首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic anion-transporting polypeptide (OATP) 1A2 is expressed on the apical sides of intestinal and renal epithelial cells and considered to be involved in the intestinal absorption and renal reabsorption of drugs. Although the transport activity of OATP1A2 is considered to be pH-dependent, the effects of pH on its kinetic parameters and on the potency of OATP1A2 inhibitors are yet to be elucidated. Some OATP are known to have multiple binding sites (MBS), but it remains unclear whether OATP1A2 has MBS. In the present study, we evaluated the influence of pH on the OATP1A2-mediated uptake of estrone 3-sulfate using OATP1A2-expressing HEK293 cells. The uptake of 0.3 μM estrone 3-sulfate by HEK293-OATP1A2 cells was pH-dependent. OATP1A2 exhibited bimodal saturation kinetics at pH 6.3 and 7.4. Compared with that seen at pH 6.3 (5.62 μM), the Km value of the high-affinity site was 8-fold higher at pH 7.4 (43.2 μM). In addition, the influence of pH on the potency of inhibitors varied among the examined inhibitors. These results suggest that the transport properties of OATP1A2 under lower pH conditions, such as those found in the microenvironments of the small intestinal mucosa and distal tubules, differ from those seen under neutral pH conditions.  相似文献   

2.
CYP4 enzymes are involved in the metabolism of xenobiotics and endogenous molecules. 20-Hydroxyeicosatetraenoic acid (20-HETE), the arachidonic acid (AA) ω-hydroxylation metabolite catalyzed by CYP4A/4F enzymes, is implicated in various biological functions. The goal of this investigation is to examine the inhibitory effects of components from Salvia miltiorrhiza(Danshen) on AA ω-hydroxylation using recombinant CYP4A11, CYP4F2, CYP4F3B, and microsomal systems. Tanshinone IIA had noncompetitive inhibition on CYP4F3B (Ki = 4.98 μM). Cryptotanshinone (Ki = 6.87 μM) and tanshinone I (Ki = 0.42 μM) had mixed-type inhibition on CYP4A11. Dihydrotanshinone I had mixed-type inhibition on CYP4A11 (Ki = 0.09 μM), and noncompetitive inhibition on CYP4F2 (Ki = 4.25 μM) and CYP4F3B (Ki = 3.08 μM). Salvianolic acid A had competitive inhibition on CYP4A11 (Ki = 19.37 μM), and noncompetitive inhibition on CYP4F2 (Ki = 15.28 μM) and CYP4F3B (Ki = 6.45 μM). Salvianolic acid C had noncompetitive inhibition on CYP4F2 (Ki = 5.70 μM) and CYP4F3B (Ki = 18.64 μM). In human kidney, human liver or rat heart microsomes, 20-HETE formation was significantly inhibited (P < 0.05) by dihydrotanshinone I (5 and 20 μM) and salvianolic acid A (20 and 50 μM). Given that low plasma concentrations of Danshen components after oral administration, Danshen preparations may not play pharmacological roles by inhibiting AA ω-hydroxylases; however, as Danshen components may reach high concentration in human intestine, drugs that have an important pre-systemic metabolism by these CYP4A/4F enzymes should avoid being co-administered with Danshen preparations.  相似文献   

3.
Little is known about the influence of non-synonymous genetic variations in the organic anion-transporting polypeptide (OATP) 1A2 on the transport kinetics of its substrate fexofenadine. Moreover, the pH-dependency of fexofenadine uptake also remains unclear. This study aimed to evaluate the effects of genetic variants (Ile13Thr, Asn128Tyr, Glu172Asp, Ala187Thr, and Thr668Ser) on the OATP1A2-mediated uptake of fexofenadine at pH 6.3 and 7.4 and compare the pH dependency of OATP1A2-mediated uptake of fexofenadine and estrone 3-sulfate. The uptake clearances of 0.3 μM and 300 μM fexofenadine were compared with those of 0.3 μM and 300 μM estrone 3-sulfate at pH 6.3 and 7.4. Among the six variants examined, the Thr668Ser variant showed the highest fexofenadine uptake clearance (Vmax/Km); i.e., 4.53- and 6.28-fold higher uptake clearance than the wild type at pH 6.3 and 7.4, respectively. All variants exhibited significantly higher fexofenadine uptake at pH 6.3 than at pH 7.4. Compared with estrone 3-sulfate uptake, the uptake of 0.3 μM fexofenadine was less sensitive to pH. Our findings suggest that genetic variations in OATP1A2 may lead to altered intestinal absorption of fexofenadine, such as increased absorption in subjects bearing the Thr668Ser variant, which showed higher uptake activity.  相似文献   

