastly investigated topic; many age prediction models have been developed based on different DNAm markers and using various tissues. However, the potential of using nails to this end has not yet been explored. Their inherent resistance to decay and ease of sampling would offer an advantage in cases where post-mortem degradation poses challenges concerning sample collection and DNA-extraction. In the current study, clippings from both fingernails and toenails were collected from 108 living test subjects (age range: 0–96 years). The methylation status of 15 CpGs located in 4 previously established age-related markers (ASPA, EDARADD, PDE4C, ELOVL2) was investigated through pyrosequencing of bisulphite converted DNA. Significant dissimilarities in methylation levels were observed between all four limbs, hence both limb-specific age prediction models and prediction models combining multiple sampling locations were developed. When applied to their respective test sets, these models yielded a mean absolute deviation between predicted and chronological age ranging from 5.48 to 9.36 years when using ordinary least squares regression. In addition, the assay was tested on methylation data derived from 5 nail samples collected from deceased individuals, demonstrating its feasibility for application in post-mortem cases. In conclusion, this study provides the first proof that chronological age can be assessed through DNA methylation patterns in nails.  相似文献   

9.
Establishing the age of unknown persons, or persons with unknown age, can provide important leads in police investigations, disaster victim identification, fraud cases, and in other legal affairs. Previous methods mostly relied on morphological features available from teeth or skeletal parts. The development of molecular methods for age estimation allowing to use human specimens that possess no morphological age information, such as bloodstains, is extremely valuable as this type of samples is commonly found at crime scenes. Recently, we introduced a DNA-based approach for human age estimation from blood based on the quantification of T-cell specific DNA rearrangements (sjTRECs), which achieves accurate assignment of blood DNA samples to one of four 20-year-interval age categories. Aiming at improving the accuracy of molecular age estimation from blood, we investigated different types of biomarkers. We started out by systematic genome-wide surveys for new age-informative mRNA and DNA methylation markers in blood from the same young and old individuals using microarray technologies. The obtained candidate markers were validated in independent samples covering a wide age range using alternative technologies together with previously proposed DNA methylation, sjTREC, and telomere length markers. Cross-validated multiple regression analysis was applied for estimating and validating the age predictive power of various sets of biomarkers within and across different marker types. We found that DNA methylation markers outperformed mRNA, sjTREC, and telomere length in age predictive power. The best performing model included 8 DNA methylation markers derived from 3 CpG islands reaching a high level of accuracy (cross-validated R2 = 0.88, SE ± 6.97 years, mean absolute deviation 5.07 years). However, our data also suggest that mRNA markers can provide independent age information: a model using a combined set of 5 DNA methylation markers and one mRNA marker could provide similarly high accuracy (cross-validated R2 = 0.86, SE ± 7.62 years, mean absolute deviation 4.60 years). Overall, our study provides new and confirms previously suggested molecular biomarkers for age estimation from blood. Moreover, our comparative study design revealed that DNA methylation markers are superior for this purpose over other types of molecular biomarkers tested. While the new and some previous findings are highly promising, before molecular age estimation can eventually meet forensic practice, the proposed biomarkers should be tested further in larger sets of blood samples from both healthy and unhealthy individuals, and markers and genotyping methods shall be validated to meet forensic standards.  相似文献   

10.
The estimation of chronological age from biological fluids has been an important quest for forensic scientists worldwide, with recent approaches exploiting the variability of DNA methylation patterns with age in order to develop the next generation of forensic ‘DNA intelligence’ tools for this application. Drawing from the conclusions of previous work utilising massively parallel sequencing (MPS) for this analysis, this work introduces a DNA methylation-based age estimation method for blood that exhibits the best combination of prediction accuracy and sensitivity reported to date. Statistical evaluation of markers from 51 studies using microarray data from over 4000 individuals, followed by validation using in-house generated MPS data, revealed a final set of 11 markers with the greatest potential for accurate age estimation from minimal DNA material. Utilising an algorithm based on support vector machines, the proposed model achieved an average error (MAE) of 3.3 years, with this level of accuracy retained down to 5 ng of starting DNA input (~ 1 ng PCR input). The accuracy of the model was retained (MAE = 3.8 years) in a separate test set of 88 samples of Spanish origin, while predictions for donors of greater forensic interest (< 55 years of age) displayed even higher accuracy (MAE = 2.6 years). Finally, no sex-related bias was observed for this model, while there were also no signs of variation observed between control and disease-associated populations for schizophrenia, rheumatoid arthritis, frontal temporal dementia and progressive supranuclear palsy in microarray data relating to the 11 markers.  相似文献   