4.
This study revealed the importance of serine 318 (S318) residue for proton-coupled folate transporter (PCFT, SLC46A1) functioning. Substitution of S318 with arginine or lysine impaired transport of methotrexate (MTX), but substitution with alanine (has a simple side chain structure), or cysteine (structurally similar to serine), had no significant effect on MTX transport. The initial uptake rate of MTX by S318A and S318C mutant at pH 5.0, followed by Michaelis–Menten kinetics with a Km value of approximately 2.3 μM (for S318A) and 2.9 μM (for S318C), was similar to that of the wild-type. The normalized Vmax value of the S318A mutant, calculated by dividing the Vmax value by the Western blot protein band's relative intensity, was approximately 2-fold greater than that of the wild-type. The normalized Vmax value of the S318C mutant was approximately 0.8-fold smaller than the wild-type. Results obtained showed that the substitution of S318 with basic amino acid residues results in the loss of transport activity, even though PCFT mutants are expressed at the cell membrane. Alternatively, the substitution of S318 with neutral amino acids did not significantly affect the transport function of PCFT.  相似文献   

5.
A recent report demonstrated that sesamin strongly and non-competitively inhibits S-warfarin 7-hydroxylation activity in human liver microsomes with a Ki value of 0.2 μM. This finding suggests that sesamin predominantly binds to CYP2C9 at another site for which it has a higher affinity than its affinity for the active site, thereby inhibiting the activity of CYP2C9 non-competitively. In this study, we found that sesamin competitively inhibited the 7-hydroxylation activity of S-warfarin in human liver microsomes with a Ki value of 15.7 μM. In addition, the recombinant CYP2C9-dependent 7-hydroxylation activity of S-warfarin was competitively inhibited by sesamin with a Ki value of 13.1 μM. These results are consistent with the fact that sesamin is a good substrate of CYP2C9, and its activity follows Michaelis-Menten kinetics. As the plasma concentration of sesamin after its administration is usually lower than 0.01 μM, the inhibition of S-warfarin metabolism by sesamin does not appear to be severe.  相似文献   

6.
《药学学报(英文版)》2020,10(5):850-860
Organic anion transporting polypeptide 1B1 and 1B3 (OATP1B1/3) as important uptake transporters play a fundamental role in the transportation of exogenous drugs and endogenous substances into cells. Rat OATP1B2, encoded by the Slco1b2 gene, is homologous to human OATP1B1/3. Although OATP1B1/3 is very important, few animal models can be used to study its properties. In this report, we successfully constructed the Slco1b2 knockout (KO) rat model via using the CRISPR/Cas9 technology for the first time. The novel rat model showed the absence of OATP1B2 protein expression, with no off-target effects as well as compensatory regulation of other transporters. Further pharmacokinetic study of pitavastatin, a typical substrate of OATP1B2, confirmed the OATP1B2 function was absent. Since bilirubin and bile acids are the substrates of OATP1B2, the contents of total bilirubin, direct bilirubin, indirect bilirubin, and total bile acids in serum are significantly higher in Slco1b2 KO rats than the data of wild-type rats. These results are consistent with the symptoms caused by the absence of OATP1B1/3 in Rotor syndrome. Therefore, this rat model is not only a powerful tool for the study of OATP1B2-mediated drug transportation, but also a good disease model to study hyperbilirubinemia-related diseases.  相似文献   

7.
8.
4-Phenyl butyric acid (PBA) has histone deacetylase inhibitory and neuroprotective effects. We aimed to examine the transport alteration activity of PBA in control (WT) and disease (MT) model cell lines of an amyotrophic lateral sclerosis (ALS) model. The transport characteristics of PBA were examined uptake rates and mRNA expression levels in NSC-34 cell lines. PBA uptake was pH, sodium, and concentration dependent. The Km and Vmax values for PBA uptake in the MT were more than two-fold higher than those in the WT. The presence of monocarboxylic acids (MA) and inhibitors of MA transporter (MCT) inhibited the uptake of PBA. PBA showed competitive inhibition in the presence of MAs in both cell lines. SiRNA transfection studies showed that PBA can be transported to NSC-34 cell lines through sodium-coupled MCT1. TNF-α and H2O2 increased, but LPS and glutamate reduced the uptake rate after the pretreatment of the MT cell lines. SMCT1 mRNA expression levels, in the presence of oxidative stress inducing agents, showed consistent results with the uptake results. These results demonstrate that PBA can be transported to the ALS model NSC-34 cell lines by sodium- and proton-coupled MCTs, and MA plays a vital role in the prevention of neurodegenerative diseases.  相似文献   

9.
《药学学报(英文版)》2020,10(8):1476-1491
Ubiquitin specific peptidase 28 (USP28) is closely associated to the occurrence and development of various malignancies, and thus has been validated as a promising therapeutic target for cancer therapy. To date, only few USP28 inhibitors with moderate inhibitory activity have been reported, highly potent and selective USP28 inhibitors with new chemotypes remain to be discovered for pathologically investigating the roles of deubiquitinase. In this current study, we reported the synthesis and biological evaluation of new [1,2,3]triazolo[4,5-d]pyrimidine derivatives as potent USP28 inhibitors. Especially, compound 19 potently inhibited USP28 (IC50 = 1.10 ± 0.02 μmol/L, Kd = 40 nmol/L), showing selectivity over USP7 and LSD1 (IC50 > 100 μmol/L). Compound 19 was cellularly engaged to USP28 in gastric cancer cells. Compound 19 reversibly bound to USP28 and directly affected its protein levels, thus inhibiting the proliferation, cell cycle at S phase, and epithelial-mesenchymal transition (EMT) progression in gastric cancer cell lines. Docking studies were performed to rationalize the potency of compound 19. Collectively, compound 19 could serve as a new tool compound for the development of new USP28 inhibitors for exploring the roles of deubiquitinase in cancers.  相似文献   

10.
《药学学报(英文版)》2021,11(9):2655-2669
Peptide inhibition of the interactions of the tumor suppressor protein P53 with its negative regulators MDM2 and MDMX activates P53 in vitro and in vivo, representing a viable therapeutic strategy for cancer treatment. Using phage display techniques, we previously identified a potent peptide activator of P53, termed PMI (TSFAEYWNLLSP), with binding affinities for both MDM2 and MDMX in the low nanomolar concentration range. Here we report an ultrahigh affinity, dual-specificity peptide antagonist of MDM2 and MDMX obtained through systematic mutational analysis and additivity-based molecular design. Functional assays of over 100 peptide analogs of PMI using surface plasmon resonance and fluorescence polarization techniques yielded a dodecameric peptide termed PMI-M3 (LTFLEYWAQLMQ) that bound to MDM2 and MDMX with Kd values in the low picomolar concentration range as verified by isothermal titration calorimetry. Co-crystal structures of MDM2 and of MDMX in complex with PMI-M3 were solved at 1.65 and 3.0 Å resolution, respectively. Similar to PMI, PMI-M3 occupied the P53-binding pocket of MDM2/MDMX, which was dominated energetically by intermolecular interactions involving Phe3, Tyr6, Trp7, and Leu10. Notable differences in binding between PMI-M3 and PMI were observed at other positions such as Leu4 and Met11 with MDM2, and Leu1 and Met11 with MDMX, collectively contributing to a significantly enhanced binding affinity of PMI-M3 for both proteins. By adding lysine residues to both ends of PMI and PMI-M3 to improve their cellular uptake, we obtained modified peptides termed PMI-2K (KTSFAEYWNLLSPK) and M3-2K (KLTFLEYWAQLMQK). Compared with PMI-2K, M3-2K exhibited significantly improved antitumor activities in vitro and in vivo in a P53-dependent manner. This super-strong peptide inhibitor of the P53-MDM2/MDMX interactions may become, in its own right, a powerful lead compound for anticancer drug development, and can aid molecular design of other classes of P53 activators as well for anticancer therapy.  相似文献   