11.
Age prediction with epigenetic information is now edging closer to practical use in forensic community. Many age-related CpG (AR-CpG) sites have proven useful in predicting age in pyrosequencing or DNA chip analyses. In this study, a wide range methylation status in the ELOVL2 and FHL2 promoter regions were detected with methylation-sensitive high resolution melting (MS-HRM) in a labor-, time-, and cost-effective manner. Non-linear-distributions of methylation status and chronological age were newly fitted to the logistic curve. Notably, these distributions were revealed to be similar in 22 living blood samples and 52 dead blood samples. Therefore, the difference of methylation status between living and dead samples suggested to be ignorable by MS-HRM. Additionally, the information from ELOVL2 and FHL2 were integrated into a logistic curve fitting model to develop a final predictive model through the multivariate linear regression of logit-linked methylation rates and chronological age with adjusted R2 = 0.83. Mean absolute deviation (MAD) was 7.44 for 74 training set and 7.71 for 30 additional independent test set, indicating that the final predicting model is accurate. This suggests that our MS-HRM-based method has great potential in predicting actual forensic age.  相似文献   

12.
Forensic DNA phenotyping needs to be supplemented with age prediction to become a relevant source of information on human appearance. Recent progress in analysis of the human methylome has enabled selection of multiple candidate loci showing linear correlation with chronological age. Practical application in forensic science depends on successful validation of these potential age predictors. In this study, eight DNA methylation candidate loci were analysed using convenient and reliable pyrosequencing technology. A total number of 41 CpG sites was investigated in 420 samples collected from men and women aged from 2 to 75 years. The study confirmed correlation of all the investigated markers with human age. The five most significantly correlated CpG sites in ELOVL2 on 6p24.2, C1orf132 on 1q32.2, TRIM59 on 3q25.33, KLF14 on 7q32.3 and FHL2 on 2q12.2 were chosen to build a prediction model. This restriction allowed the technical analysis to be simplified without lowering the prediction accuracy significantly. Model parameters for a discovery set of 300 samples were R2 = 0.94 and the standard error of the estimate = 4.5 years. An independent set of 120 samples was used to test the model performance. Mean absolute deviation for this testing set was 3.9 years. The number of correct predictions ±5 years achieved a very high level of 86.7% in the age category 2–19 and gradually decreased to 50% in the age category 60–75. The prediction model was deterministic for individuals belonging to these two extreme age categories. The developed method was implemented in a freely available online age prediction calculator.  相似文献   

13.
Age estimation based on epigenetic markers is a DNA intelligence tool with the potential to provide relevant information for criminal investigations, as well as to improve the inference of age-dependent physical characteristics such as male pattern baldness or hair color. Age prediction models have been developed based on different tissues, including saliva and buccal cells, which show different methylation patterns as they are composed of different cell populations. On many occasions in a criminal investigation, the origin of a sample or the proportion of tissues is not known with certainty, for example the provenance of cigarette butts, so use of combined models can provide lower prediction errors.In the present study, two tissue-specific and seven age-correlated CpG sites were selected from publicly available data from the Illumina HumanMethylation 450 BeadChip and bibliographic searches, to help build a tissue-dependent, and an age-prediction model, respectively. For the development of both models, a total of 184 samples (N = 91 saliva and N = 93 buccal cells) ranging from 21 to 86 years old were used. Validation of the models was performed using either k-fold cross-validation and an additional set of 184 samples (N = 93 saliva and N = 91 buccal cells, 21–86 years old).The tissue prediction model was developed using two CpG sites (HUNK and RUNX1) based on logistic regression that produced a correct classification rate for saliva and buccal swab samples of 88.59 % for the training set, and 83.69 % for the testing set. Despite these high success rates, a combined age prediction model was developed covering both saliva and buccal cells, using seven CpG sites (cg10501210, LHFPL4, ELOVL2, PDE4C, HOXC4, OTUD7A and EDARADD) based on multivariate quantile regression giving a median absolute error (MAE): ± 3.54 years and a correct classification rate ( %CP±PI) of 76.08 % for the training set, and an MAE of ± 3.66 years and a %CP±PI of 71.19 % for the testing set. The addition of tissue-of origin as a co-variate to the model was assessed, but no improvement was detected in age predictions. Finally, considering the limitations usually faced by forensic DNA analyses, the robustness of the model and the minimum recommended amount of input DNA for bisulfite conversion were evaluated, considering up to 10 ng of genomic DNA for reproducible results. The final multivariate quantile regression age predictor based on the models we developed has been placed in the open-access Snipper forensic classification website.  相似文献   