11.
Using X. laevis oocyte expression system, we investigated whether human Na+-coupled monocarboxylate transporter 1 (SLC5A8, hSMCT1) is involved in 2,4-dichlorophenoxyacetate (2,4-D) uptake by the renal tubular epithelial cells. 2,4-D is a herbicide that causes nephrotoxicity. Heterologous expression of hSMCT1 in X. laevis oocytes conferred the ability to take up 2,4-D; the induced uptake process was Na+-dependent and electrogenic. The Na+-dependent uptake of 2,4-D was inhibited not only by known hSMCT1 substrates, but also by many structural analogs of 2,4-D. The currents induced by 2,4-D, 4-chlorophenoxyacetate (4-CPA) and 2-methyl-4-chlorophenoxyacetate (MCPA) were saturable: the rank order of the maximal induced current and the affinity for hSMCT1was 2,4-D > 4-CPA > MCPA. The relationship between the structures of the derivatives and their transport activity implied specific structural features in a compound for recognition as a substrate by hSMCT1. Furthermore, we have demonstrated using purified rabbit renal brush-border membrane vesicles that 2,4-D potently inhibited the Na+-dependent uptake of pyroglutamate, a typical substrate for Smct1, and that 2,4-D uptake process was Na+-dependent, saturable and inhibitable by a potent blocker, ibuprofen. We conclude that hSMCT1 is involved partially in the renal reabsorption of 2,4-D and its derivatives and their nephrotoxicity.  相似文献   

12.
Some grapefruit juice (GFJ) ingredients and resveratrol, a fruit-derived phytoalexin, are known to inhibit cytochrome P450 (CYP) 2C9. However, their inhibition modes and detailed inhibition kinetics remain undetermined. This study aimed to investigate the inhibitory effects of two GFJ ingredients, bergamottin (BG) and dihydroxybergamottin (DHB), and resveratrol on CYP2C9 activity in vitro. DHB inhibited CYP2C9 activity, as assessed by warfarin 7-hydroxylation, in a preincubation time-dependent manner (i.e., mechanism-based inhibition; MBI), in the same manner as CYP2C19 and CYP3A4. The maximal inactivation rate (kinact,max) was 0.0638 min−1 and 0.12- and 0.26-fold of that for CYP2C19 and CYP3A4, respectively. BG showed both MBI and time-independent competitive inhibition. Resveratrol showed non-competitive inhibition with an inhibition constant (Ki) of 3.64 μM. Unlike the inhibition of CYP2C19 and CYP3A4, resveratrol did not induce MBI. These findings are important for estimating the risk of drug interactions between CYP2C9 substrates and some beverages. (146 words)  相似文献   

13.
《药学学报(英文版)》2021,11(9):2685-2693
ω-Conotoxins inhibit N-type voltage-gated calcium (CaV2.2) channels and exhibit efficacy in attenuating neuropathic pain but have a low therapeutic index. Here, we synthesized and characterized a novel ω-conotoxin, Bu8 from Conus bullatus, which consists of 25 amino acid residues and three disulfide bridges. Bu8 selectively and potently inhibits depolarization-activated Ba2+ currents mediated by rat CaV2.2 expressed in HEK293T cells (IC50 = 89 nmol/L). Bu8 is two-fold more potent than ω-conotoxin MVIIA, a ω-conotoxin currently used for the treatment of severe chronic pain. It also displays potent analgesic activity in animal pain models of hot plate and acetic acid writhing but has fewer side effects on mouse motor function and lower toxicity in goldfish. Its lower side effects may be attributed to its faster binding rate and higher recovery ratios. The NMR structure demonstrates that Bu8 contains a small irregular triple β-strand. The structure–activity relationships of Bu8 Ala mutants and Bu8/MVIIA hybrid mutants demonstrate that the binding mode of CaV2.2 with the amino acid residues in loop 1 and loop 2 of Bu8 is different from that of MVIIA. This study characterizes a novel, more potent ω-conotoxin and provides new insights for designing CaV2.2 antagonists.  相似文献   

14.
In this study, a modified dissolution apparatus was developed by equipping a USP apparatus Ⅰ with an open-loop system to discriminate the dissolution capacity in vitro and establish an in vitro and in vivo correlation (IVIVC) for mycophenolate mofetil (MMF) tablets. MMF had strong pH-dependent solubility that could influence the dissolution rate in vivo after the meal. Dissolution tests involving reference (Cellcept®) and test formulations (F1 and F2) were conducted using pH 4.5 acetate buffer to simulate gastric fluids in the fed state. The dissolution profiles of the reference and test formulations were distinguished by using the modified dissolution apparatus and compared with those determined using the USP apparatuses Ⅱ and Ⅳ, and the dissolution capacities of the formulations were discriminated at different sampling time-points. The results of human bioequivalence (BE) studies in the fed state were consistent with in vitro evaluations that the maximum concentrations (Cmax, in vivo) of both F1 and F2 fell below the acceptable range (80.00%). A level A IVIVC between the absorption fraction in vivo and dissolution in vitro, and a level C correlation between Cmax, in vivo and Cmax, in vitro, were established to guide the optimization of the tablet formulation containing MMF.  相似文献   