14.
To date, DNA methylation has been regarded as the most promising age-predictive biomarker. In support of this, several researchers have reported age predictive models based on the use of blood or even across a broad spectrum of tissues. However, there have been no publications that report epigenetic age signatures from semen, one of the most forensically relevant body fluids. In genome-wide DNA methylation profiles of 36 body fluids including blood, saliva, and semen, the previous age predictive models showed considerable prediction accuracy in blood and saliva but not in semen. Therefore, we selected CpG sites, whose methylation levels are strongly correlated with age in 12 semen profiles obtained from individuals of different ages, and investigated DNA methylation changes at these CpGs in 68 additional semen samples obtained from individuals aged 20 to 73 years using methylation SNaPshot reaction. Among the selected age-related CpG candidates, outstanding age correlation was obtained at cg06304190 in the TTC7B gene. Interestingly, the region around the TTC7B gene has been reported to show age-related DNA methylation alteration in the sperm methylome of 2 samples collected from individuals at certain time intervals. The age-predictive linear regression model trained with 3 CpGs (cg06304190 in the TTC7B gene, cg06979108 in the NOX4 gene and cg12837463) showed a high correlation between the predicted age and the chronological age, with an average absolute difference of approximately 5 years. These selected epigenetic age signatures are expected to be useful for considerably accurate age estimation in the forensically relevant body fluid of semen. However, because the findings were limited by small sample size, it will be necessary to further evaluate the age correlation of the selected CpGs and to encourage further investigation.  相似文献   

15.
Age prediction has been in the spotlight recently because it can provide an important information about the contributors of biological evidence left at crime scenes. Specifically, many researchers have actively suggested age-prediction models using DNA methylation at several CpG sites and tested the candidates using platforms such as the HumanMethylation 450 array and pyrosequencing. With DNA methylation data obtained from each platform, age prediction models were constructed using diverse statistical methods typically with multivariate linear regression. However, because each developed model is based on single-platform data, the prediction accuracy is reduced when applying DNA methylation data obtained from other platforms. In this study, bisulfite sequencing data for 95 saliva samples were generated using massively parallel sequencing (MPS) and compared with methylation SNaPshot data from the same 95 individuals. The predicted age obtained by applying MPS data to an age-prediction model built for methylation SNaPshot data differed greatly from the chronological age due to platform differences. Therefore, novel variables were introduced to indicate the platform type, and construct platform-independent age predictive models using a neural network and multivariate linear regression. The final neural network model had a mean absolute deviation (MAD) of 3.19 years between the predicted and chronological age, and the mean absolute percentage error (MAPE) was 8.89% in the test set. Similarly, the linear regression model showed 3.69 years of MAD and 10.44% of MAPE in the same test set. The platform-independent age-prediction model was made extensible to an increasing number of platforms by introducing platform variables, and the idea of platform variables can be applied to age prediction models for other body fluids.  相似文献   

16.
Individual age estimation has the potential to provide key information that could enhance and extend DNA intelligence tools. Following predictive tests for externally visible characteristics developed in recent years, prediction of age could guide police investigations and improve the assessment of age-related phenotype expression patterns such as hair colour changes and early onset of male pattern baldness. DNA methylation at CpG positions has emerged as the most promising DNA tests to ascertain the individual age of the donor of a biological contact trace. Although different methodologies are available to detect DNA methylation, EpiTYPER technology (Agena Bioscience, formerly Sequenom) provides useful characteristics that can be applied as a discovery tool in localized regions of the genome. In our study, a total of twenty-two candidate genomic regions, selected from the assessment of publically available data from the Illumina HumanMethylation 450 BeadChip, had a total of 177 CpG sites with informative methylation patterns that were subsequently investigated in detail. From the methylation analyses made, a novel age prediction model based on a multivariate quantile regression analysis was built using the seven highest age-correlated loci of ELOVL2, ASPA, PDE4C, FHL2, CCDC102B, C1orf132 and chr16:85395429. The detected methylation levels in these loci provide a median absolute age prediction error of ±3.07 years and a percentage of prediction error relative to the age of 6.3%. We report the predictive performance of the developed model using cross validation of a carefully age-graded training set of 725 European individuals and a test set of 52 monozygotic twin pairs. The multivariate quantile regression age predictor, using the CpG sites selected in this study, has been placed in the open-access Snipper forensic classification website.  相似文献   

17.
Age estimation in dental pulp DNA based on human telomere shortening   总被引:6,自引:0,他引:6  
Age estimation based on evidence found in teeth has received considerable attention within the field of forensic science. We determined the terminal restriction fragment (TRF) length, as telomere length, to estimate age. Using dental pulp DNA we found the average TRF length showed a tendency to shortening with aging. Our findings show that telomere shortening, based on dental pulp DNA is a new and useful approach to estimate age of the subject at the time of death.  相似文献   