15.
《药学学报(英文版)》2020,10(10):2002-2009
Polyethylene glycols (PEGs) in general use are polydisperse molecules with molecular weight (MW) distributed around an average value applied in their designation e.g., PEG 4000. Previous research has shown that PEGs can act as P-glycoprotein (P-gp) inhibitors with the potential to affect the absorption and efflux of concomitantly administered drugs. However, questions related to the mechanism of cellular uptake of PEGs and the exact role played by P-gp has not been addressed. In this study, we examined the mechanism of uptake of PEGs by MDCK-mock cells, in particular, the effect of MW and interaction with P-gp by MDCK-hMDR1 and A549 cells. The results show that: (a) the uptake of PEGs by MDCK-hMDR1 cells is enhanced by P-gp inhibitors; (b) PEGs stimulate P-gp ATPase activity but to a much lesser extent than verapamil; and (c) uptake of PEGs of low MW (<2000 Da) occurs by passive diffusion whereas uptake of PEGs of high MW (>5000 Da) occurs by a combination of passive diffusion and caveolae-mediated endocytosis. These findings suggest that PEGs can engage in P-gp-based drug interactions which we believe should be taken into account when using PEGs as excipients and in PEGylated drugs and drug delivery systems.  相似文献   

16.
《药学学报(英文版)》2021,11(11):3636-3647
Pure drug-assembled nanomedicines (PDANs) are currently under intensive investigation as promising nanoplatforms for cancer therapy. However, poor colloidal stability and less tumor-homing ability remain critical unresolved problems that impede their clinical translation. Herein, we report a core-matched nanoassembly of pyropheophorbide a (PPa) for photodynamic therapy (PDT). Pure PPa molecules are found to self-assemble into nanoparticles (NPs), and an amphiphilic PEG polymer (PPa-PEG2K) is utilized to achieve core-matched PEGylating modification via the π‒π stacking effect and hydrophobic interaction between the PPa core and the PPa-PEG2K shell. Compared to PCL-PEG2K with similar molecular weight, PPa-PEG2K significantly increases the stability, prolongs the systemic circulation and improves the tumor-homing ability and ROS generation efficiency of PPa-nanoassembly. As a result, PPa/PPa-PEG2K NPs exert potent antitumor activity in a 4T1 breast tumor-bearing BALB/c mouse xenograft model. Together, such a core-matched nanoassembly of pure photosensitizer provides a new strategy for the development of imaging-guided theragnostic nanomedicines.  相似文献   

17.
《药学学报(英文版)》2020,10(9):1669-1679
Proteolysis targeting chimeras (PROTACs) are dual-functional hybrid molecules that can selectively recruit an E3 ubiquitin ligase to a target protein to direct the protein into the ubiquitin-proteasome system (UPS), thereby selectively reducing the target protein level by the ubiquitin-proteasome pathway. Nowadays, small-molecule PROTACs are gaining popularity as tools to degrade pathogenic protein. Herein, we present the first small-molecule PROTACs that can induce the α1A-adrenergic receptor (α1A-AR) degradation, which is also the first small-molecule PROTACs for G protein-coupled receptors (GPCRs) to our knowledge. These degradation inducers were developed through conjugation of known α1-adrenergic receptors (α1-ARs) inhibitor prazosin and cereblon (CRBN) ligand pomalidomide through the different linkers. The representative compound 9c is proved to inhibit the proliferation of PC-3 cells and result in tumor growth regression, which highlighted the potential of our study as a new therapeutic strategy for prostate cancer.  相似文献   

18.
Amla (Phyllanthus emblica) has long been used in traditional folk medicine to prevent and cure a variety of inflammatory diseases. In this study, the antioxidant activity (DPPH scavenging and reducing power), anti-inflammatory activity (RBC Membrane Stabilization and 15-LOX inhibition), and anticoagulation activity (Serin protease inhibition and Prothrombin Time assays) of the methanolic extract of amla were conducted. Amla exhibited a substantial amount of phenolic content (TPC: 663.53 mg GAE/g) and flavonoid content (TFC: 418.89 mg GAE/g). A strong DPPH scavenging effect was observed with an IC50 of 311.31 µg/ml as compared to standard ascorbic acid with an IC50 of 130.53 µg/ml. In reducing power assay, the EC50 value of the extract was found to be 196.20 µg/ml compared to standard ascorbic acid (EC50 = 33.83 µg/ml). The IC50 value of the RBC membrane stabilization and 15-LOX assays was observed as 101.08 µg/ml (IC50 of 58.62 µg/ml for standard aspirin) and 195.98 µg/ml (IC50 of 19.62 µg/ml for standard quercetin), respectively. The extract also strongly inhibited serine protease (trypsin) activity with an IC50 of 505.81 µg/ml (IC50 of 295.44 µg/ml for standard quercetin). The blood coagulation time (PTT) was found to be 11.91 min for amla extract and 24.11 min for standard Warfarin. Thus, the findings of an in vitro study revealed that the methanolic extract of amla contains significant antioxidant, anti-inflammatory, and anticoagulation activity. Furthermore, in silico docking and simulation of reported phytochemicals of amla with human 15-LOXA and 15-LOXB were carried out to validate the anti-inflammatory activity of amla. In this analysis, epicatechin and catechin showed greater molecular interaction and were considerably stable throughout the 100 ns simulation with 15-lipoxygenase A (15-LOXA) and 15-lipoxygenase B (15-LOXB) respectively.  相似文献   

19.
《药学学报(英文版)》2019,9(6):1204-1215
The sigma-1 receptor (σ1R) is a unique intracellular protein. σ1R plays a major role in various pathological conditions in the central nervous system (CNS), implicated in several neuropsychiatric disorders. Imaging of σ1R in the brain using positron emission tomography (PET) could serve as a noninvasively tool for enhancing the understanding of the disease's pathophysiology. Moreover, σ1R PET tracers can be used for target validation and quantification in diagnosis. Herein, we describe the radiosynthesis, in vivo PET/CT imaging of novel σ1R 11C-labeled radioligands based on 6-hydroxypyridazinone, [11C]HCC0923 and [11C]HCC0929. Two radioligands have high affinities to σ1R, with good selectivity. In mice PET/CT imaging, both radioligands showed appropriate kinetics and distributions. Additionally, the specific interactions of two radioligands were reduced by compounds 13 and 15 (self-blocking). Of the two, [11C]HCC0929 was further investigated in positive ligands blocking studies, using classic σ1R agonist SA 4503 and σ1R antagonist PD 144418. Both σ1R ligands could extensively decreased the uptake of [11C]HCC0929 in mice brain. Besides, the biodistribution of major brain regions and organs of mice were determined in vivo. These studies demonstrated that two radioligands, especially [11C]HCC0929, possessed ideal imaging properties and might be valuable tools for non-invasive quantification of σ1R in brain.  相似文献   

20.
This study aimed to demonstrate usefulness of the fluorophore-labeled bile acid derivative, N-(24-[7-(4-N,N-dimethylaminosulfonyl-2,1,3-benzoxadiazole)]amino-3α,7α,12α-trihydroxy-27-nor-5β-cholestan-26-oyl)-2′-aminoethane sulfonate (tauro-nor-THCA-24-DBD) as a substrate of apical sodium-dependent bile acid transporter (ASBT, SLC10A2), which is expressed at distal ileum for reabsorption of bile acids and to find a novel fluorescence-based method to evaluate ASBT activity. In HPLC analysis, chromatogram of tauro-nor-THCA-24-DBD showed double peaks: R- and S-isomers of the compound. When ASBT was expressed in Xenopus laevis oocytes, their uptakes were higher than those by control oocytes, demonstrating both are transported by ASBT. Therefore, results were analyzed separately as peak 1, peak 2 and sum of them. Concentration dependent uptake of tauro-nor-THCA-24-DBD in ASBT-expressing oocytes was saturable with Km 122 μM and Vmax 1.49 pmol/oocyte/30 min for peak 1, 30.7 μM and 1.34 pmol/oocyte/30 min for peak 2, and 40.6 μM and 2.36 pmol/oocyte/30 min for sum, respectively. These uptakes were decreased in the presence of taurocholic acid and in the Na+ free condition. Furthermore, in Caco-2 cells, tauro-nor-THCA-24-DBD uptake was also Na+-dependent and saturable. Additionally, these uptakes were decreased by elobixibat, a selective ASBT inhibitor. Accordingly, it was concluded that tauro-nor-THCA-24-DBD is a substrate of ASBT and useful to evaluate the intestinal ASBT transport activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号