18.
Numerous molecular biomarkers have been proposed as predictors of chronological age. Among them, T-cell specific DNA rearrangement and DNA methylation markers have been introduced as forensic age predictors in blood because of their high prediction accuracy. These markers appear highly promising, but for better application to forensic casework sample analysis the proposed markers and genotyping methods must be tested further. In the current study, signal-joint T-cell receptor excision circles (sjTRECs) and DNA methylation markers located in the ELOVL2, C1orf132, TRIM59, KLF14, and FHL2 genes were reanalyzed in 100 Korean blood samples to test their associations with chronological age, using the same analysis platform used in previous reports. Our study replicated the age association test for sjTREC and DNA methylation markers in the 5 genes in an independent validation set of 100 Koreans, and proved that the age predictive performance of the previous models is relatively consistent across different population groups. However, the extent of age association at certain CpG loci was not identical in the Korean and Polish populations; therefore, several age predictive models were retrained with the data obtained here. All of the 3 models retrained with DNA methylation and/or sjTREC data have a CpG site each from the ELOVL2 and FHL2 genes in common, and produced better prediction accuracy than previously reported models. This is attributable to the fact that the retrained model better fits the existing data and that the calculated prediction accuracy could be higher when the training data and the test data are the same. However, it is notable that the combination of different types of markers, i.e., sjTREC and DNA methylation, improved prediction accuracy in the eldest group. Our study demonstrates the usefulness of the proposed markers and the genotyping method in an independent dataset, and suggests the possibility of combining different types of DNA markers to improve prediction accuracy.  相似文献   

19.
The use of DNA methylation (DNAm) to obtain additional information in forensic investigations showed to be a promising and increasing field of interest. Prediction of the chronological age based on age-dependent changes in the DNAm of specific CpG sites within the genome is one such potential application. Here we present an age-prediction tool for whole blood based on massive parallel sequencing (MPS) and a random forest machine learning algorithm. MPS allows accurate DNAm determination of pre-selected markers and neighboring CpG-sites to identify the best age-predictive markers for the age-prediction tool. 15 age-dependent markers of different loci were initially chosen based on publicly available 450K microarray data, and 13 finally selected for the age tool based on MPS (DDO, ELOVL2, F5, GRM2, HOXC4, KLF14, LDB2, MEIS1-AS3, NKIRAS2, RPA2, SAMD10, TRIM59, ZYG11A). Whole blood samples of 208 individuals were used for training of the algorithm and a further 104 individuals were used for model evaluation (age 18–69). In the case of KLF14, LDB2, SAMD10, and GRM2, neighboring CpG sites and not the initial 450K sites were chosen for the final model. Cross-validation of the training set leads to a mean absolute deviation (MAD) of 3.21 years and a root-mean square error (RMSE) of 3.97 years. Evaluation of model performance using the test set showed a comparable result (MAD 3.16 years, RMSE 3.93 years). A reduced model based on only the top 4 markers (ELOVL2, F5, KLF14, and TRIM59) resulted in a RMSE of 4.19 years and MAD of 3.24 years for the test set (cross validation training set: RMSE 4.63 years, MAD 3.64 years). The amplified region was additionally investigated for occurrence of SNPs in case of an aberrant DNAm result, which in some cases can be an indication for a deviation in DNAm.Our approach uncovered well-known DNAm age-dependent markers, as well as additional new age-dependent sites for improvement of the model, and allowed the creation of a reliable and accurate epigenetic tool for age-prediction without restriction to a linear change in DNAm with age.  相似文献   

20.
Most age estimation methods are proven problematic when applied in highly fragmented skeletal remains. Rib histomorphometry is advantageous in such cases; yet it is vital to test and revise existing techniques particularly when used in legal settings (Crowder and Rosella, 2007). This study tested Stout & Paine (1992) and Stout et al. (1994) histological age estimation methods on a Modern Greek sample using different sampling sites.Six left 4th ribs of known age and sex were selected from a modern skeletal collection. Each rib was cut into three equal segments. Two thin sections were acquired from each segment. A total of 36 thin sections were prepared and analysed. Four variables (cortical area, intact and fragmented osteon density and osteon population density) were calculated for each section and age was estimated according to Stout & Paine (1992) and Stout et al. (1994).The results showed that both methods produced a systemic underestimation of the individuals (to a maximum of 43 years) although a general improvement in accuracy levels was observed when applying the Stout et al. (1994) formula. There is an increase of error rates with increasing age with the oldest individual showing extreme differences between real age and estimated age.Comparison of the different sampling sites showed small differences between the estimated ages suggesting that any fragment of the rib could be used without introducing significant error. Yet, a larger sample should be used to confirm these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号